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Classical and quantum size efFects in electron conductivity of films
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We derive the classical static conductivity (o) for a film with mildly sloping boundary asperities,
when their root-mean-square height (' is less than their mean length L. The formulas admit a
numerical analysis of (o) versus d/l and parameters (/L and kpL (d is the sample thickness, l
is a bulk mean free path of electrons, and ky is the Fermi wave number). The decrease of the
conductivity with increasing kJ. L is demonstrated. At small-scale boundary defects (kp L ( 1), we
also build the quantum theory of the electron transport. Dependencies of (o) on l and d are studied.
We reveal quantum dips of the conductivity versus ks d/rr when a new conducting electron channel
opens. The dips are caused by the size quantization of an electron-surface scattering frequency.
The quasiclassical theory of (a) at large-scale asperities (kzL » 1) is presented. In this case the
residual conductivity due to the electron-surface interaction may have both quantum and classical
origins. The relation between quantum and classical effects in the film conductivity is clarified. The
theoretical results are tested against recent experimental data.

I. INTRODUCTION

In investigating conducting electron properties of
bounded samples, a problem of size effect is of great im-
portance. The resistivity is known to increase rapid. ly
as Glm thickness or wire diameter are reduced below the
bulk mean free path of electrons. Such an increase is
caused by intensive electron-surface interaction, which
plays a fundamental role in nearly perfect conductors at
low temperatures. In this way, the problem of size effect
is mainly reduced to exploration and description of spe-
ciGc mechanisms of the electron scattering &om surface
defects. Depending on external conditions and subjects
of inquiry, two approaches exist (classical and quantum)
to solve the problem formulated.

Within the classical approach, the surface scattering is
traditionally described via a boundary condition (BC) for
the electron distribution function. The simplest form of
such a BC was suggested by Fuchs. In his model, surface
properties are characterized by the single phenomenolog-
ical parameter p (specularity coefficient), which is equal
to a fraction of electrons specularly scattered at the sam-
ple bound. ary. Due to mathematical simplicity and a
clear physical interpretation of results, Fuchs' model was
widely used. in the earlier calculations of the static
size effects and high-frequency surface impedance. Fur-
ther development of the theory resulted in the transfor-
mation of local Fuchs' BC into the integral in the mo-
ment relation with the indicatrix of the electron-surface
interaction. Its form contains a particular mechanism
of the quasiparticle boundary scattering. A number of
authors have obtained, and the review presented
various microscopic BC's corresponding to the scatter-
ing of electrons by a random surface potential of some
specific nature.

The quantum approach to the problem of size effect
is the most actual in investigating the conductivity of
ultrathin perfect samples at low temperatures, where
the discrete character of quasiparticle transverse move-
ment manifests itself (see, e.g. , Ref. 15). In such mi-
crostructures, the quantization of trajectories qualita-
tively changes conditions of the electron interaction with
surface inhomogeneities. In recent years, a number of pa-
pers were devoted to the research of this factor (see, e.g. ,
Refs. 16—25). As far as we know, the first work in this
Geld was Ref. 26. Its authors developed the diagram tech-
nique for the electron-surface interaction, which allowed
them to analyze the ground quantum electron state, Gnd
the residual resistivity of the Glm, and a temperature
dependence of the conductivity at low and high temper-
atures. In Ref. 16, a system of electrons in a thin conduc-
tor Glm, which experiences arbitrarily weak surface scat-
tering, was shown to be always in localized states. This
demonstrates the fundamental importance of the surface
relaxation for the conductivity even at the nearly spec-
ular scattering at a boundary. The authors of Ref. 18
calculated the quasiclassical conductivity of films with
statistically rough sides versus d/l (d is the sample thick-
ness and l is the mean f'ree path of electrons) and derived
its asymptotics in the absence of bulk collisions.

The most widespread model of boundary defects is
one with asperities —continuously distributed random
deviations of the real surface from the ideal crystal-
lographic plane. They are described by two micro-
scopic parameters: root-mean-square height g and mean
length I. Up to now, both classical ' ~ and quan-
tum ' 8' ' theories of the electron-surface scat-
tering at asperities were mainly built within the Born ap-
proximation, which was based on iterations in the small
deviation ( of the real surface from the ideal one. To
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use the Born approximation, one needs to satisfy the re-
quirements of the smallness of asperity slope ((/L & 1)
and smallness of the Rayleigh (k ( « 1) and Fresnel
(k~g /L && 1) parameters. Here k is the absolute value
of normal (with respect to the average sample bound-
ary) component of the wave vector and k~ is the Fermi
wave number of electrons. Both the Rayleigh and Fres-
nel parameters are small within the condition g/L & 1 in
specimens with either anomalously small asperity heights
(kp g « 1) or small-scale (SS) surface defects (k~L & 1).
In these cases, the Born approximation is automatically
valid. Therefore, the majority of theoretical results were
derived for, namely, those situations (see, e.g. , Refs. 16,
18, 24, and 27). The simplicity of the theoretical anal-
ysis at kp( « 1 or k~L & 1 is compensated by limita-
tions on its practical realization. Actually, the inequal-
ities k~( && 1 and k~L & 1 may hold just in semicon-
ductors and semimetals, where the electron de Broglie
wavelength is much larger than the crystal lattice pa-
rameter (k~ & 10 cm I). On the contrary, k~L )& 1
in metals due to large values of k~ 10 cm . More-
over, the investigation of mell-treated surfaces with a
scanning tunneling microscope showed that the charac-
teristic length of asperities reached hundreds of atomic
layers, i.e. , I + 10 cm. This means that the case
with large-scale (LS) boundary roughnesses (k+L )) 1)
is evidently the most important even for semiconductors
and semimetals. When the conditions k~L )) 1 and
(/L & 1 hold silnultaneously, the Born approximation is,
in general, justified only for the electrons with small slid-
ing angles with respect to the surface. So, the necessity
arises to build the theory of the electron-surface interac-
tion, which would be independent of k (. In Refs. 29 and
30, such a theory of wave difFraction from a statistically
rough surface was developed. On the basis of this the-
ory, the authors of Ref. 14 derived the BC for arbitrary
values of the Rayleigh parameter. The only restriction
is the requirement for the small obliquity of asperities
((/L & 1). According to Ref. 28, the Slm boundaries
were rather smooth and contained irregularities with typ-
ical atomic-scale heights (( & 10 cm), so that the slope
of surface defects was actually small ((/L 10 —10 ).
This suggests that the model of mildly sloping asperities
adequately reHects a profile of a real well-treated bound-
ary. The new BC (Ref. 14) allows us to study the stati-
cal conductivity for samples with arbitrary relationships
between the electron wavelength k+ and the average di-
mensions ( and L of surface defects. In other words, one
can study both cases of SS and LS boundary inhomo-
geneities from the generalized point of view.

Classical theoretical results are acceptably consistent
with experimental data concerning quite thick specimens.
As an illustration, we refer to the good coincidence of the
theoretical dependencies with the experimental ones for
stibium whiskers of thickness d 10 cm (see Refs. 3
and 4). Besides, examplessi' exist where the traditional
classical theory can even describe kinetic properties in
ultrathin samples. The investigations ' demonstrate
that a variety of efFects in conducting microstructures
may have classical as well as quantum origin. Hence, a
problem arises as to the relationship between classical

and quantum effects in the conductivity of thin speci-
mens. We emphasize that earlier theoretical papers have
not adequately elucidated this problem even for the sim-
plest situation with kpI ( 1.

The present paper is devoted to the classical and quan-
tum transport in films with mildly sloping surface asper-
ities. The electron-surface scattering is included via the
BC 14

In Sec. II, we derive the most general classical formula
for the conductivity and give its brief numerical analysis.
Section III deals with the full classical and quantum the-
Gl les of flic P1Pcfl'oil tl'allspol'f af SS aspel'lf les (k~L & 1).
The asymptotical behavior of the conductivity depend-
ing on d and l is studied therein. Limitations on the
classical approach are also found out. In Sec. IV, the
quasiclassical theory of the conductivity for LS rough-
nesses (k~L && 1) is first constructed. The conclusions
following from our investigations, as well as the test of
the theoretical results against the experimental data, 3

are contained. in Sec. V.

II. PROBLEM STATEMENT.
PRINCIPAL EQUATIONS AND RESULTS

A plate with an electron-type conduction is bounded
by randomly rough surfaces. Their asperity averages
coincide with the planes ~x~ = d/2. The y axis is di-

rected along the vectors of current density j and electric
field E (see, Ref. 34). For simplicity, the dispersion law
of electrons is assumed to be quadratic and isotropic,
e = h2k2/2m. Our goal is to calculate the averaged con-
ductivity,

(2.1)

2e
&(x) ——

(2 ), (2.2)

where e is the elementary charge, y(x, k)Bf~/Oe is a
nonequilibrium addition to the Fermi distribution func-
tion f~(e), and 17 = hk/m is the velocity of electrons.
The integration in Eq. (2.2) is taken over all electron
wave vectors k. The function y is found from the kinetic
equation

dX + vy = ev„E,
dx

(2.3)

where v = v~/l is the frequency of bulk collisions, and
v~ is the Fermi velocity of electrons.

Boundary conditions for Eq. (2.3) are formulated
on the asperity-averaged sides and contain informa-
tion about the electron-sur face scat tering. They re-
late the function y(+d/2; ~k, kq) of the electrons Hy-

ing away from the plate boundaries to the function

as a function of the plate thickness d, the electron mean
free path l, and characteristics of surface defects. Within
the classical approach, the current density j(x) is deter-
mined from
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g(+d/2; +k, ki) of the electroiis impinging on them. For
the elastic scattering, the BC's can be written as a canon-
ical integral relationship, which ensures the absence of
particle Aux through the specimen surface (see, e.g. , the
review

tering at mildly sloping asperities, i.e. , at

(&L, (2.6)

and in the absence of the shadowing efFect, when, e.g. ,
the Presnel parameter is small,

y (+d/2; pk, ki) = y(+d/2; +k, ki)
d2k'

V(kg, k,')
(27l kp')

x [y(+d/2; +k~, k, )
—y(+d/2; +k', k,')], (2.4)

k+('/L « 1. (2.7)

(/L&k /k~&1. (2.8)

In general, the electron wave "illuminates" the whole
rough surface at sufFiciently large sliding angles, for which

where kz ——(k„,k, ) is a two-dimensional (2D) tangen-
tial wave vector. The energy conservation law speci-
fies a dependence of the absolute value k on kq. k
(k2 k2)1/2

The first term in the right-hand part of Eq. (2.4)
presents the specularly reflected electrons. The second
one is an integral of electron-surface collisions. It ac-
counts for partially difFuse reflection at the rough bound-
ary and is written as a difFerence between outgoing and
incoming terms. The integral kernel V(kq, k~) = V(ki, kq)
is a dimensionless probability density of a transition be-
tween states kq and k~ as the electron hits the surface.
For a randomly rough surface, the most general expres-
sion for V(kz, ki) was derived in Ref. 14:

CAD J k —k'
V(k„k,') = 8~(k~q)'k. k'. .d. ~W'(. ) ~

'
p fk, —k,'/

x exp( —g (k + k') [1 —W(r)]}, (2.5)

where r = (y, z) is a 2D position vector, J„(x) is
the Bessel function, ( is the root-mean-square asper-
ity height, and W(r) is a binary correlator of rough-
ness heights. The mean asperity length I is the scale
of monotonous decrease of W(r), and W(0) = 1. The
prime on a function denotes a derivative with respect to
the argument. For simplicity, the plate sides are assumed
to be statistically identical, so BC's (2.4) contain same
probability density (2.5).

Equation (2.5) adequately describes the electron scat-
l

(o) 3
(Jp 2

dn (1 —n')

L

x 1 ——n exp d Ln —1 1 — n, 29

0'p = k~e /37l' YAv.

Here we introduce the following designations:

(2.10)

n =iv i/vp =k /k~,
n, = k, /kp = (1 —n.')'l',
ny: ng c os p (2.11)

The dimensionless function Q(n ) is linearly connected
with the nonequilibrium addition y(+d/2; k) and, in ac-
cordance with BC's (2.4), satisfies an integral equation

In this case there is no need to use condition (2.7). How-
ever, the left inequality in Eq. (2.8) reverses at small
sliding angles, where the shadowing efFect is determined
by the relation between ( and the size (L/k~) l of
the Fresnel zone. If Eq. (2.7) holds, the electrons with
k /k~ & (/L due to difFraction get into the geometrical
shadow region. Thus, the usage of Eq. (2.5) is limited by
either single inequality (2.8) or two conditions (2.6) and
(2.7).

Solving boundary-value problem (2.3) and (2.4), in line
with Eqs. (2.1) and (2.2), results in the expression for
the average plate conductivity (o.) over the bulk sample
conductivity up,

exp
~ ~

—1 [1 —Q(n )] =
gin

27K d I

(2vr) 2

I
n' dn' V(k„k,') Q(n ) ——"Q(n' )

ng

Since the scattering surface is statistically uniform and
isotropic, the probability density V(kq, k~) is an even
function of a difference y —p'. Therefore, the kernel
Q in Eqs. (2.9) and (2.12) depends only on the variable
n (or nq) but not on the polar angle p.

Due to the complicated structure of the kernel

V(ki, k~), the exact solution of Eq. (2.12) can be un-
likely derived analytically. In spite of this, formulas (2.9),
(2.12), and (2.5) are the ultimate result, in a sense. Actu-
ally, they uniquely specify (o )/o p as a function of d/l and
the two parameters (/L and k~L at a particular form of
W(r). We perforined numerical calculations of conduc-

tivity (2.9) with the error b = 10 s. Figure 1 shows plots
of (o')/op versus d/l for three values of k+L and the con-
stant asperity slope (/L = 0.1. For the correlator W(r)
we used the Gaussian function, W(r) = exp( —r2/L2).
Note that the average conductivity decreases as k~I in-
creases. This suggests the corresponding increase of the
efFective frequency v,„,p of the electron-surface scatter-
ing. Besides, comparing curve 2 with curve 3 we see that
both v,„,i and (o) slightly depend on k~L at large val-
ues of ky L and constant slope (/L. This conclusion is
justified by the analytical results of Sec. IV.

Often numerical methods do not allow us to realize
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log ~o dll ably valid in the linear approximation in u, „,r/v even if
Eq. (2.14) fails, i.e., at v,„,r « Iv I/d « v. Thus, we
can use them independently of Eq. (2.14) without loss of
generality.

III. SMALL-SCALE MILDLY SLOPING
ASPERI TIES

}o9,o +6'+f 0'~
A case of SS mildly sloping asperities is defined by two

ine qu alit ies:

FIG . 1. Results of numerical calculations of average con-
ductivity (2.9) (1) k~L = 10; (2) k~L = 1; (3) k~L = 10.

~8~+ && Iv~ I/d. (2.13)

Obviously, under such a condition the surface electron
scattering can compete with the bulk one only if the bulk
relaxation frequency v is also much less than Iv I/d,

~ « I v* 1 /d. (2.14)

physical reasons for a particular form of curves (0 )/oo.
So, it is necessary to derive analytical solutions for (o),
which would be simpler than Eqs. (2.9) and (2.12). Such
simplification is possible just for limiting values of some
parameter. From the physical point, two types of rough
surfaces seem to be the most important . Surfaces of the
first type contain SS asperities of the "white noise" kind
(k~L & 1). For the second type, a sample boundary
consists of LS inhomogeneities (k~I )) 1). Below we
will analyze the electron conductivity for these two types
of surfaces .

In Ref. 14, the electron reHection from mildly slop-
ing surface asperities ((/I & 1) was shown to be nearly
specular, if the transition probability V(k&, k,') had form
(2.5). This means that the frequency v,„,r of the electron-
surface relaxation is small as compared to the double fre-
quency Iv I/d of the electron periodical motion along the
x axis,

(3.1)

and Eq. (2.6) .
It is easy to verify that both the Fre sne 1 and Rayleigh

parameters are automatically small under conditions
(3.1) and (2.6), i.e. , relationships (2.7) and

k(«1 (3.2)

where tv(z) = W(zl ) is the correlation function of the
dimensionless argument .

According to Eq. (3.3), the kernel V(k&, k~) is degen-
erate and isotropic for SS asperities (3.1) and (2.6) . The
isotropic property sets the incoming term in BC (2.4) to
zero. Hence, the integral BC is transformed into local
Fuchs' BC (Ref. 1) with the microscopic but not phe-
nomenological specularity parameter p, which depends
on n and the roughness characteristics,

2m d ) 1

1 —p = n' dn' V(kg, k,') . (3 4)

are valid.
Within Eq. (3.2), the exponent in the integrand of

Eq. (2.5) can be set to unity. Inequality (3.1) allows
substitution Ji (z) z/2 applied at z & 1 . As a result,
the probability density V(k„k, ) is independent of the
angular variables p, p' and takes a form

V(n, n' ) = 6vrn(kp ()2(k~L) n n',
OO

o. = — zdztv (z),
p

(o')
dn (1 —n )Q( ),

c7p 2 p
(2.15)

2' g I 1

Q(n ) + * n' dn' V(kg, k,')
d o 2m 2

o

So, we expand expressions (2.9) and (2.12) in a small
parameter d/Ln = vd/Iv

I
« 1, and get

Since the diffuseness

coefficient

1 —p results from the
only nonvanis hing outgoing term in the integral of surface
collisions, it is proportional to the full cross section of
the surface scattering. This situation is similar to the
approximation for the full relaxation time in the theory
of bulk scattering. So, we can natural ly introduce the
surface relaxation &equency v,„,p, which represents the
rate of electron transitions &om the k state to any other
one,

~-.f = (1 —s ) Iv- I/d. (3.5)
x Q(n ) ——"Q(n' ) = 1. (2.16)

AQ

The second term in the left-hand part of Eq. (2.16) is due
to the surface electron relaxation and is of the order of
(v f/v) Q. Note that Eqs. (2.15) and (2.16) are remark-

The physical meaning of definition (3.5) is rather obvious.
As v,„,p equals a number of electron disuse rejections in
a unit time, it is written as the product of the disuse
scattering probability 1 —p at a single impact with the
boundary by the frequency Iv I /d of impacts.
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A. Classical conductivity B. Quantum conductivity

All the considerations as to BC (2.4) can be directly
used to simplify integral equations (2.12) and (2.16). The
incoming term of the surface collision integral vanishes,
and the equations become algebraic. Substituting the
solution of Eq. (2.16) into integral (2.15), we get

The above results are classical. Yet rather thin films
are expected to exhibit the quantum size efI'ect, which
is due to quantization of the magnitude n of normal
component of k/k~

(g) 3 dn (1 —n)
~o 2 o 1+ v. (n. )/v

(3.6)
n = zn/k„d n/nd, n = 1, . . . , nd, nd ——[kid/7r],

(3.12)

According to Eqs. (3.3) —(3.5), the frequency of the
electron-surface scattering at SS asperities is v,„,~
v, n~,

v, (n ) = n(kF () (k~L) 2 (v~/d) n2. (3.7)

Note that inequalities (3.1) and (2.6) imply that 1 —p «
1. This confirms condition (2.13).

The integral in Eq. (3.6) is simply taken and gives the
known result

(0) 3 ( v

op 2 (v )
x 1+

l

arctan
lvmax ")

( ) i/2

vmax )
(3.8)

Equation (3.8) determines (0)/Op as the universal func-
tion of v/v, " with

v, "=v, (n = 1) = a(kp() (kpL) (n~/d). (3.9)

At vjv, " )) 1 (high temperatures or thick plate, or
perfect boundary) the conductivity is scarcely afFected
by the surface relaxation and (0)/op is described by

where k„ is a wave number associated with the chemical
potential p = 5 k2/2m of degenerate electron gas, and nd
is a number of electron occupied subbands of the spatial
quantization (number of conducting electron channels or
propagating electron modes). The square brackets de-
note an integer part. The quantized electron motion re-
quires the quantum approach to find (o). However, the
quantum conductivity can be derived in a simple way
based on the consistency principle. Replace k~ with A:„
in Eqs. (3.3)—(3.6). Applying the quantization rule (3.12)
to Eqs. (3.4) and (3.6), we change the integration over n'
and n for the integration over n. Then we replace the
integration over n by the summation. For SS asperities,
this yields

3 (k„d/vr)' )".
2 (k~d/~)

n2

(k„d/7r)
—6 1

v /'kid)
x —.+ n nd(nd + 1/2)(nd + 1)

v vr

(3.13)

Equation (3.13) must be completed by an equation for
k~ = k„(kF, d), which follows from the conservation law
for the electron concentration N = k&/37r . Allowing
for Eqs. (2.13) and (2.14), we can write the equation in a
case of a perfect film (v,„,r = v = 0) at zero temperature:

(o) 1 f v

(vmax ) (3.10)
3 ('k~d l f k„d l

nd2&ir)
Otherwise, at v/v, " « 1 (low temperatures or thin

plate, or imperfect surface) we come to an asymptotics 1
x 1 ——(nd + —,') (nd + 1) l3 gz. )

=1. (3.14)

(cr) 3vr ( v

4
v(gv, (3.11)

The first term in Eq. (3.10) describes the contribu-
tion to (cr) of the electrons that do not interact with the
boundaries. The second one accounts for a small group
of the electrons [of relative concentration (1 —p) l/d
v, "/v « 1] that reside close to the sample surfaces
and scatter at them at all n & 1. Conductivity (3.11)
arises from a small group of sliding electrons with n

(v/v, ") « 1, for which v, (n ) v [see Eq. (3.6)].
In other words, at v (& v, ", the bulk and surface relax-
ations comparably contribute to the conductivity. There-
fore, f'rom Eq. (3.11) it follows that (o) diverges as bulk
collisions vanish (v ~ 0).

In line with Eq. (3.14), the curve of k~d/vr versus k~d/vr
is continuous and monotonously increasing but shows
kinks at points (kid/vr, k„d/7r) = (4.5i~s, 2); (19.5 ~, 3);
(51i~,4); (105 ~, 5); (187 5 ~, 6); (304 5 ~ 7); etc. Be-
sides, Eq. (3.14) illustrates an important property of an
electron subsystem: the wave number k~ increases as the
film thickness d decreases [k„/k~ (k~d/z) )) 1], so
that k„d/vr = nd = 1 at k~d/7r = 0. Due to this, any,
however thin, sample contains at least one conducting
electron channel, i.e., always nd & 1.

Quantization (3.12) of the electron transverse move-
ment results in the quantization of difFuseness coefFi-
cient (3.4) and frequency (3.5) of surface relaxation,
vsurf = vsq(n) &
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v,~(n) = n(k~() (ky L) ng(ng + 1/2) (ng + 1)
x (kp d/vr) (k~v p /m) n (3.is)

quantum relationship (3.13) but not a quasiclassical one
as it usually occurs in more complex quantum systems.

Note that v,~ oc n& exhibits a stepwise increase as a func-
tion of k+d/vr (or of k„d/m) since the number nq abruptly
increases by unity, when electrons start to occupy a new
subband.

In contrast to the classical frequency, the quantum fre-
quency v, ~ has three characteristic values. The Grst one,
v,', is of the order of the surface relaxation frequency
in a film with the single electron channel (v, ~ = 3v,' at
k~d/vr = 1, i.e. , at n = ng = 1)

C. Ultraquantum limit (2D electron gas)

In the ultraquantum limit, when there exists the single
propagating electron mode in the film (ng = 1), the av-
erage conductivity, according to Eqs. (3.13) and (3.14),
takes the form

(o) = Ke /m[v+ 3v.*(kJ;d/7r) j,

v,' = a(kF() (kFL) kFvz/7r. (3.i6) 0 & (k~d/vr) & 9/2. (3.21)

The frequency v,' is completely specified by the mate-
rial of a conductor and the quality of its surfaces. This
&equency is an intrinsic characteristic of a sample. The
second value, v, ", is reached at n = nd = k~d/7r )) 1
and coincides with its classical limit (3.9)

v. "=v.'(k~d/vr) (3.i7)

v, '" = v,'(kid/vr) (3.18)

The introduced &equencies are inter-related in the fol-
lowing way:

The third characteristic value is the nonzero minimal fre-
quency v, '" of the surface scattering. It corresponds to
n = 1 at ng = k~d/7r )) 1

In the absence of bulk collisions (v = 0), this formula
ensures the maximal quantum residual resistivity and co-
incides with that from Ref. 26.

Since wave number k„diverges (k„vr/d) at k~d/m —+
0, the case with ng ——1 is a distinctive one: a situation
is possible, when k~d/vr &( k„d/7r and one needs to have
d )& L to use Eqs. (3.13) and (3.21). Actually, quan-
tum conductivity (3.13) was derived within Eq. (3.1), in
which, rigorously speaking, k~ had to be replaced by
k~. Obviously, in the regime k~d/n && 1, the condi-
tion k„L & 1 holds only if L &( d. Yet if k~d/7r && 1
and L « d holds, surface asperities are always SS, i.e. ,
k~L ( 1. Note that the condition L && d for G.lms with
SS defects is violated just at k~d/vr && k~L & 1 and
holds even at k~d/7r & 1.

min ~ max ~ i
S 8 s~ k&d/~ & 1. (3.i9)

Unlike classical conductivity (3.8), the quantum one
(3.13) is a function of two independent parameters: v/v, '
and k~d/vr. So, it can be suitably normalized to the value

o; = Ne /mv, * = oov/v, ', (3.20)

which depends on neither the sample thickness d nor the
mean &ee path l of electrons.

Formula (3.13) generalizes the result and has a wider
region of validity (3.1) and (2.6). In general, it was
proven from rigorous quantum calculations (based on
Kubo's formalism) using the diagram technique from
Refs. 26, 36, and 37 within a usual ladder approxima-
tion for two-particle Green's function. In this paper, we
gave the elementary and physically clear derivation of
Eq. (3.13) to demonstrate a relation between quantum
and classical results. Both methods rely on inequalities
(2.13) and (2.14). These conditions imply that broad-
enings hv, „,r/2 and hv/2 of electron energy levels due
to surface and bulk collisions are small compared to the
distance h~v ~/2d between the neighboring levels. This
allows us to regard the discrete number n as a good
quantum number and quantization rule (3.12) as the ac-
ceptable leading approximation. At the same time, the
randomly rough surface can be reduced to the asperity-
averaged plane, which scatters electrons with the fre-
quency v,„,r = v,~(n). Since spectrum (3.12) is equidis-
tant and the electron wave function is rather simple, the
application of the consistency principle gives an exact

D. Asymptotics of the quantum conductivity.
Dependence on the variable v/v'

The conductivity of thin films is usually measured as
a function of the temperature (of the mean free path l
or the bulk scattering frequency v). So, let us analyze
(o) (3.13) versus v/v, ' at a fixed value of the parameter
k~d/m ) (9/2) ~ (k„d/a & ng ) 2).

In the region of relatively high temperatures, where

(3.22)

the bulk relaxation mechanism dominates and conduc-
tivity (3.13) obeys an asymptotics

~i (k~d/~)

3n~2+3ng —1 f v lx 1—
S(k„d/~)' &v:)

(kg d/7r) « v/v, '. (3.23)

v, &v(v, (3.24)

Here the bulk and surface scatterings comparably form
(o ) and we get

If the temperature is decreased, the frequency v falls
into an interval
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(o ) 3' -1/2
o, 4

—[ng(nd + 1/2)(np + I)]

(3.25)

(k~d/vr) & v/v, ' & (k~d/~)

the Glm conductivity can be adequately described by the
classical theory. Actually, when Eq. (3.30) holds, quanti-
zation of v,„,p yielding the nonzero v, '", is insignificant.
Otherwise, at extremely low temperatures (3.26) the dis-
crete spectrum of v, ~ is important even for quasiclassical
plates. At nd )) 1, quantum equation (3.27) transforms
into the quasiclassical one

v((v, ', (3.26)

the surface scattering dominates, and the average con-
ductivity is described by

(o.) = o.„,—B(v/v,')rr;, v/v, ' « (kid/vr) . (3.27)

As bulk collisions vanish (v -+ 0), quantum conductivity
(3.27), unlike classical conductivity (3.8), sets a natural
limit for (o.)

Ores sr~ (k~d/7r)s(k„d/7r)2
4 ng(ng + 1/2) (ng + 1)

6 /'k„d lx 1 — ,n, ~—
7l )

6——) (n+ ng)
n=1

(3.28)

It is determined by the number of conducting channels
(by the thickness d) and by the frequency v,' (by de-
fects of the film sides). The coefficient B (ky d/m) in
Eq. (3.27) is

sr~ (k~d/7r)9(k„d/7r)'
60 n&2(nq + 1/2) (nq + 1)

15 /k„db 90
x 1 —— + — +~g

vr' q ~ ) vr4
n=1

Note that the &equencies v, '", v, ", and v,' are of the
same order for "quantum" films with ng k„d/m & 2.
Therefore, range (3.24) might be too narrow for realiza-
tion of Eq. (3.25).

Finally, when v becomes the smallest of all the other
&equencies,

v/v, * « (kp. d/vr) « 1, (3.31)

which has no classical analog. Whereas classical asymp-
totics (3.11) arises from a small electron group with n
(v/v, ") /2 « 1, quasiclassical equation (3.31) is formed
by the states with n 1, i.e. , n n& )) (v/v, ") / .
For these states, the surface scattering dominates.

Figure 2 shows plots of Eq. (3.13) versus v/v, ' for fixed
values of k~d/vr. All the curves have no peculiarities and
monotonously fall off as v/v, ' increases. They start &om
the value of o„,/cr; (3.28)'. The more k~d/m, the more
the quantum residual conductivity o„,. Then according
to Eq. (3.27), the curves change linearly with v/v, ' and
asymptotically approach a dashed line oo/o, . = (v/v, ')
We stress that the distinction of residual conductivity
(3.28) &om the first term in Eq. (3.31) is essential only
for curves 1 and 2 with k~d/7r = 1 and k~d/m = 2, re-
spectively. For the rest of the curves, the quasiclassical
condition (k~d/vr )) 1) can be considered as met. This
means that even at a small number of electron states
(nq & 5), the film conductivity is adequately described
by either classical formula (3.8) or quasiclassical asymp-
totics (3.31) in the applicable v/v, ' intervals. For exam-
ple, for curve 3 such intervals are 1.5 x 10 2 & v/v, '
and v/v, ' & 7 x 10 4, respectively. Curve 4 presents
the conductivity of a sample with ten propagating elec-
tron modes. It obeys Eq. (3.31) at v/v, ' & 2 x 10
and then, after a wide intermediate region, Eq. (3.10)
at v/v, ' & 4 x 10 2. Note that intermediate asymptotics
(3.25) does not exhibit on curves 1 and 2, and its classical

(3.29)

In the quasiclassical situation, when k&d/m n&

k~d/z )) 1, Eq. (3.23) transforms into classical asymp-
totics (3.10). The condition nd )) 1 makes inequalities
(3.19) strong (v, '" (( v, " « v,') and &equency inter-
val (3.24) reasonably wide. Here quantum asyinptotics
(3.25) coincides with Eq. (3.11). Thus, in the tempera-
ture range, where

v, '"((v,

l.e. )

(k~d/7r) && v/v, ' at kid/vr )) 1,

(3.30) FIG. 2. Quantum conductivity (3.13) vs v/v, ' at fixed
kid/s. (1) kid/m = 1; (2) k~d/vr = 2; (3) k~d/vr = 5;
(4) k~d/7r = 10; (5) k~d/s' = 100. The dashed line describes
the bulk sample conductivity oo.
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analog (3.11) does not exhibit on curves 3 and 4. This im-
plies that the square-root dependence (0.) oc v i/2 can be
unlikely experimentally observed in relatively thin plates
with ng & 10.

It is important that the interval for the existence of
quasiclassical asymptotics (3.31) gets rapidly narrow as
n~ increases. In addition, the maximal value of v,' is
about 10 s (at k~ 10 cm and ky( k~L I).
Consequently, the extremely low &equencies v needed to
realize Eq. (3.31) cannot be apparently reached for any,
however perfect, samples with nd & 400 at any, however
low, temperatures. Therefore, in actual practice the con-
ductivity of sufficiently thick (but still microscopically
thin) plates is described by classical Eq. (3.8).

0.012

001

0.008--

A
0.006--

V
0.004

0.002

E. Dependence of the conductivity
on the parameter kid/m

1.2--

Let us examine (o) (3.13) as a function of k~d/ir at
fixed v/v, * (at constant temperature). We begin from
relatively high temperatures (or dirty samples), when

0.8
A

V
~ 06-

0.2

Here the surface scattering prevails in ultraquantum films
(n~ = 1) only, for which the inequality (k~d/vr)
(v/v', )

i « 1 [see Eq. (3.21)] holds. Violating this in-
equality, the bulk scattering becomes dominating and the
conductivity obeys quantum asymptotics (3.23). In a re-
gion k~d/7r )) 1, formula (3.23) transforms into classical
expression (3.10).

At sufficiently low temperatures (or in perfect conduc-
tors), when the condition

v(( v,' (3.33)

is met, the electron-surface scattering forms (cr) in rela
tively thin specimens, for which

kp. d/vr « (v/v, ')

In this case, we can use quantum equation (3.27), which
is reduced to quasiclassical equation (3.31) at 1 &(
k~d/m && (v/v, ') i/ . The contributions of both scat-
tering mechanisms compete at

0 2 8 10 12 14 16 18 20
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80--
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V
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c
1 00

(v/v,*) '/' « k~d/7r &( (v/v,*) (3.35)
120

100

Here the average conductivity (o')'may be described by
quantum asymptotics (3.25) [or classical one (3.11) at
k~d/vr )) 1]. Proceeding the increase of k~d/m, we get
in a region

80

A 60-
V

40

1 « (v/v, ') (& kp. d/ir, (3.36)
20

where the bulk scattering dominates and (o) obeys clas-
sical expression (3.10).

Figure 3 presents plots of Eq. (3.13) versus k~d/vr at
fixed values of v/v,*. All the curves exhibit peculiari-
ties (sharp dips) at points where k~d/vr is an integer,
i.e. , when a new propagating electron mode opens. Such
behavior is caused by the stepwise dependence of v, ~

0

20 40 60 80 100

FIG. 3. Quantum conductivity (3.13) vs k+d/m at fixed
v/v,*. (a) v/v, ' = 10; (b) v/v, ' = 1; (c), (d) v/v, ' = 10
The dashed line describes the bulk sample conductivity c70.
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on k~d/vr. Similar dips were observed in the numerical
simulation of the quantum transport through a nar-
row 2D strip with a randomly rough boundary. The
peculiarities of the conductivity or the conductance at
points of integer k~d/m have fundamental quantum origin
and occur in all quantized systems. In particular, they
were revealed in 2D electron waveguides and at the
quantum-Hall effect. ' As increasing ki-d/vr, the rela-
tive depth of the quantum dips decreases and the curves
get smoother. Figure 3(a) corresponds to a region of suf-
ficiently high temperatures (or dirty samples) (3.32). In
this region, the conductivity "saturates" ((o ) o 0) even
in ultraquantum films with k~d/x & 1. Quantum equa-
tion (3.23) describing this curve transforms into classical
equation (3.10) at k~d/vr ) 2. The dips in Fig. 3(a)
are due to the right-hand side of Eq. (3.23). Their rela-
tive magnitude is (v/v, ') i = 10 . Therefore, only one
dip at k„d/m = nd = 2 is seen on the plot. Decreas-
ing the temperature (or improving samples), the com-
petition between the &equencies v and v, is achieved.
The curve in Fig. 3(b) illustrates the case v = v,'. It be-
comes quite smooth and almost coincides with the dashed
line (0) = oo even in films with fifteen conducting chan-
nels. Such dependencies are intermediate at the crossover
from high (3.32) to low (3.33) temperatures. Figures 3(c)
and 3(d) present (o) at low temperatures and for per-
fect samples (3.33). Here interval (3.34) of the surface
scattering domination is k~d/vr 6, within which the
conductivity is given by quantum formula (3.28). The
interval 6 & k~d/m & 100 in Fig. 3(d) corresponds to
range (3.35), where (o) is expected to obey either quan-
tum asymptotics (3.25) or classical one (3.11). How-
ever, these formulas lead to essentially over-read values
of (o)/cr, . Thus, at v/v, ' = 10 2, interval (3.35) is too
narrow for the square-root behavior of Eqs. (3.25) and
(3.11) to exhibit. Then, at k~d/n ) 100, the bulk scat-
tering becomes dominating, and the plot is described by
Eq. (3.10). A portion of the curve obeying Eq. (3.10) is
not presented in Fig. 3(d) because of too large k~d/vr in
the range of realization for this asymptotics.

It should be emphasized that when deriving formula
(3.13), we used a constant frequency model for elec-
tron bulk collisions (v = const). Due to this, all the
peculiarities of (o.) versus k~d/a are associated with
v,„,g. Within more realistic models allowing for electron-
impurity, electron-phonon, and other interactions, the
frequency v depends on the density of quantized electron
states, which is proportional to nd. This results in addi-
tional peculiarities of (cr) caused by the size quantization
of v. However, we can state that such peculiarities pro-
duced by isotropic bulk scatterers are manifested weaker
than the dips caused by v,„,f. In Ref. 44, it was shown
that v oc np, when electrons were elastically scattered
by randomly distributed impurities with b potential. Yet
v f = v q (3.15) is proportional to nd. So, allowing for
the quantization of v, we will obtain relatively weak pe-
culiarities on the curves of Figs. 3(a) and 3(b) only, where
the bulk scattering prevails. In other words, the quan-
tum eKects in the film conductivity are mainly connected
with the electron scattering at boundary defects.

In conclusion, we note that the quantum peculiar-

IV. LARGE-SCALE MILDLY SLOPING
ASPERITIES

A case of LS mildly sloping asperities is defined by
inequalities

I+L y& 1

and Eq. (2.7).
Unlike the case of SS asperities (3.1) and (2.6), the

smallness of the Fresnel parameter (2.7) does not follow
from Eqs. (4.1) and (2.6). However, if Eqs. (4.1) and
(2.7) hold, requirement (2.6) is met.

The situation with LS irregularities is more complex to
analyze, since the problem of correlation between succes-
sive electron collisions with surface defects arises. This
problem arises any time, when particles multiply scatter
at a boundary due to periodical motion. If the distance

( n/ in)d passed by an electron along the sample sides
between neighboring impacts (in the half-period d/iv ~)

is less than L, the electron is subject to several collisions
with the surface along the correlation radius L. Hence,
the successive re8ections are not statistically indepen-
dent, but strongly correlated. In this case the BC (2.4)
and (2.5) is not valid, because it was derived in the single-
scattering approximation. The usage of Eqs. (2.4) and
(2.5) in systems with periodical motion is reduced to the
trivial summation over single-scattering events and gives
correct results in the absence of the correlation, when

I « (n, /n )d,

i.e. ) (4.2)

(1+d'/L') ' « 1 —n'.

From here on we suppose the mean length L of surface
defects (a microscopic parameter) and the plate thickness
d (a macroscopic parameter) to be related by a reasonable
inequality

L((d. (4.3)

Within Eq. (4.3), range (4.2) for the n variation is of the
maximal width and correlations are strong for an anoma-
lously small electron group with n~~ && (L/d)2 only. This
group will be seen below not to contribute appreciably in
the film conductivity. Therefore, condition (4.2) should
be regarded as a consequence of Eq. (4.3) for all electrons
with n & 1.

Relationships (4.1) and (4.3) can be combined into the
double inequality

1 « kFL « k&d/vr = nd, . (4.4)

ities revealed herein are degenerated into the weak
Shubnikov —de Haas oscillations in massive plates at high
temperatures (3.30), when the leading approximation of
the conductivity is given by the classical formula (3.8).
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It is obvious from Eq. (4.4) that for LS asperities sufB-
cient condition (4.3) for the absence of correlations re-
sults in the quasiclassical requirement. Hence, using BC
(2.4) [and consequently integral equation (2.16)] in this
section, we are beyond the quantum approach.

For the further analysis, we introduce the characteris-
tic change 4 of n as an electron scatters at LS boundary
asperities. From probability density V(kq, k~) (2.5), we
have

C'(n ) arccos[nq —(1 + k~()/k~L] —arcsin n~

& 4 „=(2/k~L)'~2. (4.5)

vtf(n ) = P(kp() (k~L) 'i (v~/d)n,

p
F (3/4) 2/2 d

7r'I'(3/2) o
(4.9)

where I'(x) is the Euler gamma function.
Neglecting "income, " we reduce integral equation

(2.16) to the algebraic one,

Eq. (3.4) and perform the asymptotical integration over
y' and n' . After this, we get the expression for the fre-
quency v,„,f = v~y(n ) of the flatly impinging electrons
[cf. Eq. (3.7)]

It is easy to verify that according to Eq. (4.4), the fol-
lowing inequality holds:

Q(n )[1+v(y(n )/v] = 1, n' « (k~L) '
&& 1.

(4.10)
(k~d/~) '

&& C && l. (4.6)

The problem of correlations at the multiple surface
scattering is discussed in Ref. 9 in more detail. The clas-
sical BC including the correlations was first derived in
Ref. 13.

The electrons are said to be steeply impinging on the
surface, if n obeys the condition

C(n ) «n,

A. Flat and steep impingement of electrons.
Classical conductivity

i.e.,

(kFL) ' « n' & l.

(4.11)

Consider integral equation (2.16). If the surface elec-
tron scattering is weaker than the bulk one, we can solve
Eq. (2.16) by iterations in the small integral of surface
collisions. In the opposite case, Eq. (2.16) is solved for
two cases only: fiat and steep impingement of electrons
on the plate boundary.

The electrons are said to be fatly impinging on the
surface, if n is less than the width 4 of the scattering
indicatrix,

When Eq. (4.11) is met, the indicatrix V(kq, k~) in
Eq. (2.16) is a sharper function of n' than Q(n' ). So, the
outgoing and incoming terms almost compensate each
other. In other words, Eq. (4.11) implies small wave
vector transfer at scattering, and the integral of surface
collisions can be written within the Fokker-Planck ap-
proximation by expanding it in powers of n~ —nq up
to quadratic terms. Integral equation (2.16) takes the
differential form

i.e. )

n «4(n ),

(4.7)

Q(n ) —2~m" (0)~((/L) ——[n 7' —2nqV']
ng

xnyQ(n ) = l. (4.12)
n' « (k~L) '

&& 1.

According to Eqs. (2.7) and (4.7), the Rayleigh param-
eter k ( is small. So, the exponent in the integrand of
Eq. (2.5) can be set to unity and V(k&, k~) is given by the
Born approximation

V(n„n', ) = 8~(k~q)'(k~L)'n. n'.

xd&~(&) Jo(kI" I*~n'g —ns~). (4.8)

Here I7 and V' are a two-dimensional gradient and
Laplacian in nt, space.

Using relationships (2.11), let us rewrite Eq. (4.12) in
the variables n, rp Since Q. depends only on n but not
on p, partial differential equation (4.12) becomes ordi-
nary,

Q —
2 in" (0) i (g/L) —n

d

When inequality (4.7) holds, the factor Q(n' ) in
Eq. (2.16) turns out to be a sharper function of n' than
the kernel V(kz, k,'). Therefore, the effective region of
integration over n in the incoming term is significantly
less than in the outgoing one. Hence, "income" can be
neglected. This allows us to reasonably introduce spec-
ularity parameter p (3.4) and frequency v,„,g (3.5) as
well as for SS asperities. We substitute Eq. (4.8) into

2Q
x (1 —n2)

1 —5n2 dQ
n dn

—2Q = 1. (4.13)

This equation must be completed by two BC's. They are
obtained Rom original integral relationship (2.16): the
function Q(n ) should be regular and equal to unity at
n =0.

The general solution of Eq. (4.13) is expressed via
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(n. ) = 2I~"(O) l(q/L)'(v~/d)n (4.i4)

After the replacing procedure, Eq. (4.13) becomes al-
gebraic,

not completely studied Heun's functions. Fortunately,
Eq. (4.13) allows a simple asymptotical analysis at the
weak and strong surface scattering. If the bulk electron
relaxation dominates, the second term in the left-hand
part is small and can be included as a perturbation. In
the opposite situation, the Brst term can be neglected and
Q is presented as [2lm" (0)l((/L) (1/d)] multiplied by
the unity-order function. In the subsequent discussion,
we shall also use a qualitative solution of Eq. (4.13) based
on reasonable physical considerations. For this purpose,
replace the differential operator in Eq. (4.13) with a mul-
tiplication one of the same order of magnitude, i.e., repre-
sent the second term in the left-hand part as (v,„,r/v)Q.
In doing so, the effective frequency v,„,r = v~, (n ) for the
steeply impinging electrons takes the form

vP.
'" = 2I~"(o) l(&/L)'(v~/d) (4.2o)

Within condition (4.4) the characteristic values vg'",
vl, '", and vl

" are interrelated as

min (& min (( max
lf ls l (4.21)

B. Asymptotics of the conductivity.
Quasiclassical and classical residual conductivity

If the bulk mechanism of electron relaxation prevails
over the surface one, i.e.,

(4.22)

Eq. (2.16) can be solved through successive approxima-
tions in the small integral of surface collisions. According
to Eqs. (2.5), (2.15), (4.1), and (2.7), we get

Q(n. )[1+v,.(n. )/v] = 1, (k+L) ' « n'. & 1.

(4.i5)

{o.) 3 f' v
(4.23)

{o.) 3 dn (1 —n2)

op 2 p 1+ vt, (n )/v
(4.16)

Here v~(n ) is the frequency of surface relaxation as elec-
trons scatter at I S asperities,

n & (kFL)
(k~L) 'f' & n & l. {4.17)

The solution of this equation does not satisfy a BC
Q(n = 0) = 1, but it is of the same order as the ew-

act solution of Eq. (4.13) at n + (kFL) f Beside. s,
in the intermediate region n (k~L) f~ the frequency
v~, {n ) is of the order of v~f (n ) (4.9). This ensures the
"joint" of the solutions of Eqs. (4.15) and (4.10) for the
steep and flat impingement.

Equations (4.10) and (4.15) allow us to write {cr) (2.15)
in the usual form [cf. Eq. (3.6)]

Conductivity (4.23) is formed by steeply impinging elec-
trons (4.11), for which the surface scattering is relatively
weak. Hence, this result can be also derived from differ-
ential equation (4.13). The same order diffuse correction
to op follows from model formula (4.16) as well.

Unexpected results are obtained, when investigating
{rr) at low temperatures, where

(4.24)

Here a new characteristic frequency vl'" arises,

vt'~ = 16vr'lu)" (0)l'(kp()'(kg I) ~f'(v~/d) && vP'".

(4.25)

Depending on the relation between frequencies vl' and
vP&'" (4.18), the conductivity {o) as a function of d/l
exhibits various types of behavior.

For sufficiently thick (nearly classical) plates,
Unlike v, (n ) (3.7) for SS irregularities, the frequency

v~(n ) is a nonmonotonous function of n . It starts from
the minimal frequency vlf'" for the flatly impinging elec-
trons, which corresponds to the nonzero lower quantum
limit n '" = (kJ;d/7r)

l.e.,

1 «(k~L)'f' «k~d/~,

(4.26)

vlf'" ——P(kgb) (kgL) f (k~d/m. ) (v~/d).

Then the value of vl increases as n according to
Eq. (4.9). At n (k~L) f, this increase terminates
and vl reaches the maximum, which is of the order of

vP "= (kp-() (kgL) f (v~ d/) (4.19)

After the crossover from the flat impingement to the
steep one, v~ decreases as n [see Eq. (4.14)]. Fi-
nally, when the electrons fall onto the boundary vertically
(n = 1), the value of v~(n ) coincides with the minimal
frequency vl, '" for the steeply impinging electrons,

{o) 3
8 Vmin '

0 ls
Vl &( V (( Vls (4.27)

The same formula can be also derived &om differential
equation {4.13).

In this case within the frequency interval vl « v «
vl, '", the conductivity is mainly formed by the steeply
impinging electrons with n 1, for which the surface
scattering dominates. The corresponding asymptotics of
Eq. (4.16) is
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At v vP, the contributions to {cr) of both electron
groups compete, and in the region v « v& the fatly im-
pinging electrons play the decisive role in the conductiv-
ity. %'hen the temperature is not too low, the square-root
asymptotics is applicable [cf. Eq. (3.11)],

i/2—(kJ; L)
oo 4 (vP "j

classical consideration, there always exist such Hatly im-
pinging electrons (4.7) that do not scatter at the plate
sides (v~y

——0). They give the infinite conductivity in
the absence of bulk relaxation. Just the quantum (or
quasiclassical) approach forbids such electron states and
sets up the lower limit n '" = (kid/7r) i thus causing
nonzero vlf

(4.2S)

At extremely low temperatures, where v « v&&'", the
quantization of v~y is essential and results in the nonzero
vP&'" (see Sec. III). Therefore, {o) is described by the
first term of quasiclassical formula (3.31), in which v, '"
should be replaced by vP&'" [i.e. , v,' should be replaced by

(k~d/7r) ave~'"]:

C. Quasiclassical model.
Craphical study of (o) vs d/l

Figure 4 presents plots of

{o) 3 (kpdi ). 2 / kid)
ap 2 ( vr ) ( vr

x [1 + v( (n ) /v] (4.32)
{cr) 7r (k~d l v

rro 4 ( K ) v(
v « v&&'". (4.29)

(kJ;L)'((/L) ' « k&1,/7r. (4.30)

This requirement to the parameter k&l/vr is rather strin-
gent because the left-hand part of Eq. (4.30) is a product
of the two large parameters. This suggests that residual
conductivity (4.29) can be apparently observed in films
with not too large values of ((/L) i and k~I. For ex-
ample, for specimens with k~ 10 cm, k~I ~ 10)
g/L 10 2, asymptotics (4.29) can be realized in per-
fect plates with / + 10 cm.

Note that {o) from Eqs. (4.27) and (4.29) is indepen-
dent of v. Gorrections to them, which would specify such
dependence, can be due to either the Batly or steeply im-
pinging electrons.

For relatively thin (quasiclassical) samples

Thus, in sufficiently thick samples (4.26) at v = 0, the
residual conductivity is given by Eq. (4.29) and associ-
ated with the surface scattering of the fatly impinging
electrons.

The inequality from Eq. (4.29) sets an upper limit on
k~d/m and Eq. (4.26) sets its lower limit. To satisfy
Eqs. (4.26) and (4.29) simultaneously, the condition must
hold

versus v/vP'" ((/L) (d/l) for two characteristic val-
ues of k~d/7r. Formula (4.32) combines classical (4.16)
and quasiclassical (4.29) asymptotics. It is derived sim-
ilarly to Eq. (3.13), but the region of its validity is re-
stricted by quasiclassical approach (4.4) with neglecting
a distinction between k~ and k„. The value of n in
Eq. (4.32) has discrete spectrum (3.12).

Both curves in Fig. 4 monotonously rise as v/vP'"
increases. Curve 1 shows (0) of thin samples (4.31),
in which the steeply impinging electrons dominate. It
can be approximated by Eq. {4.27) at v/vP'" & 10
Residual conductivity (4.27) is independent of kid/7r, so
curve 1 is universal at v/v&,

'" &( 1. For (/L 10 in
perfect plates with I 10 crn, Eq. (4.27) can be re-
alized at d (& 10 cm. As increasing v/vP'", curve 1
asymptotically approaches the abscissa {cr)/ao ——l. At
high temperatures, where 3 & v/vP'", curve 1 is de-
scribed by Eq. (4.23). Curve 2 refiects a behavior of the
conductivity for thick samples (4.26), in which the con-
tributions of both electron groups compete. This curve
obeys quasiclassical asymptotics (4.29) within the inter-
val v/vP'" & 10, and classical expression (4.28) at

kJ;L « k&d/7r « (k&L)'/', (4.31)

1.e.)

v&~ && viy

In such plates at any frequency v of bulk scattering, {o)
is mainly formed by the steeply impinging electrons. So,
within whole region (4.24), conductivity is described by
Fq. (4.27).

It should be emphasized that unlike Eq. (4.29), resid-
ual conductivity (4.27) has the classical origin. Actually,
steeply impinging electrons {4.11}scatter at surface at
any n . This ensures the minimal frequency v&,

'" even
in the classical approach. At the same time, under the

log qp +G'+I G'p

FIG. 4. Conductivity (4.32) vs v/vP'" for a plate
with large-scale mildly sloping asperities (k~L = 10) at
k~d/n = 20 (1) and kFd/7r = 200 (2). The frequency
v&(n ) is found from Eqs. (4.17), (4.9), and (4.14) with
0 = 2I~"(0)l = 1.
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3 x 10 s & v/vt, '" & 3 x 10 i. Then, when the inequality
3 x 10 & v/v&,

'" holds, curve 2, as would be expected,
almost coincides with curve 1. However, curve 2 does not
have a portion described by Eq. (4.27) because vP is of
the same order as v&,

'" at k~L 10.

V. SUMMARY AND DISCUSSION

- 0.8

- 0.6
A

V
— 0.4

We derived the most general for the present time closed
system of Eqs. (2.9)—(2.12), and (2.5) for the classi-
cal static conductivity of a plate with randomly rough
boundaries. The region of its validity is only restricted
by the small slope of surface irregularities (2.6). This
system can be fully analyzed numerically, which allows
us to reveal a number of peculiarities in the behavior of
(o). For example, when increasing k~L, the conductiv-
ity decreases. In plates with LS boundary defects, where
k~L & 10, both the electron-surface scattering frequency
v,„,p and the average conductivity are slightly dependent
on k~L at the constant asperity slope (/L. We performed
not only numerical but also detailed analytical study of
(cr) at SS (k~L & 1) and LS (kFL )) 1) roughnesses.

For films with SS asperities (kFL & 1), we built not
only classical but also the most general quantum theory
of the conductivity. Comparing the classical results with
the quantum ones, we can conclude that the quantum
or classical nature of the electron transport in films is,
in addition, determined by a method of measuring (o),
i.e. , either the conductivity is measured versus the plate
thickness d or the frequency v of bulk collisions. So, (o)
as a function of v has the essentially quantum origin only
in samples with a small number of conducting electron
channels (ng & 5). Beginning from nd, = 5, the static
conductivity is adequately described by the quasiclassical
theory, and at nd + 400 one can use the classical theory.
When bulk collisions vanish (v + 0), quantum conduc-
tivity (3.13), unlike the classical one (3.8), approaches
finite residual value (3.28) caused by the electron-surface
scattering.

The study of (cr) versus k~d/m revealed the peculiari-
ties (dips) appearing at points where a new propagating
electron mode opens. Those dips are mainly due to the
spatial quantization of the frequency v,„,f. This confirms
the necessity to allow for the electron-surface interaction
at the quantum size efFect. We emphasize that classical
conductivity (3.8) does not coincide with quantum one
(3.13) averaged over the dips. The quantum conductiv-
ity turns out to be less than the classical one for the same
values of k~(, k~L, d/l. This distinction is particularly
noticeable in thin perfect films (cf. curves 1 and 2 in
Fig. 5).

The situation with LS asperities (k~L )) 1) is more
complex, since the problem of correlations between neigh-
boring collisions of electrons with the surface arises. We
found (o) at additional (but quite reasonable) restric-
tion (4.3), within which both requirements for the ab-
sence of correlations (4.2) and the quasiclassical approach
(4.4) are met. Strong correlations are actual in essen-
tially quantum films. We revealed the nonmonotonous
dependence of the effective surface scattering frequency

— 0.2

-1.5 -0.5

log«d/I

FIG. 5. Test of theoretical results against the experimental
data (circles) of Hensel et al. (Ref. 33) (1) conductivity (3.8);
(2) quantum formula (3.13); (3) classical asymptotics (4.23).

on an angle of electron impact; with the boundary. This
gives rise to the competition between the quasiparticles
flatly and steeply impinging on the sample surface. If the
flatly impinging electrons dominate, residual conductiv-
ity (4.29) has the quantum origin. However, in suffi-
ciently thin films (4.31), the conductivity mainly arises
from the steeply impinging particles, for which the size
quantization is insignificant. In this case residual con-
ductivity (4.27) has the exclusively classical origin.

A. Comparison with the experiment

Let us analyze experimental data from Ref. 33. This
research dealt with measurements of the average resis-
tivity (p) = (o) for epitaxially grown single-crystal
films CoSi2 versus their thickness d (60 A. & d & 1100 A. ,

I 1000 A). In Fig. 5, we tested theoretical depen-
dencies (curves 1—3) against experimental points. All
the curves were plotted by the same scheme: their lo-
cation corresponds to the least root-mean-square devi-
ation from the experimental values. For the correlator
W(r), we used the Gaussian function. Note that three
experimental points falling in the interval 0.2 & d/I & 0.3.
reside at a substantial distance from all the theoretical
curves. However, those points scarcely affect the loca-
tions of curves 1—3.

Curve 1 describes classical conductivity (3.8) at SS as-
perities (kF( —0.7 and k~L —0.9). We call attention to
a good deal of discrepancy between curve 1 and exper-
imental points for ultrathin films with d jl & 0.1. Sup-
pose this to be associated with the quantum origin of
(o). Curve 2 presents quantum conductivity (3.13). It
was plotted at k~ = 10 cm and nearly the same values
of k~( and k~L as curve 1. These values correspond to
the case when the frequency v,' far exceeds v (3.33) and
the surface mechanism of electron relaxation dominates
over the bulk one at d/I & O.l. Therefore, the quantum
dips are well distinct and curve 2 passes noticeably closer
to the experimental points. Nevertheless, such improve-
ment is not satisfactory, because the quantum curve as
well as the classical one gives considerably overread val-
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ues of (o.) for ultrathin films with d/l + 0.1. Besides,
the values of k~( and k~L, which give the best fit of the
theory to the experiment, are close to the limits of valid-
ity for corresponding Eqs. (3.8) and (3.13) [see Eqs. (3.1)
and (2.6)]. This allows us to conclude that the films used
in Ref. 33 did not actually contain SS surface asperities.

The best agreement with the experiment is given by
curve 3 ((/L —0.1), which describes classical conduc-
tivity (4.23) of a plate with LS irregularities at the
weak surface scattering. It correlates excellently with
the experimental behavior of (cr) even at d/l + 0.1.
Thus, one can conclude that the specimens contained
LS surface defects. According to our estimation at
(/L 0.1, the range of surface scattering domination
is d/l + 3((/L) 0.03. This allows us to suggest that
the electron scattering at the sample boundary was rela-
tively weak in the films. For the last experimental point
only (d/l 0.065), both relaxation mechanisms might
comparably contribute to the conductivity.

The above conclusions are also con6rmed by additional
investigations provided by the authors of Ref. 33. They
recognized the cubic symmetry for single-crystal Alms of
CoSi2, metallic type of the conduction and determined
the electron concentration N = 2 x 1022 cm (i.e. ,

k~ = 10s cm i). Besides, using the transmission elec-
tron microscopy, they revealed surface irregularities to
be extremely smooth with ( = 10 cm. All this vali-
dates our deduction as to the, namely, LS mildly sloping

asperities realized in the experiments.
The weak surface scattering results in rather

monotonous (with no significant dips) falling of the ex-
perimental points in Fig. 5 as d/l decreases. This sug-
gests that the quantum peculiarities of (o) do not ex-
hibit even for ultrathin metallic films with d 100 A. .
Hence, in accordance with our research, to observe the
quantum nature of the conductivity in metallic films with
LS boundary asperities, one needs to fabricate extremely
thin samples with d/l & 10 z. Such specimens will be
probably obtained in the near future, since the develop-
ment of the modern experimental technology is closely
associated with the production of nanostructures with
perfect spatial quantization. For those films, plots of
(o)/o. o versus d/l are expected to show sharp dips at
points where a new conducting electron channel opens.
To describe this adequately, the quantum theory of the
conductivity at k~L &) 1 must be built.
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