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Energy and optical spectra of excitons against a background of incompressible quantum liquids
(IQL's) are investigated by finite-size computations in a spherical geometry and by symmetry argu-
ments based on the composite fermion theory. Properties of excitons are governed by the parameter
h/l, where h is a separation between electron and hole confinement planes and l is a magnetic length.
When h/l 1, the energy spectrum comprises a single exciton branch Lo and a quasicontinuum
above it. With increasing h/l a multiple-branch exciton spectrum develops. DifFerent branches L
may be classi6ed by the index m, which identifies the minimum angular momentum, L, of the
L branch. There are two types of branches. The branches of the first type are symmetrically
compatible with a model of an exciton as a neutral entity consisting of a valence hole and several
fractionally charged quasiparticles. All these anyon branches have m values exceeding some critical
value (m ) 3 for the v = 1/3 IQL), and they are generically related to some specific states from
the low-energy sector of the electron subsystem, and drop down below the original Lo branch with
increasing h/l Compa. rative investigation of the number-of-particle dependencies of the electron
and exciton spectra shows that these properties survive in the macroscopic limit and establishes a
connection between anyon branches and the basic low-energy physics of IQL's. The branches of the
second type remain above Lo and cannot be treated in terms of low-energy electronic excitations.
We argue that the sphere-onto-plane projection rule for neutral composite particles has a form
L —L = kR, where k is the particle quasimomentum and R is the sphere radius. Since a plane
rather than a sphere is the dynamical space of an exciton, this projection rule clarifies the physical
meaning of the multiple-branch spectra and establishes the selection rules for optical transitions.
In particular, it identifies L s as internal angular momenta of the excitons belonging to difFerent
branches. Momentum dependencies of the probabilities of magnetoroton-assisted transitions suggest
that magnetorotons of a v = 1/3-IQL are L2 quasiparticles. We also show that doublet emission
spectra originating from zero- and single-magnetoroton transitions persist in a wide region of the
parameter values.

I. INTRODUCTION

Incompressible quantum liquids (IQL's), i which are
formed at low temperatures in a two-dimensional (2D)
electron gas subjected to a strong magnetic Geld H, have
been originally discovered by means of magnetotransport
experiments. IQL's manifest themselves in the fractional
quantum Hall eKect (FQHE), which is observed when a
filling factor v takes quantized values v = p/q (in what
follows, fractional fillings or fractions), where p is an inte-
ger, and q is an odd integer; for review, see Refs. 3 and 4.
Intimate properties of these liquids, including the inter-
action of elementary excitations, are extracted &om the
theoretical treatment of the hierarchies, i. e., families
of IQL's. Members of these families manifest themselves
consequently when the temperature T is lowered.

More recently optical experiments became an indepen-

dent source of information on the properties of IQL's. It
is a specific property of interband optical experiments
that the spectra are strongly a8'ected by the electric Geld
of a valence hole, a &ee or trapped one, which resides
near the electron conGnement layer. This Geld strongly
complicates treatment of the data, but it also produces
additional potentialities for investigating elementary ex-
citations of IQL's. Meanwhile, the spectra of elementary
excitations of IQL s are unique, and developing difFerent
approaches for the investigation of them seems highly
tempting.

Charged elementary excitations of IQL's are quasielec-
trons (QE's) and quasiholes (QH's) which are quasiparti-
cles carrying fractional electric charges, (—e/q) and (e/q),
respectively. These quasiparticles are anyons, i.e. , they
obey fractional statistics. Incompressibility of the liq
uids originates &om the existence of a gap 4 for creating
a QE-QH pair. The lower branch of the spectrum of
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neutral elementary excitations of an IQL is formed by
magnetorotons (MR's). A MR may be described either
as a charge density wave, or as a quasiexciton con-
sisting of a bound QE-QH pair. In the limit of a large
momentum k, the MR &equency coincides with the gap,
ldMxx(k M oo) = A.

There are three groups of successful experiments on
optical properties of IQL's. The first groupi2 deals with
radiative recombination of electrons &om a heterojunc-
tion with neutral acceptors residing outside the confine-
ment layer. It is of crucial importance that the accep-
tors are neutral in the initial state and, therefore, do not
perturb the IQL. As a result, the first moment of the
emission band, ur(v), shows down-cusps at fractional
fillings which are related to the cusps in the ground state
energy. However, cusp strengths in the emission spec-
tra depend not only on L, but also on the separation 6
between an acceptor and the electron confinement plane.
Investigations of the u(v) curves permitted experixnental-
ists to observe the 6 dependence of the cusp strengths
and to measure the 4 values for a nuznber of IQL's.

The second group of experiments deals with intrinsic
recombination emission &om quantum wells and hetero-
junctions. In the initial state a hole strongly polarizes an
IQL, and magnetoexcitons having a complicated internal
structure are formed. The most remarkable features in
the intrinsic recombination spectra are doublets discov-
ered in Ref. 17. This observation was supported by data
taken by independent experimental groups. ' Doublets
were observed in the vicinity of &actional fillings, but
they are also seen in a considerable region of v values
around the &actions. In the region of small v values,
which apparently corresponds to forming a Wigner solid,
even more reach structures have been observed, and some
theoretical approaches were discussed. 2O The patterns of
the doublet spectra are somewhat di8'erent in quantum
wells where up-cusps in the position of the high-&equency
component have been found recently2i (for a theory, see
Ref. 22), and in heterojunctions with highi and low
electron concentrations. The origin of doublets has not
been definitely established yet. In the vicinity of &ac-
tions the splitting of emission bands may originate &om
the presence of additional charged quasiparticles. A split-
ting mechanism originating from free QE s has been pro-
posed in Ref. 25. A role of complexes, which are bound
states of excitons with charged quasiparticles, has been
mentioned in Refs. 26, 27. An extensive numerical in-
vestigation of such complexes, anyon ions, ' has been
performed in Ref. 30. Because of the inhomogeneity of
samples (which is inevitable), complexes can contribute
to emission spectra even when the v is nominally &ac-
tional. However, it has been shown3~ that there exists
also a mechanism of the formation of doublets which
operates when v takes a &actional value exactly. This
mechanism is based on a gigantic suppression of the ex-
citon dispersion by an IQL.2s's2'ss In the present paper
we investigate this mechanism in more detail including
the multiple-branch structure of exciton spectra.

The third type of experiments ' deals with resonant
Raman scattering in the FQHE regime. These exper-
iments permitted measuring the &equency of long-wave

MR's, uMxx(k = 0), and the dispersion of MR's. Theories
based on the band-to-band ~ and exciton approaches
have been proposed. Important aspects of the Raman
scattering experiments, e.g. , the spectral dependence of
the scattering cross section, need a detailed description
of the shape of exciton resonances.

One can see &om the above summary that the central
theoretical problem in the interband spectroscopy of the
FQHE is the theory of excitons. The role of excitons in
optical spectra increases with increasing magnetic field,
and they dominate the spectra of two-dimensional (2D)
systems in the ordinary QHE regime. 42 Low-energy
excitons remain stable also in the FQHE regizne (de-
spite the strong polarization of an IQL around them)
because of the existence of the energy gap; numerical
experiments ' ' ' support this statement.

There are two parameters in the theory which strongly
inBuence the properties of excitons. The first parameter
is a 2D quasimomentum k . It exists owing to the exciton
electrical neutrality43 and may be introduced by analogy
with ordinary magnetoexcitons. The second parameter
is the ratio h/l, where / is the magnetic length. It may
be considered as a governing parameter which strongly
inHuences both the internal structure and spectroscopy
of excitons. 4

When h = 0, (i) the perturbation exerted by a hole is
large compared to b, , (ii) the size of an exciton is about
l, which is the characteristic size of a QE, and (iii) elec-
tron concentration inside an exciton strongly deviates
from the fractional value v/2vrl~ (it reaches the Ferzni
limit, d~ = 1/2vrl2, at the point where a hole resides2s).
Therefore, one cannot expect that excitons might be de-
scribed in terxns of an unperturbed IQL, or, more specifi-
cally, of the elementary excitations of it. However, charge
symmetric h = 0 systems possess a hidden symmetry.
Owing to it frequencies of allowed exciton transitions ex-
actly coincide with the transition &equencies in an empty
crystal, i.e. , in the absence of an IQL. This statexnent,
established originally for Bose-condensed systems, ' is
valid under rather general conditions. ' ' " Compu-
tations in a spherical geometry provide reliable results
for small 6 values. However, the dynamic space of an
exciton is a plane rather than a sphere. Therefore the
conditions of a pseudoplane geometry, h & R/2, and of
a small exciton radius, r „&mR, where R is the sphere
radius, establish the upper limit for obtaining reliable
quantitative results. The former restriction is practically
equivalent to h/I & 1.5. Nevertheless, we believe that
the qualitative results obtained in a spherical geometry
remain valid for the lower part of the exciton spectrum
in a wider region of h values, h & R, i.e., h/I & 3.

The opposite limit case, h )) l, is more accessible for
an analytic treatment. In this limit the perturbation pro-
duced by a hole is weak as compared to 4, and an ex-
citon consists of a valence hole with a charge (+e) and
q QE's having charges (—e/q). Such an entity, an anyon
exciton, 2 possesses a quasimomentum k and (q —1) in-
ternal degrees of &eedom. As a result, the spectrum
acquires a multiple-branch structure. At k = 0 the
branches may be classified by the internal angular mo-
mentum of an exciton. With increasing k the electron
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shell of an exciton shows impressive splitting into anyon
components. For q && 1 the macroscopic approach
may be used.

In what follows, we report the results of computations
in a spherical geometry ' which show the emergence of
the multiplicity of exciton branches &om a wide contin-
uumlike spectrum for v = 1/3 (preliminary results were
presented in Refs. 34). It is important that the multiple-
branch spectrum sets in at h/l = 1.5, i.e., in the region
of the applicability of the numerical methods. We be-
lieve that the latter property will permit one to match
both approaches and to obtain the general picture of the
spectrum dependence on h/l. Symmetry classification of
the branches is given, and it is shown that the energy
spectrum of excitons is intimately related to the dimen-
sion of the quasielectron space and the decomposition
of it into subspaces with diferent angular momenta.
Qualitative agreement with some predictions based on
the anyon exciton model ' is obtained.

II. COMPUTATIONAL PROCEDURES

All computations have been performed in a spherical
geometry. ' Electrons and a hole were considered as
particles inhabiting the lowest Landau level and possess-
ing angular momentum S, where 2S is the magnetic flux
through the sphere in units of the flux quantum. The
electron-hole separation 6 was modeled by the interac-
tion Hamiltonian

dr, (0) =
gp(2g~ g) ) f ''' f~+~'''d+~.

x ~@gr„(Ai, , AN, , Aq)
~

x) b(A, —A„—A) . (2)

dr, (0) & dy (S) = (2S+. 1)/4vrSl (3)

In the macroscopic limit, S ~ oo, this bound tends to
d~. The approximate density distribution in the plane
geometry, dr, (r), can be obtained by the chord projection

r = 2R sin(0/2), (4)

where 0 is the polar angle.
We suppose that interband transitions are allowed. In

this case the photon angular momentum is absorbed by
Bloch functions, and the probabilities and selection rules
are determined by overlap of the electron and hole e8'ec-
tive mass functions. Therefore the transition probabili-
ties mif in the emission spectra are equal to

~i f ~ ~ ~ ~ d+1 ~ ~ ~ d+N d+h @i +1&
~ ~ ~ ) +N y +h

The electron density on a hole, i.e., in the point where the
hole resides, equals dr, (0) (more exactly, it is the electron
density at the same point of the x, y plane). The Pauli
exclusion principle determines the upper bound for dr, (0),

X@f(All ~ ~ ~
~ AN, —l)~(Ah AN, ) (5)

2e
~ - gh2+ R2~A, —A„~2

'

where R = ly S is the sphere radius, A = A(8, P) is a unit
vector, i, j indicate electrons, and 6 denotes a hole. Fol-
lowing the usual procedure, 5O we have used Slater deter-
minants as basis functions, computed Hamiltonian matri-
ces for a given projection L of the angular momentum L,
and found eigenvalues and eigenstates for L & L . The
matrix size rises rapidly with the number of electrons N
because of the increase in both the number of dynamical
variables and the single-electron basis functions 2S + 1.
Adding a hole increases the size of the system by the
factor about 2S + 1 because of the absence of antisym-
metrization over the hole coordinate. For N, = 8 and a
single hole, Nh ——1, the matrix size equals 42 164. Fortu-
nately, the Hamiltonian matrix is sparse. The number of
nonzero elements is only about 5'. Therefore, applica-
tion of I anczos and Davidson algorithms permitted
us to find up to 50 lowest eigenvalues and their eigen-
functions for matrices of that size.

When evaluating the distribution of the electron den-
sity around the hole for an exciton with the angular mo-
mentum L, we have performed averaging over L . This
averaged density dr, (A) does not depend on Ag. If one
chooses Ah ——A& in the north pole direction, the follow-
ing equation holds:

where 4'; and 4f are the wave functions of the initial
(with an exciton) and final (without exciton) quantum
states. An analogous equation holds for absorption spec-
tra.

III. EXCITON STATES AT h/l ( 1: EXCITON
BRANCH AND DOUBLET OPTICAL SPECTRA

In what follows we discuss the properties of a system
with an exciton (or, what is the same, one additional
electron-bole pair) and of the same system without the
exciton. We shall refer to the former system as a "large"
one and to the latter as a "small" one. To ensure relia-
bility of the data we restrict L in the figures by the maxi-
mum MR angular momentum, (LMn) ~~„, of a small sys-
tem. For Laughlin liquids with v = 1/q this angular mo-

mentum equals (LMn) „=N, ', where N, ' = N, —1(s) (~)

is the number of electrons in a small system.

A. Energy spectrum

The energy spectrum of a v = 1/3 IQL with an ex-
citon is plotted in Fig. 1 vs. angular momentum L for
a system consisting of seven electrons and a single hole
(N, = 7, Ng = 1). Here and below energy is measured
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expected to increase by a factor of about 1.5 at k ~ oo.
The shape and the scale of ep(k) are in reasonable agree-
ment with the anyon exciton model. These results im-

ply that the charge &actionalization makes an essential
contribution to the renormalization of the exciton energy
spectrum and suppression of the exciton dispersion.

0—
0 1 2 3 4 5 6 7
Angular Momentum, L (ft)

FIG. 1. Energy spectrum of a system consisting of seven
electrons aud one hole (N, = 7, Nh, = 1) for h ( l.
The Hux 2S = 15; hence a small system is in an incom-
pressible v = 1/3 state. Maximum momentum of MR's is

{LMa) = N —1 = 6. Since ep(L = 0) is chosen as the
origin, multiplicative states display the MR dispersion law.
For h = 0 the exciton dispersion ep(L) and the continuum
are shown. For different values of h only zo(L) is shown; h in
units of l. For comparison the dispersion law of a bare exciton
(ex) is shown; E,„(k = 0) is chosen as the origin.

in units of the Coulomb energy so = e /el, while h and
k are in units of I, and /, respectively; e is the dielec-
tric constant. The spectrum includes a single exciton
branch Lo and a quasicontinuum above it. For h = 0
both the exciton dispersion law sp(k) and the continuum
are shown in the figure; zp(0) is chosen as the origin.
The lower branch of the multiplicative states is shown
by open dots. In these states two noninteracting quasi-
particles are present: an Lo exciton with L = 0 and
a single MR. Therefore, open dots display the MR dis-
persion law. The roton minimum k„ is distinctly seen.
If one employs the usual equation k = L/R, the mag-
nitude of k„ is k„1.5. It is also seen that some of
the states belonging to the quasicontinuum lie below this
minimum. We attribute them to complexes (exciton-MR
bound states ), will not discuss them here in any detail,
and will apply the term continuum to the whole spectrum
lying above L0 and displaying no visible structure. The
Lo branch and the continuum, well separated for k ( k„,
draw together for k & k„. When h increases, the exciton
energy sp(k) becomes Batter, and a gap opens between
the Lo exciton branch and continuum. Meanwhile, there
are no considerable changes in the distribution of the en-
ergy levels in the continuum.

The exciton dispersion law sp(k) is flat for k ) k, and
the exciton energy is strongly reduced in the whole area
of k values because of the dressing of an exciton by an
IQL. It is seen &om Fig. 1 that s'p(k) is about one order of
magnitude smaller as compared to the energy of a bare
exciton, E,„(k = oo) = gm/2. It seems plausible, by
analogy with a quasiexciton, ' that in the large k re-
gion, k )) 1, an exciton consists of a core (an anyon ion),
having a charge (e/q) [a hole and (q —1) QE's], and of a
split-off QE. Calculations perforined for anyon excitons
with q = 2 and 3 support this picture. ' The separation
between the core and the split-off QE in the large k region
is about qk; the energy is about ep(k) 4/s& —1/q .
As applied to Fig. 1 this equation implies that ep(k) is

B. Optical spectra
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FIG. 2. Energy spectrum and distribution of the oscillator
strengths between difFerent states for four values of h: (a)
0, (b) 0.5, (c) 0.8, and '(d) 1.0 (h in units of I; bottom of
the spectrum is chosen as the origin). The system is the
same as iu Fig. 1. (a) Multiplicative states which saturate
the total oscillator strength are marked by bars. (b)—(d) Bar
lengths show transition probabilities for zero-MR (L = 0)
aud single-MR (L ) 0) transitions. In (d) the numbers show
probabilities of single-MR transitions from the Io branch in
percentages of the transition probabilities from multiplicative
states.

For h = 0 the total oscillator strength is saturated by
multiplicative states. Redistribution of it with increasing
6 is seen in Fig. 2. For h, = 0 multiplicative states are
shown by bars. Quite analogous to Fig. 1, these states
repeat the shape of the MR dispersion law. Because of
the hidden symmetry (i) frequencies of the transitions
to (from) multiplicative states do not depend on v (for
rj„vh ( 1) and coincide with the exciton transition fre-
quency in an empty crystal, and (ii) probabilities of the
transitions to (from) all these states are equal. This lat-
ter fact is reflected in Fig. 2(a) in the equal lengths of all
bars. In Figs. 2(b)—2(d) the probabilities are plotted in
units of the length of these bars. When 6 increases, multi-
plicative states share the oscillator strength with difFerent
states of the continuum and of the Lo branch. Initially
the oscillator strength is transferred to neighboring states
[Fig. 2(b)], but later on the Bow of the oscillator strength
down the spectrum is clearly seen. This fl.ow is especially
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strong for k + k„. As a result, a considerable oscillator
strength is accumulated near the bottom of the contin-
uum and transferred to the exciton branch. For h = I
this latter part of the oscillator strength is rather high,
Fig. 2(d).

The redistribution of the oscillator strength can also
be displayed by the spectral function which includes both
the transition probabilities and the density of states:

I'(~) = ) ur, 8(s; —s —(u), (6)

where i and o., respectively, refer to different states of
"large" and a "small" system; m, are transition prob-
abilities. I"(u) has a b function shape at h = 0 and is
picked at the &equency of a &ee magnetoexciton. In the
left column of Fig. 3 the density F(u) is shown for three

values of h. Only the contribution to P(~) coming from
the lower part of the energy spectrum, which is shown
in Fig. 1, is included in Fig. 3; the upper part of the
spectrum is immaterial for low-T optical spectra, both
emission and absorption. Three main contributions to
I" (u) are shown in the figure by different symbols. It is
seen that the width of the spectral distribution increases
with h. The contribution of the I = 0 exciton state
(heavy bars) is small due to a small phase volume, while
the contribution of the L=4—6 exciton states (full dots)
is much larger owing to the high multiplicity, 2L + 1, of
these states.

Under the conditions of a quasiequilibrium, the emis-
sion spectrum is obtained by introducing into Eq. (6) the
thermodynamic averaging over i states:

E, (~) oc ) u); exp( s;/T)h—(e'; —s —~).

Spectral Density Emission Absorption (arb. units)
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FIG. 3. Spectral density and emission and absorption spec-

tra for three values of h & 1; the system is the same as in
Fig. 1. The value of h is constant in each row. The spec-
tral density F(u) is shown in the left column. The L = 0
zero-MR transitions and L g 0 transitions between the Lo
and MR branches are shown by bars and full dots, respec-
tively. Only the states shown in Fig. 2 are included in I"(u);
the transitions involving high-energy states of the large sys-
tem are of no significance for low-T optical spectra. Transi-
tions between the MR branch and the continuum of the large
system are shown by open dots, and transitions between the
Lo branch and non-MR states of the small system by trian-
gles. Absorption and emission spectra: I = 0 transitions and
I, g 0 transitions between the I o and MR branches are shown

by heavy and light full lines, respectively, and transitions be-
tween the MR branch and the continuum of the large system
by dashed lines. Angular momenta for strong transitions are
shown by numbers. Heights of the lines show the intensities
of the corresponding absorption and emission bands. Inset:
energy spectrum of the small system, N ' = 6; MR disper-
sion law is shown by a solid line (cf. Sec. VIB). h, T, and
L in units of l, e~, and h, respectively; frequency of the 0-0
exciton transition is chosen as the origin.

I ow-temperature emission spectra calculated for three
values of h are shown in the central column of Fig. 3. For
understanding the properties of these spectra the follow-
ing facts are of importance. (i) The energy of excitoiis
is small along the so(k) branch because of the strong
suppression of the exciton dispersion, Sec. IIIA. There-
fore all exciton states are populated at T as low as a
few percent of s~. (ii) The dispersion law s'o(k) is flat
for k A:„. Therefore the states with the energy about
so(k„) have a large phase volume. (iii) The oscillator
strength for single-MR transitions is large for k A:„.
(iv) sp(k) ( u = (uMR(k, ); hence, frequencies of single-
MR-assisted transitions are lower than the frequency of
the direct transition &om the A; = 0 state.

The spectrum comprises only a single transition &om
the I = 0 exciton state which is a direct transition to the
ground state of the small system; transitions to different
excited. states of this system are very weak. For h, = 0.5
this peak is surrounded by transitions &om di8'erent ex-
cited states which have borrowed the probability &om
multiplicative states and have nearly the same energies,
cf. Fig. 2(b). When h increases, a new band emerges
at the low-&equency side of the L = 0 band. It orig-
inates &om the transitions from the I0 branch to the
MR branch, predominantly from the states with k k„,
and is represented in Fig. 3 by emission lines 4—6. In the
macroscopic limit these lines merge into a single band
showing an Arrhenius type temperature dependence with
the activation energy close to so(k„). For h & 0.5 this
band is well separated &om the L = 0 band and its close
satellites. Its total intensity is close to the intensity of
the direct transition even at T as low as T = 0-025 (in
units of sc). For h ) 1 the low-frequency band becomes
stronger and even more isolated (see Fig. 4 below). We
have proposed that the upper components of the dou-
blets observed by a number of workers originate from
A: = 0 direct transitions while the lower components are
their single-MR satellites, and have argued that there is
a reasonable agreement between the theory and experi-
mental data on the emission from quantum wells.

Absorption spectrum may be found &om the equation
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~ b(~) oc ) m; exp( s—/T)b(s; —& —~),

which differs from Eq. (7) only by averaging over the n
states of a small system. This spectrum is also shown
in Fig. 3, right column. Since the magnetoroton branch
(shown in the inset) is separated from the continuum,
the transitions &om this branch dominate in thermoacti-
vated absorption. The I = 0 transition &om the ground
state and transitions to those states in the continuum
which originated &om multiplicative states dominate in
all absorption spectra shown in Fig. 3. These transitions
fall in the same spectral region and should merge in a
single band which may show a fine structure increasing
with h. Low-&equency transitions to the exciton branch
are weaker than corresponding transitions in the emis-
sion spectra. The pattern of the absorption spectrum
can reveal itself also in the photoconductivity excitation
spectra and the frequency dependence of the Raman cross
section.
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IV. EXCITON STATES AT h/I ) 1: NEW
BRANCHES AND QUASIELECTRON

SUBSPACES

It was shown in Sec. III that the energy spectrum con-
sists of a single exciton branch L p and a continuum for
6 & l. We show in this section that the situation changes
drastically for 6 ) 1. New exciton branches split off &om
the continuum bottom. In what follows, we discuss the
general patterns of the energy spectra and the manifes-
tation of the multiplicity of exciton branches in the emis-
sion spectra. The origin of the different branches will be
discussed in Sec. V.

FIG. 4. Energy and emission spectra for three values of
h & 1.6 and T = 0.02; the system is the same as in Fig. 1. On
the left are energy spectra, on the right are emission spectra
(arbitrary units). L indicate exciton branches. Numbers
in (b) show electron density on a hole, dL, (0), in percent of
the Fermi limit, dy(S). In (d) —(f): solid lines represent ex-
citon-MR transitions, dotted lines show exciton-continuum
transitions; numbers show the angular momenta L. The elec-
tron-hole separation h is constant in each row: (a) and (d)
1.6, (b) and (e) 2.4, (c) and (f) 3.0; h in units of I. Inset
of (f): low-energy sector for an N, = 7 system with 3 QE's.
Energy in units of ez, bottom of the Lo branch is chosen as
the origin.

A. Energy and emission spectra

In Figs. 4(a)—4(c) the energy spectrum is shown for
a system of N, = 7 and Nh ——1 for 6 & 1.6. Two
new exciton branches which emerged from the bottom
of the continuum and start at L = 1 and 3 are seen in
Fig. 4(a). The appearance of two more branches starting
at I = 4 and 5 can also be anticipated. The original
Lp branch remains intact, but it becomes Batter as com-
pared to Fig. 1. The value of the angular momentum
each branch starts &om, I, remains constant when 6
changes. Therefore, the L 's have the meaning of quan-
tum numbers. They also will be used as labels for desig-
nating the branches. L3 and L5 branches move down fast
and for h = 2.4, Fig. 4(b), they both pass below Lo. Lz
and L4 branches remain above Lp, and L2 emerges above
them. At 6 = 2.4 a new branch, I6, emerges; for h = 3 it
passes between Ls and Lo. In Fig. 4(c) Ls is represented
by a single point because of a strong restriction imposed
on L values, L & (LMR) ~ „.This branch is seen in Fig. 7
below where the energy spectrum is shown for a wider re-
gion of L values. It is remarkable that all branches which
move down with increasing 6 and find themselves finally
below Lo have L ) 3 (I g 4), while the branches

L = 1, 2, and 4 remain above Lp. Investigating the de-
pendence of the position of different points on h, which
can be changed continuously, it is possible to check that
the points connected by the curves drawn in Figs. 4(a)—
4(c) move coherently and, therefore, belong to the same
branch. The dependence of the probability of single-MR
transitions on I along each branch is a difFerent and very
effective criterion, Sec. VIB. The picture becomes more
complicated when some branch passes through another
one. These events show patterns which are typical of
avoided crossings of nearby branches. The assignment of
points is most ambiguous near the continuum bottom,
i.e., for the branches which are just originating from it.

The dependence of the emission spectra on h is shown
in Figs. 4(d) —4(f) for a relatively low temperature T =
0.02. For 6 = 1.6 the spectrum consists of two peaks.
They are well separated, and the lower peak is stronger
than the upper one because of the flattening of the so(k)
curve and a large phase volume for single-MR transitions.
A critical change sets in at 6 2 when L3 becomes the
lowest branch of the spectrum. Under these conditions
the lower peak originates from the single-MR transitions
from the L3 branch; it dominates absolutely when T is
low. This abrupt change in the emission has been pre-
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dieted by two of us previously. ~ ' ' For the experimen-
tal observation of this abrupt change in the emission it is
desirable to vary the ratio 6/I (e.g. , by changing I) under
the conditions of v=const. 44

Single-MR satellites dominate the spectrum of indi-
rect transitions, i.e., the transitions assisted by creation
of neutral excitations. The probabilities of these transi-
tions strongly depend on I for most of the branches; the
origin of this dependence will be discussed in Sec. VIB.
The probabilities depend also on h and L . However,
for some branches two-MR transitions are rather strong.
For example, for the L6 branch the transition probabili-
ties to the states having energies about 2uMn(k ) reach
about 5' of the transition probability from multiplica-
tive states.

B. Finite widths of con6nement layers
and polarizability efFects

finite-width 2D layers &om the ideal ones that similar
energy spectra appear at somewhat larger h values. The
inset of Fig. 5(g), where the electron and hole density
distributions in the z direction are shown, clarifies this
conclusion. Indeed, for finite-width 2D layers the effec-
tive electron-hole separation in the z direction is smaller
than for an ideal system of the same total width.

The above finite-width model does not take into ac-
count the particle dynamics in the z direction which may
turn out to be very important. Because the effective po-
tential for a hole is much flatter than for electrons, the
main effect is expected to come &om the hole polarizabil-
ity.

From the above results for ideal systems, Fig. 4(b), it is
seen that the electron density on a hole, dl, (0), depends
on the spectrum branch and on L. A convenient unit
of the density is the Fermi lixnit d~(S), cf. Sec. II. For

The previous computations were performed for ideal
2D systems with infinitely narrow electron and hole con-
finement layers. In this section we consider layers having
finite widths to check whether the qualitative results ob-
tained above are robust, and how the properties of real
systems differ &om the properties of the ideal ones. For
this purpose we use the effective electron-electron and
electron-hole interactions:

V„(01,02) = dz1 dz2
0 0

Zg g ZQ

[~2 (foal f~2) 2 + (zl —z2) 2]1/2 '

V,I,(01,OI, ) = — dz1 dz2
0 0

Zg Q ZQ

[~2(g1 fI2)2 + (g —z1 —z2)2]1/2 '

where t,', (z) and gI, (z) are z-dependent wave functions of
the Fang-Howard type

g, (z) = (b, /2) z exp( —b,z/2),

(I, (z) = (bI, /2) z exp( —bI, z/2) .

The results of computations for a system consisting
of a six-electron v = I/3 IQL and a single exciton are
shown in Fig. 5 for b& ——0.4 and b = 0.2. It is seen
that the data are similar to those for ideal systems but
with reduced h values. This reduction is caused by the
fact that the distance between the maxima of the electron
and hole densities, which plays the role of an effective h,
is less than the geometric 6; cf. the inset of Fig. 5(g).

Therefore the main properties of ideal systems such as
a multiple-branch energy spectrum and a two-peak emis-
sion spectrum are robust. It is the main difference of the
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FIG. 5. Energy and emission spectra of a system with finite
electron and hole confinement layers widths. N = 7, Nh, ——I,
Sux 2S = 15, a small system is in an incompressible v = 1/3
state. On the left are energy spectra; on the right are emis-
sion spectra (arbitrary units). The separation h is constant
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——0.4l.
Polarizability a = 0 for two lower rows; it is equal to o. = 0.02
for (c) and (f) and to rz = 0.1 for (d) and (e) (o, in units of
I). Numbers in (c) and (d) show dl. (0) in percent of d~(S).
Inset of (g): electron (solid line) and hole (dotted line) z dis-
tribution for L = 0, rz = 0. Inset of (e): z distribution of the
hole density for L = 0; n = 0 (dotted line), n = 0.1 (dashed
line), z in units of I. Energy and T in units of s&., bottom of
the Lo branch is chosen as the origin.
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example, for the Lo branch the density do(0) is close to
d~(S), while for the Ls branch it is about 0.6dp (S). It is
natural to expect that the larger dL, (0) is, the larger the
attracting force acting on the hole in the z direction also
is. As a result, in a system with a distributed hole density
the hole should approach the electron confinement layer.
The above discussion suggests a model which takes into
account the z dynamics of a hole by renormalization of
bh F.or a state with a given dg(0), the effective width of
the hole confinement layer is

b„'[d I( 0), n] = bh,
' + n[dl. (0)/d~(S) —~],

where the coefBcient o. has the meaning of the hole po-
lariz ability.

To evaluate the eKect of the hole polarizability, we have
solved the problem in a linear approximation in o.. It is
seen &om Figs. 5(c) and 5(d) that the exciton energy
spectrum is highly sensitive to the polarizability eKect
even for rather small values of o.. For I & 3 there are
two branches, the rising and the descending ones. In this
area of the I values the assignment of the branches as
Lo and Ls is rather conditional. For n = 0.02 [Fig. 5(c)]
the lower branch possesses lesser values of d J.(0) and may
be assigned as L3, while for o. = 0.1 the L3 assignment
seems to be more appropriate for the upper branch. It is
remarkable that these drastic changes in the dispersion
law are caused by minor changes in the hole density dis-
tribution as seen &om the inset of Fig. 5(e). The emission
spectrum is less sensitive to the o. values than the energy
spectrum, and it retains the doublet shape as seen &om
Figs. 5(e) and 5(f).

V. ORIGIN OF THE MULTIPLE-BRANCH
SPECTRA

In this section we discuss the origin of the multiple-
branch exciton spectra described in Sec. IV and estab-
lish the interrelation existing between these spectra and
the low-energy physics of the FQHE, i.e. , with elemen-
tary excitations of an IQL in the absence of a valence
hole. The multiple-branch spectra of Sec. IV have been
obtained by computations in a spherical geometry which
have two obvious limitations. First, the finite area of a
sphere results in a size quantization. We show that the
multiplicity of the exciton branches is not an artifact of
the size eKect and establish the quantum numbers of the
branches which survive in the continuum limit. More-
over, we argue that exciton branches can be divided into
two groups, and that one of the groups is closely related
to the Hilbert space of QE's, ~ and, in particular, to the
decomposition of it into subspaces with di8'erent angu-
lar momenta. ' The hole works as a probe which ex-
plores the internal structure of the QE space. The second
limitation is related to the criterion of the pseudoplane
geometry, 6 « B. To receive reliable results, we have
performed all computations under the conditions 6 & R,
and have checked the spatial extension of the exciton
wave functions.

Multiple-branch exciton spectra have been obtained

A. L as quantum numbers

Examination of Figs. 4(a)—4(c) shows that the start-
ing point, L, of each branch remains unchanged since
the instant when the branch can be definitely recognized.
L is preserved at the movement of the branch, branch
crossings, etc. This fact implies that L is a quantum
number. A comparison of Figs. 4(a)—4(c) with Fig. 6
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FIG. 6. Energy spectrum of a system of a seven-electron
v=1/3 IQL and an exciton; bottom of the Lo branch is chosen
as the origin. N = 8, Nh = 1, Bux 2S = 18. Maximum
angular momentum of MR's is (LMa) „=N, —I = 7 in the
incompressible state of the small system. The separation h =
2.0 (a), 2.4 (b), and 3.0 (c) (in units of I). In (d) the energy
spectrum is shown for an N, = 8 system with 3 QE's (it is in
agreement with the data of Ref. 52).

originally in the framework of the anyon exciton
model. ' The spectra described in Sec. IV, and the re-
lation between the exciton branches and the spectrum of
the electronic subsystem in the absence of a hole which
will be discussed in this section corroborate our belief
that the anyon exciton approach provides a correct de-
scription in the h &) I region (the 6 —+ oo limit cor-
responds to free QE's2 ). In this connection we survey
here some properties of anyon excitons which will be of
importance for us in what follows. Their energy spec-
trum is described by two quantum numbers, the angular
momentum M & 0 which enumerates the branches and
the quasimomentum k. In the large h region, the spatial
size Bg of the state which forms the spectrum bottom in-
creases with 6 as Bg oc 6, while the angular Inomentum
of this state increases as ]My~ oc h2. The difference in
successive values of Mp equals 3 for a three-anyon exci-
tOIl.
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obtained for the same v = 1/3 IQI, but for the larger
number of electrons N, = 8, establishes the even more
important facts that the values of L 's do not depend
of the system size, and the order in which the branches
appear is nearly independent of N, . Indeed, the main
patterns of Figs. 4(a)—4(c) and Fig. 6 are the same. The
original branch Lo is followed by Lz and I3, then L3 is
followed by L5 and Ls (for N, = 8 also the L7 branch
appears); the branches Ls, L5, and Ls move down with
increasing h, while Lz remains above Lo, etc. Systems
with N = 5 and 6 show analogous properties. These
facts suggest that the quantum numbers L survive in
the macroscopic limit, N + oo.

B. (QE)h coupling scheme

Everywhere above we have plotted exciton disper-
sion curves s' (L) only inside a "narrow window, " for
L & (LMR) „,since the data for energy spectra are most

reliable in this region of L values. For L ) (IMR) „the
(I) curves rise steeply rather than saturate, as phys-

ical arguments and the anyon exciton model ' sug-
gest. However, some regularities related to the system-
atics and counting the states become more evident when
seen through a "broad window. " In Fig. 7 the data are
shown for the same system as in Figs. 1 and 4(a)—4(c),
but for L & 12. The data for the three lower branches
(L3 Ls and Is) can be described by the usual rule of
the addition of the electron and hole angular momenta,
L, and Lp, .

D(L ) (g D(Lh) = D(Lh, —L,) @ . . g D(Lh + L,),
(13)

if one takes into account the low-energy spectrum of an
N, = 7 electron system which is shown in the inset of
Fig. 4(f). Its angular momentum decomposition (L, de-
composition) includes three subspaces with L, = 4.5, 2.5,
and 1.5. Since 2S = 15, the angular momentum of the
hole equals L p, ——7.5, and the three sequences determined

by Eq. (13) are D(3) . . D(12), D(5) . D(10),
and D(6) . . D(9). They correspond exactly to the
three branches, L3, L5, and L6, seen in Fig. 7 below Io.
Figure 7 suggests the existence of a one-to-one correspon-
dence between the energy spectrum of excitons and the
L decomposition of the low-energy spectrum of the elec-
tron system (in the absence of a hole), and shows that
the angular momentum coupling scheme which can be
termed a (QE)h coupling, operates. It describes the in-
teraction of the total angular momentum of three QE's,
which equals L, with the momentum of a hole, Lp, . The
applicability of this scheme seems obvious in the pertur-
bation theory region, h )) R, since according to Eq. (1)
the electron-hole interaction decreases as h and is small
as compared to the interaction of QE's which is restricted
by B . However, this region is unphysical since in a real
geometry the mean separation between QE's is scaled by
h for h )& 1; hence, it cannot be described in the spher-
ical geometry. The data of Fig. 7 are shown for h = 2.8
when the QE-hole interaction is strong. It is comparable
to the inter-QE interaction, and the Ls and I5 branches
show the same patterns up to h 2. Under these condi-
tions the origin of the (QE)h coupling for a four-particle
system, three QE's and a single hole, is not obvious. Ap-
parently, this coupling is tantamount to the existence of
well separated anyon branches, and it should be treated
in terms of the counting-of-states arguments.

It follows from Eq. (13) that the minimum angular
momentum of an exciton equals L = L h

—I for each
exciton branch. When N increases, both I p, and I,
also increase. The independence of I of the system
size, which has been established in Sec. V A, shows that
the N, dependencies of Lh and L, cancel. As applied
to the L3 branch, the origin of this cancellation will be
established in Sec. VC.

Therefore the exciton spectrum consists of two groups
of branches. The branches L3, I5, etc. are related to the
electronic L subspaces of the low-energy sector. The Io

branch and the branches which remain above it when h
increases are of difFerent nature.

C. Critical exciton branch and macroscopic limit
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FIG. 7. Energy spectrum in a wide region of L values; en-

ergy of the Lo(L = 0) state is chosen as the origin. The
system is the same as in Figs. 1 and 4; h = 2.8 (in units of
l). The number of states on Lq, Lq, and L6 branches is in
agreement with the (QE)h coupling scheme, Eq. (13).

The data of Figs. 4(a)—4(c), 6, and 7 show that all
branches L which drop down with increasing h and find
themselves finally below Lo have m & 3; hence, L3 is a
critical branch. It is typical of anyon excitons ' that
with increasing h the branches with large angular mo-
menta ~M~ drop down and reach the spectrum bottom.
Therefore it is necessary to establish what are the restric-
tions on L which are imposed (in a spherical geometry)
by the requirement that the L exciton consists of q QE's
and a hole.

The maximum angular momentum of several QE's may
be found by applying the composite fermion theory to
a Laughlin liquid with v = 1/q. A system consisting of
N, electrons and q QE's is represented in this theory by
the ground Landau level of a Jain's sphere filled by a
v = 1 phase of (N, —q) electrons and the next Landau
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level populated by q electrons. 5 Therefore the Aux equals
2SJ ——N, —q —1. Each of the electrons of the second Lan-
dau level possesses the angular momentum SJ + 1, and
since electrons are subject to the Pauli exclusion princi-
ple, the maximum projection (Ic}E),of the total angular
momentum is (LqE), = q(Sg + 1) —q(q —1)/2. Substi-
tuting the value of SJ, one Ands the maximum angular
momentum of q QE's which coincides with (Lc}E),. It is

(LgE) „=qN, /2 —q(q —1) . (14)

In the presence of q QE's the flux through the Haldane's
sphere is 2S = }j ~(N, —1) —q, and the angular momen-
tum of the hole is

Lh = S=qN/2 —q. (15)

Therefore I h ) (Lc}E) „, and the minimum angular
momentum of an exciton which may be achieved in the
framework of the QE-hole model is

(Lex)min = Lh. (LqE)max = q(q —2) ~ (16)

This equation includes the magnitude of the maximum
angular momentum of q QE's and, therefore, is not based
on the (QEjh coupling scheme. For q = 3

energy sector for N, = 7, Fig. 4(f), and of the three
right-hand points of the low-energy sector for N = 8,
Fig. 6(d). The general shift in I, is immaterial since for
excitons it cancels with the shift in Lg. In both cases
the state with L = (Lc}E) „—1 is absent, the states
(Lc}E) „and (Lc}E) „—2 have nearly the same ener-
gies, and the energy of the (Lc}E) „—3 state is larger
than them by an amount which is somewhat less than
0.03. The absence of the L = (Lc}E) „—1 state is not
accidental. It follows from the fermionic behavior of QE's
in the composite fermion theory. Indeed, there is only a
single Slater determinant with (L,), = (LqE) „—1
which obviously belongs to the momentum (LqE)
The fact that the configuration of the right-hand states
is stable and only weakly depends on N is con6rmed by
the data of Fig. 8(a) for an N, = 9 system. It is seen
that the low-energy sector is well separated &om the up-
per part of the spectrum, and considerable changes occur
only in the left-hand side of this sector when N, increases.
In particular, for the first time there appears a state,
(Ic}E) „—5, which has an energy which is noticeably
lower than the energy of the tight QE complex having
the momentum (Lc}E) „. The energy difference of the
states (Lc}E) „and (LqE) „—3 changes by about 25%%uo

when N increases &om N = 7 to N, = 9. In general,

(Lex) min

This is just the critical momentum I3 found by computa-
tions. The results of Sec. V B and the above result imply
that both the (QEjh coupling scheme and the compos-
ite fermion theory select the same group of the branches
for excitons which are symmetrically compatible with a
picture of composites consisting of a hole and q QE's. In
this sense we shall term these branches anyon branches.
Excitons belonging to di8'erent branches like Lo, L ~, etc.
will be termed tight excitons. They are built of the elec-
tron states of the high-energy sector, but can also include
some contribution kom the states of the low-energy sec-
tor; this contribution can depend on h and I .

An exciton having L = (L,„);„possesses the maxi-
mum density of the electron cloud in the vicinity of the
hole which is attainable for anyon branches. Indeed, for
(Lc}E), = (IqE) „ the fermion orbits on the second
Landau level of the composite fermion construction have
the maximum projections on the z axis and therefore
produce a narrow electron density distribution near the
north pole of the sphere. The condition L = L (which is
analogous to Al = 0 in the plane geometry, cf. Sec. VIA)
ensures that the hole density is peaked in the same area.

It is seen from Eqs. (14)-(16) that N, cancels out from
(L,„);„,which proves that (L,„);„retains its mean-
ing in the macroscopic limit. The analytic derivation
performed here for the critical branch supports the com-
putational results of Sec. V B.

Side by side with the critical branch I3, several next
anyon branches are of special interest. They originate
from the QE states having angular momenta less than
(Lc}E) „but close to it. A comparison of the inset to
Fig. 4(f) with Fig. 6(d) reveals a striking analogy in the
configurations of the three points constituting the low-
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of a hole. (a) Energy spectrum of a v = 1/3 system of N, = 9
electrons and 3 QE's; energy of the ground state is chosen as
the origin. The right-hand side of the low-energy sector nearly
repeats the spectrum of Fig. 4(f) (inset) and the same part of
the spectrum of Fig. 6(d). (b) Electron density distribution
for three-QE states of the low-energy sector for L = L; N,
= 7. The density dl (0) in units of d~(S) is plotted vs polar
angle 8; L = 4.5 (dotted line), 2.5 (dash-dotted line), and 1.5
(solid line). Horizontal line shows the density of the v = 1/3
IQL. Positions of the corresponding energy levels are shown
in the inset of Fig. 4(f). The density becomes smoother with
increasing (Lc}E)max Li (Lc}E)max: 4 ~ 5 ~
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increase in N results in developing the low-momentum
part of the low-energy sector. The weak dependence of
the high-momentum electron states on N originates &om
the fact that they are relatively small three-QE com-
plexes scaled by the magnetic length, Fig. 8(b). Their
size is the smaller the less the difference (LcIE)
is. These complexes constitute a discrete sequence, and
their energies tend to 6nite values in the macroscopic
limit, N ~ oo. A considerable spread of the electron
density of the LgE ——1.5 state which is comparable to
the system size vrR, can explain the aforementioned 25%
size shift in its energy level. It is more difBcult to un-
derstand why the two tightest three-QE complexes with
the momenta (IcIE) „and (LcIE) „—2 have low en-

ergies (low energies of some large LOUIE complexes are in
accordance with the data of Ref. 52). This fact, at least
partially, may be attributed to the suppression of the low-

I two-QE quasipotentials as compared to their Coulomb
values found in Ref. 59, and apparently implies the exis-
tence of a three-QE attractive short range interaction; it
needs special consideration.

There is a remarkable analogy between the electron
densities in the I cIE

——4.5 and 2.5 three-QE complexes,
Fig. 8(b), and the electron densities in Ls and Ls ex-
citons, Fig. 9(d), which originated from these electron
subspaces. Independence of the electron density on h is
typical of k = 0 states of anyon excitons with low mo-
menta M.

Since anyon branches originate &om specific three-QE
complexes, Sec. V 8, exciton energies depend. on the ener-

gies and spatial sizes of these complexes. The low energy
of the three-QE complex and the small size of it (which
increases the QE-hole attraction) result in a low exciton
energy in the region of moderate h, values, 6 —2. These
arguments, in conjunction with the data of Figs. 4(f),
6(d), and 8, explain clearly why the Ls branch is the
erst to appear and why the I4 branch is absent &om
the lower part of the spectrum. The latter only appears
near the bottom of the continuum, Figs. 4(c) and 7. The
mutual position of the Ls and Lq branches (the latter
appears in Fig. 6) is not clear yet because of the consid-
erable difference in the energies of the (Lgp) „—4 state
in Figs. 6(d) and 8(a) caused by the size efFect.

It follows kom the above arguments that for h 2,
when the L3 branch and a couple of branches follow-

ing it are close to the spectrum bottom, their energies
are determined by the interaction of QE's and a hole at
the spatial scale of a few magnetic lengths. Therefore,
energies of these excitons obtained in the spherical geom
etry should be valid in the macroscopic limit. All these
data for exciton spectra are closely related to the energy
spectrum of the electron subsystem. For intermediate 6
values some low-lying three-QE states with a consider-
able difference (LcIE) „—I, like the (LcIE) „—5 state
in Fig. 8(a), can show up near the exciton spectrum bot-
tom. In the region of large h values, the states I with
m &) 1 move down and approach the spectrum bottom,
mean distances between QE's increase, and the deviation
of the QE interaction from a Coulomb law diminishes. In
this limit the anyon exciton approach ' or the macro-
scopic description are expected to become preferable.

D. Electron density distribution

It has been shown in Secs. V B and V C that there exist
two diR'erent groups of exciton branches. The distribu-
tion of the electron density inside excitons gives more
insight onto the origin of both types of excitons.

In Fig. 9(a) the electron density distribution dI, (r)
for an L3 exciton is shown for the starting point of the
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FIG. 9. Electron density distribution for L3 and L5 exci-
tons. All curves were obtained by averaging over the pro-
jections L of the exciton angular momentum. (a) Density
distribution ds(r) for an Ls exciton plotted vs coordinate r
for L = 3, h = 2.6. The electron-hole separation r is chosen
along a chord, Eq. (4). DifFerent curves describe the systems
with 5 &

¹
& 8. Arrows show the boundaries of the areas

where 2/3 of the electron charge is accumulated. The second
maximum may be attributed to a split-ofF QE. The density
of a v = 1/3 IQL is chosen as the origin. (b) Dependence of
the density distribution ds(8) on h for an Ls exciton. The
hole resides at the north pole; N, = 7. (c) Dependence of
dI. (8) on the exciton angular momentum, I ) 3, for an I3
exciton; h = 2.6, N = 7. The boundaries of the areas where

charges 1/3 (for L = 6) and 2/3 (for L = 3) are accumulated
are shown by arrows. (d) Density distributions di, (8) for Ls
and L5 excitons (for the moxnenta L = 3 and L = 5, respec-
tively); h = 2.6, N = 7. The density distribution for a single

QE is shown for comparison; L = I = N;/2 = 3 (it is in

agreement with the data of Ref. 9). h in units of l, I in units
of 5. In (b)—(d) the density of the v = 1/3 IQL is shown by
horizontal lines.
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branch, L = 3. The calculations were performed for sys-
tems of 5 & N, & 8 electrons, and the results are plotted
versus the coordinate r. It is seen that the size of the exci-
ton is about several magnetic lengths, and dl, (r) deviates
from its value in a homogeneous v = 1/3 IQL over the
whole sphere. There are seen two distinct maxima in the
density. The shape of the erst maximum is well de6ned
even for K = 5, while in the area of the second max. -
imum the density distribution converges only for large
systems, N, ) 7. The boundary of the region where 2/3
of the electron charge is accumulated is shown by an ar-
row on each curve. The position of this boundary only
weakly depends on N„and it moves in the direction of
the density minimum when N increases. The data are
consistent with the model of an L3 exciton as consisting
of a core having the charge 2/3 and a single split-off QE,
as it was proposed by two of us previously. 3

The dependence of the density distribution on h, is
shown in Fig. 9(b). This dependence is rather weak and.
is noticeable only in the vicinity of the hole. A large
negative density near 0 = vr is an artifact of the spheri-
cal model; it is unstable in this area [cf. Fig. 9(a)I and
makes a small contribution to the total charge because
of a small phase volume. A weak h dependence of dl, (r)
in some areas of 6 values, and even exact absence of this
dependence for nondegenerate states with small ~M~ val-
ues, is typical of anyon excitons.

The e8'ect of the angular momentum L on the den-
sity distribution dl, (0) along the Ls branch is shown in
Fig. 9(c). The changes in dl, (0) are dramatic. A nar-
row maximum appears near 0 = 0 when L increases. It
rapidly grows with L. As a result, dr, (0) curves acquire
a three-maximum shape. For L = 5 and 6 the charge
about 1/3 is accumulated inside the low-0 maximum. As
a result, an exciton comprises a narrow single-QE core
and an extensive external two-peak shell. Such a picture
resembles splitting anyons oB from the central core with
increasing k typical of anyon excitons. Unfortunately,
the size of the sphere is not sufBcient for investigating
the shape of the external shell in more detail.

In Fig. 9(d) the densities dL, (0) are shown for the Ls
and L5 branches at their starting points (L = 3 and
5, respectively). As has been anticipated, the density
distribution for L5 is wider and smoother than for I3.
For comparison, the density distribution for a single QE
is also shown.

The symmetry arguments of Sec. V C show that L3 ex-
citons are candidates for a description in terms of anyons.
The data of Figs. 9(a), 9(c) are in reasonable agree-
ment with this concept. Another important question is
whether and under what conditions the anyon model can
provide a consistent description of Ls excitons also on a
dynamic level. If one accepts that the low-0 maximum
in Fig. 9(c), L = 5 and 6, corresponds to a strongly
bound. QE, one should also conclude that its form factor
is strongly squeezed as compared to a free QE, Fig. 9(d),
by the attractive force of a hole. These data imply that
the applicability region of the anyon picture of excitons
is wider as applied to the symmetry classification of them
than in description of their dynamic properties.

The electron density distribution for two excitons of
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shown for N, = 7, and h = 0.6 and 2.6 (curves 1 and 2,
respectively), and for 6 = 6, h = 2.6 (curve 3). A good
convergence of the data is seen. Arrows show the boundaries
of the areas where a charge equal to 2/3 is accumulated. (b)
Dependence of the density distribution dL, (r) on L for an Lo
exciton; h = 2.6, N, = 7. (c) The same dependence for an
Lq exciton; 6 = 2.6, N = 7. 6 in units of l, L in units of h.

the second group, Lo and L~, is shown in Fig. 10. For
the L = 0 state of an Io exciton the density do(r) is close
to the Fermi limit for r = 0 and decreases rapidly with r,
Fig. 10(a). It is natural that such a tight entity can not be
described in terms of elementary excitations of a v = 1/3
IQI . Weak oscillations in the density may be attributed
to the oscillatory screening inherent in IQL's. o' i With
increasing h a shoulder develops in the do(r) curve; the
charge inside the core is close to 2/3. This shoulder may
indicate an increase in the projection of the wave func-
tion of the Lo exciton onto the low-energy sector with
increasing h, , cf. Sec. VC. The dependence of the den-
sity on L is shown in Fig. 10(b). It is slow and reveals no
new features. The density distribution for an Lz exciton
is shown in Fig. 10(c). It is narrow and depends on L
but weakly. The deviation of the density from v = 1/3
is moderate, about 0.25.

Therefore two diferent groups of branches show abso-
lutely different density distributions. For Lo and L~ the
distributions are narrow, about two magnetic lengths,
and weakly depend on L. In contrast, dI. (r) curves for Ls
and I 5 are considerably wider. For a I3 exciton the den-
sity shows a strong dependence on L and reveals features
which can be treated. in terms of split-off QE's. These
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features are large as compared to those in the patterns of
the oscillatory screening of Lo and L z excitons, and the
extra density has a constant sign nearly everywhere.

The spatial extension of L 3 excitons is comparable with
the sphere size even for the largest systems of N, = 7
and 8 electrons. The data for L3 excitons seem reliable,
but the accuracy of the data for L excitons with m & 3
should decrease with m. The fact that up to h = 3 the L3
branch remains the lowest one and there are no branches
which compete with it re8ects the intrinsic restrictions of
the spherical model.

VI. SPHERE-ONTO-PLANE PROJECTION

The dynamic space of an exciton is a plane and not
a sphere. Therefore, to facilitate developing a conve-
nient description of excitons and 6nd the selection rules
for exciton transitions, it is necessary to establish a
prescription for sphere-onto-plane projecting the exciton
branches. In this section we establish the prescription
and some spectroscopic consequences following &om it.

A. Generalized prescription

branches with the same internal momentum I . Two
well developed I ~ branches are seen in the spectrum of
an N, = 8, Ng = 1 system, Fig. 11(a). They are des-
ignated as M~'s since Fig. 11 is drawn in terms of the
plane geometry.

The identi6cation of L points as k = 0 points imposes
a strong restriction on the shape of exciton dispersion-law
curves s (I ). Since the k = 0 point is a zero-slope point
because of the time inversion symmetry, the slope of all
L branches should decrease when L ~ L (and turn
into zero in the N, ~ oo limit). Nearly all well developed

(L) curves in Figs. 4 and 7 show this tendency. At
the first glance, a considerable positive slope of the I3
branch at the point I = 3, Figs. 4(b), 4(c), and 7 {for
an N, = 7, Nh = 1 system), seems to contradict this
expectation. However, a comparable negative slope of
the Ls curve at the same point seen in Fig. 6 (for an
N = 8, Nh = 1 system) indicates that the slope oscillates
with N; hence, a zero limit is quite natural for N, ~ oo.

It is remarkable that the investigation of excitons
(more generally, neutral elementary excitations) in a
spherical geometry permits one to determine their angu-
lar momenta using only their dispersion laws s(L), with-
out any additional information about their wave func-
tions.

Exciton quantum numbers in the plane geometry are
the projection M of the angular momentum of a k = 0
exciton and the quasimomentum Ic, while in the spherical
geometry they are L, L, and L, . The quantum num-
bers M and L enumerate exciton branches, while Ie and
(L, L, ) describe the exciton states along the branches.
The azimuth of Ie and L form the spaces of degener-
acy, while the energy along branches depends on k and
L. Therefore the projection rule should relate I to M
and L to k. For each branch we identtfy L as ~M~,
the modulus of the z projection of the angular momen-
tum of the many-electron wave function. Since L is
the minimum angular momentum for each branch, it is
natural to consider it as the internal angular momentum
("spin") of an exciton. M is expected to difFer from the
angular momentum M of the corresponding Halperin's
pseudo wave function by the intrinsic angular momen-
tum oF a tight q-QE complex. This angular momentum
can originate either &om the relative angular momenta of
composite fermions caused by the Pauli exclusion prin-
ciple, or &om orbital spins proposed in the modified
Landau-Ginzburg theory of IQL's. Since all branches
start at A: = 0 in the plane geometry, while at L in the
spherical one, we identify L —L as kR:

Therefore the starting points L of all branches are iden-
tified with k = 0. Equation (18) generalizes the Haldane-
Rezayi prescription L = kA as applied to composite
neutral quasiparticles bearing internal angular momenta
L

The quantum numbers discussed above are related to
the symmetries. However, with increasing 6 and the
sphere size Bone should expect the appearance of several
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B. Selection rules and angular momentum
of magnetorotons

Identification of the L = L points as k = 0 points
imposes rigorous restrictions on the selection rules for
optical transitions. The selection rules for the direct
transitions from the ground state are exactly the same
in the both geometries; only the transition to the k = 0
(or L = 0) state of the Mp (or Lp) branch is allowed.

The problem of selection rules is much more intricate
and interesting as applied to indirect transitions which
involve a single MR or some different neutral excitation
of an IQL. Only a single selection rule, the conservation of
the angular momentum L, exists in the spherical geome-
try. In contrast, in the plane geometry in addition to the
k conservation law there exists also the M conservation
law for k = 0. This means that most of the transitions
to (&om) the left ends of exciton branches, L = L, are
artifacts of the spherical geometry and their intensities
should disappear in the macroscopic limit, N, + oo.

In Figs. 11(a) and ll(b) the energy spectrum s (L)
found in the spherical geometry is redrawn in the
plane geometry according the generalized prescription of
Eq. (18). Only well developed branches with an unam-
biguous assignment of at least two left-hand points are
shown, and our usual restriction L & (LMR) „also is
satisfied. For this reason L4, L6, and L7 branches are
omitted. The number by each point shows the optical
transition probability. For L g 0 the probability is shown
for the transition to the lowest-energy state of the small
system with the same value of I, i.e. , for a single-MR
assisted transition. For L = 0 the probability of the
transition to the first excited I = 0 state of the small
system is shown. M indicate exciton branches.

The classification of excitons by quantum numbers M
and k implies that MR s which also are excitonlike (intra-
Landau-level) excitations should possess the same quan-
tum numbers, MMR and k. Single-MR transitions at
k = 0 should be allowed only for exciton branches with
M = MMR. In contrast, for all exciton branches with
M g MMR the transition probability should vanish for
k = 0 (in the macroscopic limit) and show a fast increase
with k in the small k region. It is seen from Figs. 11(a)
and ll(b) that the branches Ms, Ms, Mp, and Mq show
the behavior typical of forbidden transitions. For all
these branches there is one order of magnitude difference
in the probabilities for the first and the second points.
Low transition probabilities at k = 0 points and a rea-
sonable agreement of the data found for N = 7 and 8
indicate a satisfactory accuracy of the results. Low k = 0
probabilities give an additional support to the general-
ized prescription of Eq. (18). The M2 branch seems to
be the only candidate for allowed k = 0 transitions. The
probability shows much slower increase in the small k re-
gion as compared to different branches for both N = 7
and 8. Meanwhile, the energy spectra differ strongly in
the vicinity of M2 since the second Mi branch appears
below M2 for N = 8. The persistent behavior of the M2
branch seems persuasive, and it suggests that the tran-
sition is weak but allowed. Therefore we propose that
MR's of a v = 1/3 IQL are ~M~ = 2 excitations. Com-

putations in the spherical geometry do not specify the
sign of M, but the analogy with the theory of anyon
excitons implies that M ( 0; hence, MMR = —2.

The nature of MR's in the small L region had been
a matter of discussion for a long time. The charge den-
sity excitation model provides an excellent description
of the MR's of a v = 1/3 IQL near the roton mini-
mum k„, which corresponds to I=3—5 depending on the
number of electrons in the small system, N, . How-(8)

ever, it has been shown by computations and analyti-
cal arguments that the L = 1 state is canceled by the
usual projection procedure. This result is in complete
agreement with the ~M~ = 2 assignment of MR's. The
nature of the L = 0 state has attracted special atten-
tion. It has been proposed by Girvin et al. that the
L = 0 state is a bound state of two MR's with momenta
close to k„, and this idea was supported by computational
data. The different nature of excitations with k k„
and L = 0 is in agreement with the above assignment
of MR's since it implies that these excitations belong
to two different branches, the former to the ~M~ = 2
branch, while the latter to an Mo branch which has a
higher energy and exists in some area of the k space near
k = 0. However, it has been claimed recently that the
quasiexciton model describes the energy levels of low-
energy neutral excitations up to L = 1. These data, as
well as the concepts of Ref. 62, favor the ~M~ = 1 assign-
ment. Although additional data are needed for resolving
the controversy, it should be mentioned that the exper-
imental observation ' of Raman scattering by MR's
supports the even-M assignment of them. The ~M~ = 2
assignment of MR's is also consistent with the polariza-
tion dependence of the Raman scattering found by Zang
and Birman. We feel that the most serious problem re-
sulting from the ~M~ = 2 assignment of MR's in conjunc-
tion with the prescription of Eq. (18) is a considerable
decrease in the value of k„below the value k„1.4 es-
tablished by different approaches; this problem needs a
special consideration.

VII. CONCLUSION

Investigation of the energy and optical spectra of a
v = 1/3 IQL as a function of the governing parameter h/l
has revealed a spectacular development of the multiple-
branch energy spectra for h/l + 1.5.

If h/l & 1, the spectrum consists of a single exciton
branch Lo and a quasicontinuum above it. The disper-
sion law e'p(k) of the Lp branch becomes flatter when 6/l
increases. The wave functions of the exciton states show
most considerable changes for the quasimomentum val-
ues about or larger than the quasimomentum k„of the
MR minimum, k & k„. These changes in wave functions
result in the increase in the probabilities of single-MR
transitions and, in conjunction with the renormalization
of the exciton dispersion law, in the development in the
emission spectra of doublets comprising the zero-MR and
single-MR bands.

The most dramatic changes in the energy spectra are
seen at h/l & 1.5 when new exciton branches split
off from the bottom of the quasicontinuum, and the
multiple-branch spectrum sets in. This spectrum con-
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sists of branches of two types: anyon branches and tight
excitons. They have a different origin and show a differ-
ent behavior when h/l increases. Despite the fact that
the number of electronic states increases with increasing
system size, the exciton branches survive in the macro-
scopic limit, as well as their quantum numbers, mutual
positions, electronic form factors, etc. Symmetry argu-
ments based on the composite fermion formalism show
that excitons belonging to these branches are compati-
ble with the quasiatomic picture of neutral entities con-
sisting of a valence hole of a charge (+e) and q anyons
having charges (—e/q). The energies of these branches
drop down when h/l increases, and the branches find
themselves below Lo. This behavior, as well as the elec-
tronic form factors of excitons and some other properties
of them, are in agreement with the anyon model, at least
as applied to the symmetry classification of them. All
exciton branches of the anyon type are in one-to-one cor-
respondence with definite states of the low-energy sector
of the electron subsystem. This correspondence estab-
lishes a connection between excitons and the low-energy
physics of IQL's. In contrast to anyon branches, tight
excitons cannot be described in terms of the low-energy
electronic excitations, and these branches remain above
Lo at any h/l values.

A theory of composite fermions has been applied to the
theory of hierarchies and to the behavior of quasiparticles
in extended states in a number of papers. We have shown
that composite fermions prove to be a useful tool for
the symmetry classification of the bound states of several
anyons.

The prescription for sphere-onto-plane projection,
Eq. (18), sheds light on the physical meaning of the quan-
tum numbers L labeling exciton branches. It identi-
6es L 's as internal angular momenta of the excitons
belonging to different branches. Therefore the prescrip-
tion establishes a symmetry classification of the exciton
branches. It should be applicable to different neutral ex-
citations including intraband excitations.

The identification of L 's as internal angular momenta
of excitons and (L —L )/R as their quasimomenta A:

establishes important selection rules for k = 0 exciton
transitions. Most of these selection rules exist in the real
(plane) geometry but is absent in the spherical geometry.

In conjunction with the 6/l dependence of the energies of
different branches, these selection rules determine optical
spectra of excitons. For example, the indirect transitions
from the I3, L5, etc. anyon branches should dominate in
the low Te-mission spectra at h/l + 2, while direct tran-
sitions from the Io branch should dominate at 6/l & 2.
When T 10 c~, which is a typical separation between
different branches, the doublets comprising both direct
and indirect bands should be seen. These patterns are
robust, and the geometry of a heterojunction (quantum
well) should mainly inHuence the critical value of h/l. In
the low-T absorption spectra direct transitions to the Lo
band should dominate.

Ãote added in proof. Multiple-branch energy spectra
of excitons have been also found and investigated in a
recent paper by X. M. Chen and J. J. Quinn, Phys. Rev.
B 51, 5578 (1955). Two of us have shown that there exist
drastic difFerences in the statistical properties of QE's
and energy spectra of excitons of v = s and v = s IQL's.
Data on the v = s IQL support the assignment of MR's
as ~M] = 2 excitations [V. M. Apalkov and E. I. Rashba,
Solid State Commun. 95, 421 (1995)]. We have also
mentioned that computations of F. D. M. Haldane [Phys.
Rev. Lett. 55, 2095 (1985)] performed for the square
geometry with periodic boundary conditions resulted in
the rotational angular momentum ~AM~ = 2 (mod 4) for
the lowest k = 0 excited state; this result is in agreement
with the ]M] = 2 assignment of MR's proposed above.
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