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Femtosecond-pulse laser desorption is a process in which desorption is driven by a subpicosecond
temperature pulse of order 5000 K in the substrate-adsorbate electron system, whose energy is trans-
ferred into the adsorbate center-of-mass degrees of freedom by a direct coupling mechanism. We
present a systematic theoretical treatment of this coupling process in the language of an electronic
friction, which generates Langevin noise in the adsorbate center-of-mass degrees of freedom, while
the electronic degrees of freedom are at a high temperature. Starting from an inHuence-functional
path-integral description, a simple formula for the electronic friction is defined which is valid at
all electronic temperatures. At low temperatures the formalism makes contact with the electronic
friction appearing in the theory of adsorbate vibrational damping, whereas at high temperatures
comparable with the adsorbate electronic excitation energies the friction becomes strongly tem-
perature dependent due to dominance by virtual excitations between difFerent adsorbate potential
energy surfaces. The former regime is related to the electronic friction model for the desorption
process, and the latter to the desorption induced by multiple electronic transistions model for the
process; the present formulation comprises both regimes. Desorption is calculated both by a simple
quasianalytic Kramers rate approach, and by numerical solution to the Langevin equation. The
magnitude of the desorbed fraction and the time scale for desorption are compared to experimental
results.

I. INTRODUCTION.

Femtosecond-pulse laser . desorption constitutes a
quasithermal reaction process of a nonadiabatic type, ~

as demonstrated in this paper (extending the theoret-
ical picture described in earlier publications). In con-
ventional thermal desorption, the energy transferred into
the adsorbate degrees of freedom comes &om thermally
excited substrate lattice vibrations (phonons). In the
laser desorption process discussed in this paper, on the
contrary, the energy will be shown to be directly trans-
ferred &om quasithermally excited electronic states of
the substrate-adsorbate complex, a nonadiabatic process
that formally violates the Born-Oppenheimer approxima-
tion.

The experiments upon which the theory in this paper is
based 3 involve a monolayer of molecules, such as NO,
02, or CO, adsorbed on metal surfaces [e.g. , Pd(ill)].
The adsorption energy, e.g. , for NO on Pd(ill), is of or-
der 1 eV. The laser pulses utilize visible light at 620 nm (2
eV), with duration 100—200 fs. The pulses are widely sep-
arated in time, but are relatively intense, giving a desorp-
tion probability in the range 10 —10 per pulse, the
desorption probability being a strongly increasing nonlin-

ear function of laser Buence. Experimental information
and modeling suggest that the laser photons are mostly
adsorbed in the substrate within a skin depth (100 A)
of the surface, rather than in the adsorbate, eliminating
multiphoton adsorption as a significant contribution to
the nonlinear cross section.

A consistent picture of the evolution of the surface fol-
lowing absorption of the laser pulse has been reached
as a result of modeling and comparison with transient
optical reflectivity measurements (see Ref. 1 and refer-
ences therein). In this picture, quasithermal equilibrium
is established in the surface electron gas, which reaches
a peak temperature of several thousand K, over a time
scale of order several hundred fs (see Fig. 1 below). The
relatively small energy in the electron gas (the speci6c
heat of a nearly degenerate electron system is low), is
transferred via electron-phonon coupling to the lattice
degrees of &eedom, which reach a temperature of only a
few hundred K in a time scale of order 1 ps, over which
time scale the electron gas cools.

If desorption followed the conventional picture, the en-
ergy in the adsorbate would be transferred serially, Grst
&om the substrate electronic degrees of &eedom into the
substrate lattice ("phonon") degrees of freedom, then
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into the adsorbate center-of-mass (CM) degree of &ee-
dom. We shall see that this scenario is not possible,
first on the grounds of available energy, second on the
grounds of time scale. Suppose, for example, that the
lattice reaches 700 K, and the prefactor in the Arrhe-
nius rate expression is 1 ps, the adsorption energy is 1
eV, then the desorption probability in 0.4 ps (the actual
desorption time scale) is only 3 x 10 s, much too low.
Moreover the time to reach this lattice temperature is of
order 1 ps, so 1 ps is a lower limit on the time scale for
desorption by the conventional mechanism. However, the
desorption time scale can be determined by measuring
the desorption probability in the case of two laser pulses
separated by a variable time interval. It is found that the
desorption time is remarkably short, about 0.4 ps, and is
thus incompatible with the conventional mechanism.

The mechanism proposed in this and previous papers
is that while electronic energy is being transferred to the
lattice degrees of &eedom, electronic energy is transferred
directly and in parallel to the adsorbate CM and other
adsorbate degrees of &eedom. We shall demonstrate that
this can be relatively efBcient, resulting in adsorbate tem-
peratures approaching 2000 K, and on a short time scale,
leading to reproduction of the essential experimental fea-
tures. As mentioned above, in parallel with excitation of
the adsorbate degree of &eedom, the internal vibrational
degree of &eedom of the adsorbate is excited. Because
of its high &equency 200 meV, this degree of &eedom
tends to be adiabatically isolated &om the lattice degrees
of &eedom (whose &equencies, being an order of magni-
tude lower, are ill matched to it), so its excitation acts
as a further indication ' that the underlying excitation
mechanism is electronic in nature.

Two initially contrasting &ameworks have been em-
ployed for thinking about the electronic-vibrational cou-
pling mechanism. One approach is derived &om existing
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FIG. 1. Time dependence of various quantities in the fem-
tosecond-pulse laser desorption problem, from the solution of
Eqs. (19—22), based on a model input for electron temper-
ature T(t). Electronic friction q(t), adsorbate temperature
T~(t), and the fraction desorbed up to time t, are shown.
The regime illustrated is nearly constant friction, parameters
are e = 18000 K, C = 40000 K (e = 58000 K), A = e

Vs = 1.4 eV, P = 1.0 a.u. , n = 0.45 a.u.

knowledge in the Geld of damping of adsorbate vibra-
tions. These vibrations can excite electron-hole pairs in
the metal surface, as pointed out some time ago by Pers-
son and Persson, providing an electronic channel for the
dissipation of energy, which is especially important in the
case of high &equency vibrations, which are almost adia-
batically isolated &om the lattice, as pointed out above.
It is convenient to describe the electronic energy loss pro-
cess in terms of an electronic &iction, acting in the
atomic coordinates of the adsorbate. At finite tempera-
ture, the &iction couples Langevin noise into the adsor-
bate degrees of freedom. This idea was earlier proposed
as a mechanism for excitation of projectile intramolecu-
lar vibration in low-energy scattering of NO &om an Ag
(111) surface. s In the present problem, we expect there
to be also coupling to the adsorbate CM degree of &ee-
dom, leading to a desorption mechanism. The concept of
an electronic &iction driven reaction process was earlier
proposed by Bohnen and co-workers and by Nourtier.

An alternative conceptual &amework has arisen out
of the theory of DIET —desorption induced by electronic
transitions —at surfaces. The concept here (MGR mech-
anism) is the excitation of the adsorbate, by a photon or
virtual photon, onto an excited, say repulsive, potential
energy (PE) surface. The adsorbate then has a tendency
to fall down the repulsive curve and to desorb. But due
to the close coupling to the surface, the adsorbate may
also drop down to the ground state curve with excitation
of an electron-hole pair in the metal. Competition by the
deexcitation process makes the DIET process very inef-
ficient on metal surfaces, where the deexcitation channel
is eKcient. However at finite temperatures, there is also
a rate for the excitation process &om the ground state
to the excited state PE curves, equal to the Boltzmann
factor times the (large) deexcitation rate. These two
rate processes lead to trajectories involving a sequence
of excitation and deexcitation processes, which pumps
energy into the adsorbate CM degree of &eedom, leading
to DIMET —desorption induced by multiple electronic
transitions.

What is the relationship between these two pictures,
electronic &iction and DIMET'? The electronic &iction
approach ' is in the adiabatic picture, being based in
its original form on the low excited states of the coupled
system consisting of the adsorbate and the surface. On
the other hand, the DIMET picture is based on the dia-
batic picture, in which the PE curves can be thought of as
being defined with the adsorbate-surface coupling turned
off, the restoration of the coupling giving rise in this
approach merely to the transition rate between the PE
curves. The DIMET picture is able to take into account
the highly excited states, for example ionized states, of
the adsorbate, but because of the approximate treatment
of the adatom-surface coupling, cannot describe the elec-
tronic &iction. On the other hand, the electronic &iction
picture in its existing form cannot describe the highly
excited electronic, e.g. , ionized states, of the adsorbate,
and it is clear that these play a significant —even domi-
nant —role at the high electronic temperatures reached
in this class of experiment.

In this paper (see also Ref. 13), we give a unified pic-
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FIG. 2. Behavior of the molecular vr' affinity level during
the approach to the surface. Level shifts down due to the
screening by the electron gas —"image force" —[modeled
by Eq. (22b)j, and broadens [Eq. (22a)j due to tunneling
between the molecule and surface. e (z) is the affinity level,
e~ is the Fermi level, A(z) is the lifetime broadening.

Vernon. ' This method is introduced in the Appendix
together with a more in-depth treatment of the calcula-
tional details outlined in this section.

We consider the problem of an adsorbate with a single
valence level at energy e, interacting with the electron
gas at a metal surface. We neglect coupling to phonons.
In the language of the inQuence-functional method, we
denote the electronic degrees of freedom as the "reser-
voir" and the adsorbate as the "system. " We assume the
electronic part of the problem to be described by a gener-
alized Anderson-Newns type of model, with parameters
depending on the adsorbate position x,

IIo+ V„, ,r, (x) = ) eg cqcg+ ) Vg p(x) c„cg . (1)
k kk'

ture of energy transfer from the thermally excited elec-
tronic states, both of low energy (frictionlike description)
and high energy (DIMET-like description). We do this
within a simplified model of the adsorbate and its cou-
pling to the substrate (see Fig. 2). The adsorbate is
modeled as having a single electronic level e, which in
the case of the diatomic molecules in question in these
experiments presumably represents the sr* orbital. The
level e can tunnel into the continuum represented by the
substrate conduction band, giving it a lifetime broaden-
ing L. The electronic ground state of the adsorbate on
the surface is represented by the Fermi level intersecting
the resonance at e at some point.

At adsorbate-surface distances near equilibrium, it
seems clear that the characteristic energy scale of the ad-
sorbate electronic structure, represented by the lifetime
broadening 4, is not less than a fraction of an eV, and
thus much larger than characteristic inverse time scales
for adsorbate motion. This implies that, at least for dis-
tances not too far from the surface, the adiabatic pic-
ture should be the appropriate one. Therefore in this
paper, starting from the adiabatic picture, we derive a
version of the electronic friction picture that is valid at
all temperatures. The electronic friction is related to
the DOS in the adsorbate resonance at the Fermi level,
which allows the excitation of low-energy electron-hole
pairs. The applicability of the formalism to high temper-
atures of order e —e~ (the separation of the resonance
from the Fermi level) means that ionized states of the
adsorbate are also implicitly included, essentially includ-
ing the DIMET physics, even though this is done in the
adiabatic picture. We introduce the derivation of our
results in the next section, based on a path-integral for-
malism (most of the details of which are to be found in
Appendix A), and give numerical results illustrating the
regimes dominated by low-energy excitations (electronic
friction) and by high-energy excitations (DIMET) in the
following section.

II. FORMALISM

Let us now describe the essence of the derivation
of the space- and temperature-dependent friction, us-
ing the inBuence-functional method of Feynman and

Here, A: denotes all the electronic states including the
adsorbate state, A: = a, and

V~A: (*) = Ta(x) 4.+ TA*: (x) 4 (2)

so the hybridization terms as well as the adsorbate en-

ergy,

e (x) = e + 2Re[T (x)],

depend on x. The spin is ignored. This somewhat com-
pact notation will be very convenient in the calculations
that follows. Besides this part of the adsorbate Hamilto-
nian, the adsorbate is assumed to move in some potential
confining it to the surface. In the case of no occupation
of the valence level, the adsorbate will be moving on this
"ground state" potential energy surface (PES), Vg(x),
while the transfer of an electron to the valence state will
cause the adsorbate to move on the "excited state" PES,
V.(x)

V, (x) = Vg(x) + e (x) .

As in Ref. 12, here we only take two PES's into account.
The transition rate between V and Vz is governed by the
matrix elements TI, (x).

With this Hamiltonian as our starting point, we will
now derive the Langevin-equation description of the mo-
tion of the adsorbate. Assume that the electronic system
is in thermal equilibrium at temperature 1/P at a certain
time t = 0. We can then write the total density operator
as,

—PHpp(0) = p,r, (0) g) ge

All relevant information about the adsorbate motion is
contained in the so called reduced density operator of the
system. The density operator evolves in time according
to p(t) = e ' p(0)e' . We will represent the system
part of the time-evolution operators as path integrals in
the standard way, erst described by Feynman:

—iH t Z) is() (x) U-

Here, U(x, t) is the time-evolution operator of the envi-
ronment (the electron system in our case) in the presence
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of a time dependent "field" x(t') —given by a particular
path of the adsorbate. We get one such factor &om both

—'at and piHt so that the 6nal reduced density oper-
ator, which is the total density operator traced over all
electron states, can be written as a double path integral:

where So is the action for the adsorbate decoupled &om
the electronic environment. X,~(x, y) is the infiuence
functional. It contains the effect of the electronic de-
grees of &eedom on the adsorbate motion. We can write
it in terms of the electronic Hamiltonian and de6ne the
effective action describing the adsorbate motion,

( ) T pHp rp i fp'—dt' [Ho+V(y(t'))]

—i fp dt' [Hp+v(x(t'))] (8a)

= (U(y, t) U(x, t)),( =—e* (8b)

If this was the complete action, the functional integral
over ( would result in a (functional) b function, which
would ensure that the average path Q satisfy Newton's
equation,

mQ+ V'(Q) = 0. (io)

FIG. 3. The contour p.

Here (),~ is the thermal average over the electronic states.
T and T are time-ordering operators. The evolution
U(y, t)tU(x, t) can be viewed as an evolution along the
contour, p, shown in Fig. 3 below, and LS,g can be cal-
culated in a simple way using the linked cluster expansion
for this contour evolution. To carry out the calculation,
the contour Green's functions is mapped onto the ordi-
nary real-time Green's functions by the standard Keldysh
method.

We can think of the important paths in the path in-
tegral as the classical path plus small fluctuations. The
classical path is associated with the "diagonal" parts of
the density matrix (x = y), and the fiuctuations is asso-
ciated with the deviations &om the classical path, where
x g y. To see this, neglect for a moment the infiuence
functional, i.e. , set X,) = 1. Write the two paths x(t)
and y(t) as an average path Q(t) = [x(t) + y(t)]/2 and a
difference path ((t) = x(t) —y(t). Expand the actions to
second order in ( to get

t

( ) — o( ) = — t [ Q(t)+ (Q(t))j((t) (9)

For the harmonic oscillator, this would be exact. This re-
sult is well known. The density matrix for a harmonic os-
cillator results in a Wigner phase-space distribution func-
tion, which is identical to the classical phase-space distri-
bution function. Quantum effects only come in through
the initial states, which in the quantum case of pure
states must obey the uncertainty principle. For poten-
tials that are not harmonic, quantum effects enter also
through higher order terms in (. The effect of the envi-
ronment is, as we shall see, the introduction of 1 and 2
order terms in ((t), thereby converting the functional h

function into a Gaussian with a width, characteristic of
environment.

In general, AS g contains both a real and an imaginary
part. It is the imaginary part that tends to reduce quan-
tum coherence by exponentially damping paths, where x
and y deviate on the classical time scales. In the "semi-
classical" picture, we can relate the imaginary part to
the fluctuating forces acting on the adsorbate, due to
the coupling to the electronic environment, as empha-
sized by Caldeira and Legget. The real part contains
an exact time-local contribution, which precisely equals
the change in free energy, I'(x), for the adsorbate at the
given position, x, resulting in a temperature-dependent
force. Besides this time-local part, the real part contains
x terms related to the dissipation of energy to the elec-
tronic system, i.e. , &iction.

The characteristic electronic time scale is set by the
lifetime of the adsorbate state, the inverse of its lifetime
broadening,

A(e, x) = vr ) j(TI, (x) i h(e —et, ),

while the strength of the coupling between the adsorbate
and the electronic environment is controlled by the time
derivatives of the adsorbate-state broadening, A(x), and

energy, e (x), with respect to x. In the limit of short
lifetime/large broadening the picture of motion on the

Vg PES with transitions to the V, PES is not feasible,
because these transitions occur on a time scale many
times faster than the motion of the adsorbate. In this
limit, it is more reasonable to consider the motion on the
PES given by the effective potential V,tr = Vy(x) + I"(x)
combined with dissipation of energy to the electronic sys-

tem, expressed by the x terms in the effective action. In
this h.mit, it could be reasonable to employ a master-
equation approach as in Ref. 11, using the eigenstates of
p2/2M + V,tr(x) as the basis, but these will only be well

de6ned in the case of low friction. In the other limit,
where the adsorbate state is longlived, the DIMET pic-
ture with two PES used in Ref. 12 is more appropriate.

Now, our goal is, on the basis of the efFective action, to
justify the use of the Langevin-equation approach, and
especially f'rom Eq. (8) to find the appropriate electronic
&iction coefBcient, g, which in this case depend on the po-
sition of the adsorbate and temperature of the electronic
environment. To achieve this, we follow Schmid, who
has shown how a "semiclassical" Langevin equation can
emerge &om a certain Gaussian influence functional in
the case of a particle moving in a general potential. The
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"semiclassical" Langevin equation is justified for a linear
system-environment coupling, in the case where quan-
tum fluctuations, due to terms beyond the harmonic in
the potential are negligible. The electronic &iction pic-
ture where g is well de6ned will only make sense in the
limit where the electronic time scale is much faster than
the time scale of adsorbate inotion (uo « A), so the
electronic environment acts as noise on the adsorbate
motion.

To calculate the eÃect of the fluctuations, we use the
following setup. First, we assume that the "forward" and
"backward" moving paths, x and y, in (8) only deviate
&om each other in time intervals that are short compared
to typical times in semiclassical motion, and in amounts

that warrant an expansion of the efFective action to sec-
ond order in the difference ( = x —y. We find, using
realistic parameters, that the duration of these deviating
paths is indeed very small compared to the "semiclassi-
cal" time scales in agreement with our starting assump-
tion and we have obtained a self-consistency.

The &iction term entering the Langevin equation will
be of second order in V&k, (Q). When the lifetime broad-
ening of the adsorbate is on an energy scale of eV's and
the adsorbate path moves with &equencies on the scale
of meV s, we can argue that the &iction is local in time.
Including this lowest order friction term and the infinite
order &ee energy in the effective action, we get the re-
duced density matrix,

pq jpg -'„),"S IM()( )+V „(()l+n(().')()( 1)(( ) -', J d f,'—d (( )K( — )(( )
7

MQ+ V.'~(Q) + 9(Q)Q = f(t),
(f(t) f(0)) = K(t)

(»)
(14)

We And that K obeys the fluctuation-dissipation theo-
rem. We postpone all mathematical details concerning
this derivation to the Appendix.

Our calculation results in the following expression for
the temperature- and space-dependent friction, written
in terms of the instantaneous phase shift, b(e, x) (adsor-
bate mass taken as unity):

where we see that temperature dependence is important
only for temperatures on the order of the electronic en-
ergy scale defined by the quantities 4 and e —e~. In
the limit of zero temperature, we get

where (Q, () are the rotated variables, [(x+y)/2, x —y],
and V g has been expanded around x = y. A probabilis-
tic interpretation of this path integral is equivalent to the
Langevin equation describing the adsorbate motion,

I

monic well and a spatially independent friction. The
Langevin equation with a local &iction can more conve-
niently be written in terms of a Fokker-Planck equation
for the purpose of an analytic solution. We consider a
probability distribution W(e, t) for the adsorbate to have
energy e above the bottom of the well (of depth VB),
which obeys, in the classical limit, the Fokker-Planck
equation,

BW (9 ( (9

Ot OE0 'l9e )
= )7(t) —

~

e 1+T(t) —W
~ )

equivalent for a harmonic well to a Langevin equation
with &iction g and reservoir temperature T.

For the desorption problem, a solution is required with
the boundary conditions (a) at t = 0 W(e, t) = b(e)
(distribution initially concentrated at bottom of well),
and (b) W(VB, t) = 0 at all times, corresponding to the
Kramers low-friction limit (electronic friction is nor-
mally small).

The solution is obtained in terms of an auxiliary func-
tion, the "adsorbate temperature, " T~(t), which obeys
the equation

1 F(9b
)7(x) = —

i (ep, x) i

7r (Dx J
(16) dT+ + (t)T = (t)T(t). (19)

which is the result used in Ref. 11. The &ee energy can
also be written in terms of this phase shift,

OO

F(x) = —— de n~(e) b(e, x) .
7C

(17)

Equation (17) leads to a thermal shift in the ground state
PE surface, which, however, turns out to be small in the
practical range of parameters, and we shall neglect it in
the following.

In Ref. 11 we showed that, by introducing an "image"
solution with negative sign in the region e ) V~, it was
possible to satisfy the boundary condition (b) (for details
we refer the reader to Ref. 11). In the regime appropriate
for the present problem, in which temperatures are small
compared with the well depth, the desorption probability
obtained is

(gh
p y d] +x J —v~ /T~ (t)

des B

III. ANALYTIC APPROACH

In this section, we present some essentially analytic
results obtained for the simple model of a truncated har-

Note that this result is just the time integral over
the Kramers low-&iction rate A~, which, in the
case of constant temperature, would be B~
(VBg/T~) exp( VB/T~) In the—pulsed la. ser desorption
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DIMET type of parameter regime leads to a faster des-
orption time (as measured in the two-pulse experiment)
than the low temperature &iction type of regime. This is
because desorption in the DIMET regime can only occur
in the brief time span when both &iction and adsorbate
temperature are large, while in the case of temperature-
independent &iction, the less retrictive condition that the
adsorbate temperature be large is sufhcient, satis6able in
a less stringent time &arne. The experiments require a
rather short "desorption time" of order 0.4 ps, and are
thus more compatible with the DIMET-type regime, or
a regime with at least partially activated &iction.
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IV. NUMERICAL RESULTS

In this section, we present results &om a numerical so-
lution to the Langevin equation. This allows us to move
beyond the truncated harmonic potential well approx-
imation used in the analytic approach of the previous
section with the introduction of more realistic potential
energy surfaces. In addition, the numerical approach al-
lows the use of a &iction varying with position in the
potential as suggested by Eqs. (21) and (22) in the pre-
vious section. These results will allow us to test the ap-
plicability of the analytic approximations of the previous
sections.

The well-known Langevin equation describes the tra-
jectory of the center-of-mass coordinate of the adsorbate,

d2x dx I"(x)
dt +"( ')dt =

M +"' (23)

(24)

where M is the adsorbate mass and g(x, t) is the friction
calculated from Eqs. (21) and (22) for an adsorbate at
center-of-mass position x. The &iction depends on the
time through the temporal dependence of the substrate
electronic temperature, T(t). Here I" (x) = —dV(x)/dx
is the force exerted on the molecule as a result of the
potential energy surface, V(x), and I'(t) is a stochastic
force with mean (I'(t)) = 0. We take I'(t) to be described
by a white noise spectrum:

FIG. 7. Morse potential used in numerical integration of
Langevin equation (solid line). Also shown is the friction as
a function of position in the well at 400 K (dotted line) and
5500 K (dashed line).

shown in Fig. 7. The temperature transient used in the
simulations comes &om a model for the electronic tem-
perature of the substrate under ultrafast laser excitation
conditions, which was used to describe the femtosecond
laser desorption experiments. This temperature tran-
sient starts at 400 K and rises to 5500 K over the width
of the laser pulse (100 fs) and then falls approximately
exponentially with a time constant of about 1 ps to the
equilibrium value. For all the calculations presented here,
the parameters used to calculate the &iction are n = 0.5
a.u. , P = 1 a.u. , e = 5 eV, and C = 3.02 eV. Using a
width, Lo ——0.2 eV, we also show in Fig. 7 the spatial
variation of the &iction at two temperatures, 400 K and
5500 K. The dependence of the friction on temperature
at well minimum is shown in Fig. 8.

The results of a series of stochastic trajectory simu-
lations are shown along with the analytic results of the
previous section in Fig. 5, where the desorption prob-
ability is plotted for several values of the width of the
aKnity level at the well minimum, Lo. The results show
similar qualitative trends with 40. At large Lo, the &ic-
tion becomes temperature independent and the desorp-
tion probability maximizes at a relatively low value. As
the width Lo decreases, the desorption probability de-
creases as the &iction decreases. At lower values of Lo,
however, the physical picture transforms to one more sim-

where the strength of the white noise term, q, is deter-
mined by the temperature, T, and &iction, g, through a
Quctuation-dissipation theorem:

(25)

This formalism, in conjunction with the expression
for the &iction described above, is examined through
stochastic trajectory simulations using standard meth-
ods for integration of the Langevin equation.

The adsorption well is modeled using a Morse poten-
tial. The depth of the well and the curvature at the
equilibrium position were chosen to match the well depth
(1.37 eV) and molecule-surface vibration quantum (0.032
eV) for the NO/Pd(ill) system, which was used in fem-
tosecond laser desorption experiments. This potential is

6-
E
CD

4

I I I I

2000 4000 6000 8000
Temperature (K)

FIG. 8. Friction as a function of electronic temperature
calculated at the vrell minimum.
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ilar to the DIMET picture. The system now becomes
that of a well-defined affinity level lying above the Fermi
energy. Although the low temperature &iction continues
to decrease as L0 decreases, the temperature dependence
of the &iction becomes much more pronounced. In this
regime, the increased high temperature &iction leads to
an increase in desorption probability as the width L0
decreases. As seen in Fig. 5, a significant increase in
the desorption probability can result in the "DIMET"
regime.

V. CONCLUSION

In our description of femtosecond-pulse laser desorp-
tion, the laser energy is converted into a transient tem-
perature pulse in the electron gas at the substrate surface.
The pulse is very high ( 5000 K), but very short ( 200
fs.). Due to the shortness, plus the low heat capacity
of the electron gas, the lattice temperature eventually
reached is low (and the lattice undamaged). Transmis-
sion of energy &om the electron gas into the adsorbate
nuclear degrees of &eedom occurs via the dependence of
the molecule's electronic properties on the ionic positions.
Additionally knowledge of the molecule's potential en-
ergy surface is required.

We have implemented a modelistic version of these as-
sumptions. Only the molecular center-of-mass degree of
&eedom is treated in the desorption problem, and only
motion in one dimension, involving a Morse-type poten-
tial well for the molecule, is considered. The adsorbate
electronic structure is defined by an Anderson-Newns
type of model in terms of a resonance, whose width A(z)
and center e (z) vary with distance from the surface. The
resonance can be thought of as the sr* orbital, usually be-
lieved to dominate the low-energy electronic phenomena
in first row diatomic adsorbates, such as NO and 02.

The theory of an object, whose electronic struc-
ture depends on position, coupled to a translationally
heated electron gas can be formulated generally using the
inQuence-functional theory of Feynman and Vernon. To
make further progress, it is assumed that in this prob-
lem, the electronic time scale 4 is shorter than the
ionic motion time scale, which should be valid in the
neighborhood of the equilibrium position, though it will
eventually break down at sufficiently large distances, due
to the exponential vanishing of L.

When the relative shortness of the electronic time scale
holds, it is carefully demonstrated in Appendix A that
the electron gas-to-adsorbate energy transfer process is
describable in terms of an electronic &iction g. The elec-
tronic &iction couples Langevin noise from the electronic
heat bath into the adsorbate center-of-mass degree of
&eedom in the conventional way, resulting in a Brow-
nian motion which may result in desorption. When it
arises f'rom direct energy (rather than momentum) trans-
fer to the substrate electron gas, electronic &iction can
be rather simply thought of as follows. At each posi-
tion there will be a given amount of charge transfer into
the adsorbate sr* resonance. Adsorbate motion leads to
a current I into the resonance, and hence to a power ab-

sorption I /G, which can be straightforwardly related to
electronic &iction. When this is done, it is recognized
that G is none other than two units of the quantum of
conductance Ge = e2/h. The quantization originates in
the constraint involved in postulating that only a sin-
gle orbital (the vr*) is involved in charge transfer. The
friction is, in general, T, dependent, due to the possibil-
ity of thermally aided electron transfer into an adsorbate
excited electronic state.

We adopted two approaches to solving the problem
in which the adsorbate center of mass is coupled by elec-
tronic &iction to the transiently heated electron gas bath.
An analytic approach, specialized to the model of a trun-
cated harmonic oscillator potential well and spatially in-
variant &iction, yields desorption probability as the time
integral over the Kramers low-&iction desorption rate.
In the expression for the Kramers rate, the temperature
that enters is the "adsorbate temperature, " a quantity
which obeys a simple equation analogous to Newton's
law of cooling for the adsorbate, with the electron gas as
the heat bath. A numerical approach, involving running
a set of trajectories for the Langevin equation, enables
an arbitrary well shape and a spatially varying &iction
to be handled.

The results of the two approaches, which broadly
agree, show that parameters fall into two quite well-
demarcated regimes separated by a region of low de-
sorption probability. If the width 4 of the adsorbate
resonance is narrow relative to its energy measured &om
e~, then the dominant contribution to the &iction is due
to thermal excitation &om the Fermi energy to the reso-
nance. This leads to a highly T-dependent &iction. Since
by hypothesis the resonance is narrow compared with
its excitation energy, the result can be interpreted in
terms of repeated excitation between ground state and
excited (negative ion) state PE curves. This mecha-
nism for desorption in the femtosecond-pulse laser con-
text was earlier introduced on a more empirical basis as
DIMET (Ref. 12). An opposite regime occurs when the
resonance width 4 is large compared with T and of the
order of the distance of the resonance &om the Fermi
level. Now low-energy electron-hole pairs doxninate the
&iction channel, and in the regime we are describing,
they give rise to a relatively T-independent &iction.

In the present paper, we have brought the DIMET
and T-independent &iction regimes into the same formal
framework (previously the former was done only numer-
ically and the latter analytically), enabling them to be
compared. This is done in Fig. 4. The two approaches
essentially agree. The shallower dip given by the numer-
ical approach between the two regimes is attributable
to the spatially varying &iction in the numerical model,
which can find a spatial location where the parameters
are optimal for the friction, under conditions when the
more rigid constraints of the analytic model confine it to
a very unfavorable parameter space.

Experimental data can provide some criteria for deter-
mination of the parameter regime in experimental sys-
tems such as NO/Pd(ill). We will do this primarily on
the basis of the calculations presented in Fig. 5. First
the definition of the low-T &iction regime as lying to the
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right of the minimum implies a low-T &iction of at least
0.2 cm . In fact, the work of Ref. 23 suggests that val-
ues as large as 1 to a few cm are reasonable (which
are required at the maximum desorption probability for
this regime). An extremely low low-T friction would,
however, point to the DIMET regime. The resonance
width at the equilibrium position in the DIMET regime
in Fig. 5 should lie below 0.25 eV. This value is on the low
side for available data such as inverse photoemission.
A third test is provided by measurements of the des-
orption probability in a two-pulse experiment. Model-
ing this quantity as a function of the time separating the
pulses (see Fig. 6) reveals that this experiment distin-
guishes the low-T &iction and DIMET regimes in giving
a shorter time scale to the latter process. This is be-
cause the &iction in DIMET only remains high during
the short period when the electron temperature is near
its peak. Since experiments favor a rather short char-
acteristic time of Os4 ps, this indicates that a degree of
activation of the &iction is occurring, so that the DIMET
regime or the low-4 part of the &iction regime is proba-
bly operative.

There are some other experimental signatures that we
have omitted &om the relatively narrow focus of this pa-
per. First, the strong vibrational excitation of the adsor-
bate is most likely occurs via the electron-hole mechanism
discussed in an earlier work on the vibrational excitation
observed in NO scattered from Ag (111), and is charac-
teristic of desorption at high electron temperature. In the
present case, a generalization to include the temperature
dependence of the &iction is appropriate. A discussion
has been given in the literature by two of us. ' The ki-
netic energy of the desorbed particles is also of interest.
Numerical simulations show it to be relatively low (be-
low 1000 K), which is in agreement with the experimental
data.

Some of the approximations made in the present pa-
per have been used by other authors. Head-Gordon and
Tully have considered additional degrees of &eedom of
the adsorbate, but in the context of a finite cluster de-
scription in which the electronic states are discrete in-
stead of forming a continuum, with some penalty in the
accuracy of the description of the low-energy excitations
and thus the friction. The role of substrate phonons
has been neglected in the present paper; they act to re-
duce desorption by trying to cool the adsorbate to their
own low temperature. Their efFect has been discussed by
Billing. 25

In conclusion, the role of electronic &iction in at least
one elemental surface reaction process seems to be fairly
well established in the case of femtosecond-pulse laser
desorption. It may be that electronic &iction has a sig-
nificant efFect in other reaction processes, where experi-
mental conditions do not permit its role to be so cleanly
separated as in the present situation.

APPENDIX A: TEMPERATURE-DEPENDENT
FRICTION

Here, the inHuence functional by Feynman and
Vernon ' is introduced. Later, we will discuss its con-

nection to the "semiclassical" Langevin equation, follow-
ing Caldeira and Leggetx6 and Schmid, and calculate
the appropriate (temperature-dependent) friction coeffi-
cient to be used in the Langevin equation.

In general, we consider a quantum system with few
degrees of &eedom, interacting with a general reservoir,
i.e., a continuum of degrees of &eedom, and we are inter-
ested in the inHuence of the reservoir on this system. All
information about the system plus reservoir is contained
in the total density operator (h. —:1 this appendix),

(t)
—tHt (0) iHt (A1)

For the system we will use the coordinate representation,
while the representation for environment will remain un-
specified. As discussed in the main text, we will represent
the evolution of the system as path integrals. In Ref. 19,
it is shown how to do this in detail. The result for a
single evolution operator e '~ is

(x ~e
'

~x ) = J Dxe' '~ ~U(x', t). (A2)

U( t) T s fe dt' H...+H;„g(e—(t'))
J (A3)

The reduced density matrix is defined by

Pred(t) ~res[P(t)]&1 (A4)

where the trace is over a complete set of states for the
reservoir. With the above, it is now straightforward to
write down a path-integral expression for the reduced
density matrix. It will be an integral over pairs of paths
x and y, since the density matrix involves two time evo-
lution operators e '~ and e'~:

&1

(%lip d(~)ls. ) = J «0 J sro
~Vp

y1
Z) iSp (x)—iSp (y)

yp

xz[~, y](«l p.„.(0) ly, ) (A5)

where we have introduced the inHuence functional

E[x, y] = W„.[U(x, t)p„,(0)U (y, t)]
= (U'(y, t) U(x, t)). (A6)

We have assumed that the system and reservoir decouples
att=0,

(A7)

This decoupling is unphysical, but after a very short time,
the system and reservoir are thoroughly mixed, and all
memory of the initial condition has vanished.

Thus, the inHuence functional couples the paths mov-

Here, So (x) is the classical action of the uncoupled
particle for the path x(t) moving from x) to x2, and
U(x, t) is the reservoir time evolution operator with a
time-dependent Hamiltonian corresponding to a situa-
tion, where the particle moves along a c-number path
x(t):
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ing forward and backward in time. We are now in posi-
tion to define the effective action for the system, where
the reservoir influence is included, simply as

Taking ( ), we get a first order difFerential equation in A

for E&(x, y), where I'o(x, y) = 1. Solving this and taking
A= 1, wesee

ee++eff (~tw) y'[x y] (U (0' 0) ) (As) E(x, y) = (U (0', 0)) = e (A11)

U (01 0) T e f &+&ree+&iet (&y (~)) (A9)

Here, we have introduced the contour p, see Fig. 3, and
the time-evolution operator on p,

with

(v, (o, ) v( ) v, (,o))
(U~(0', 0))

(A12)

where x~(r) is a combined path, which is equal to x(~)
when v is on the upper part of the contour and equal to
y(7) on the lower part. To obtain b S,ff, we use a math-
ematical standard procedure (Linked Cluster), where we
replace V by AV and then use the operator identity,

U~(0', 0) = —i f dv U~(O', v) V(v') U~(v;0). (Ala)

and we finally obtain the desired expression for the ac-
tion,

1

AS,ff(x, y) = — dA d7- Xp(~).

This can be written in terms of the contour Green's func-
tions G&&, , with T~ being the contour time-ordering op-
erator:

G»(~o) =
&

. (v (o', ) ( )v (, ) „ t( )v (,o))
(v, (o', o))

(U (o' ) '( )U ( ) ( )U ( 0))
(v (o', o))

for w)~ o

for ~ (~ o.

=— —i (T,c~(~) c~ (~))

as

pp(~) = i )—Gi,„,(~, ~+)v» (x~(r)) . (A14)

(G». (t, t') G~„,(t, t') l
( G~, (t, t') Ggi, (t, t') ] (A15)

and

Following the Keldysh formalism, we can represent the
contour Green's function by the real-time axis, using 2 x 2
matrices with the usual real-time Green's functions as
elements. The first matrix index decides whether the
first argument is on the upper (x-part) or the lower (y-
part) branch of p, and likewise for the second argument
and matrix index. Defining

-v- (y(t)) ) '

(A17)
where G satisfy the Dyson equation

Gi, i. (t2 —ti) = RA: c& (t2 —ti)(0)

t
+A) dt' Gq~ ~(t2

0

—t') v&, (t')c,„.(t' —t, ) .

Here, G~ ~ is

(A1s)

(*( )) (A16)0

we can write the efFective action,
1 t

AS ff (x, y) = i dA dt' ) Tr[G ieie (t', t')V)'eq (t')]
0

A:A;

0 t —t'~
(A19)

Iterating (Als), we can write the effective action as a sum of terms of the form

t t
AS,ff (x, y) = — ) dt„. dt's Tr G q (ti, t„)V), ), , (t„)C „

0 0k ,",k1

x (t„,t„&) . G„(t» ti) Vi„A, (tz) (A2o)

1. The e8ective potential

Now, let us find the time-local part of LS g, which does not depend on the time derivatives of the adsorbate motion.
The important step in the derivation is the partial integration,
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i
t i(eg,. —eg,. )t,

dt; e' '"' '"'-' '* 0(t; —t; i)Vi, , yf, (z(t;)) . — dt, . [b(t; —t; i)VI, , A,„,(z(t;))
0 0 ~ ~k; —~k, ,

+e(t, —t, ,)v„'„,( (t,))*(t,)] (A21)

where we neglect the end-point contribution. To obtain the time local contribution, we must use the part of LS,&+

with precise n 9 functions (and therefore one n~). The n —1 8 parts of the n G( l's in (A20) can be picked in n ways,
thus giving a factor of n. We identify the desired part as

(—1)" )
k~ i ~ ~ ilc1

t t
( i gg dg

— ( ( r„—~„,)+" + 1( a, —a)j
n

0 0

x V„,„(*(t,)){V„„,(*(t„)). V..., (*(t,)) e(t„—t„,) . 0(t, —t, ))

—V~, I, (y(t, )){V~ A, , (p(t„)).. . VI.,~, (p(t2)) 6(t„—t„ i) . . &(t, —t, )) . (A22)

Now, we do the n 1 partial in—tegrations (keeping the last
integration) and end up with the time-local and velocity-
independent part of LS &

..

t
n~ (eA:„) dti Vq, q„(z(ti) )

0

1
E(z) = ——1n(Z)

1 ln(1+ e ~( "l) A((u, z)
d(d

2'
1

de n~(e) b'(e, z) .

(A26)

(A27)

~ ~ I

i=1

VA:, ,I, (z(ti))

V. .( (t ))
" '

VI.,„k,(u(tl))
~k„—~k;

(A23)

Here the spectral function, A, and the phase shift, b, is
defined in (A47) and (A50), respectively, and we have
used partial integration.

2. The temperature-dependent friction
This result we compare to the standard Linked Cluster
calculation of the equilibrium free energy using the Mat-
subara technique:

. (—1)') l

x d7.„.. d7., (T~V(71) . . V(~i)) . (A24)
0 0

We will now outline the derivation of the Langevin
equation from (8) and, in particular, find the relevant
friction coeKcient, g. The reduced density matrix is a
path integral over pairs of paths x and y. As mentioned in
the main text, we shall 6nd that only pairs of paths that
are sufBciently close will contribute significantly. It is the

To get the nth order correction, we must evaluate the
closed loop diagram shown in Fig. 9, giving

y( ) — ) ) V „g( l(~p
n

k~, ...,k1 iP~

xVg A, , g (ip„, eA. , ) . . Vg, r, g
x (ip„, ei„), (A25)

doing the frequency summation, we get precisely the
potential corresponding to the contribution to the action
given by (A23) as could be expected. This &ee energy
will, in general, give a temperature-dependent renormal-
ization of the potential Vg. From this point on, the po-
tential energy term contributing to the action S0 is taken
to be the fully renormalized and temperature dependent
Vg just derived.

To get a more convenient expression for the &ee energy,
E, one can, e.g. , use the standard formula,

FIG. 9. The nth order diagram mith Matsubara Green's
functions.
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influence functional which suppress very deviating pairs
of paths. The logic of the derivation goes as follows. We
first assume, that the paths x and y are so close that an
expansion to second order in the deviation ( = z —y of the
Hamiltonian is adequate. With this approximation, we
calculate the influence functional. Knowing the influence
functional, we can then verify that our initial assumption
holds.

Let us consider a pair of paths x and y, which have
made it to a region close to a point Qp at time tp W.e
will now evaluate the contribution to LS,ff &om time
interval (tp t'p + b'). We will take h to be so short that
the following expansion of the full interaction part of the
Hamiltonian is allowed:

II;.t(*) = H'.t(Qo) + (*—Qo) ) V„'„, c„c

b 8

b,S,ff (x, y) = -' dt, dt, ) V„',„V„'„,
0 k1,%2

ks, k4

x Tr[Gq, l„(tl, t2) X(t2)

x C A, g, (t2, tl) X(t,)], (A29)

where we have defined,

X(t ) —= !'*(')
0 —y(t') + Qo )

Consider the 2 order term (the 1 order term is included in
V ff ) of (A17) in V&&, with G being the Green's function
matrix corresponding to II; t(Qp):

&aI
(Qo) . (A28)

We write C in the spectral representation:

G(o) (, d~;~(.. ., ) ~ ( )
. ( AF(u)) —8(t2 —tl) AF((u)

ns (~) —1 ns ((u) —8(tl —t2) )
with B» (u) being the spectral functions,

&» (~) = -2™[G'V~'(~)l.
Defining, a weighted electron-hole pair density of states,

(A31)

(A32)

we can write,

I'(ul, (u2) = ) Ra, a, (ul) Vi„l„BI„a,((u2) Vi„I„,
ky, kg
aS.a4

(A33)

~S(2) ( ) dt dt 1 P( )
i((ux —~s)(tz tz)—

ff'

X Tl'
( nF (&1) —8(tl —t2) AF (&1) ~ ~ x(t2) —Qo 0

AF(ul) —1 AF(ldl) —8(t2 —tl) ) q 0 —[y(t2) —Qp] )

X
t' AF ((u2) —8(t2 —t, ) ns (cu2) & ( 2:(t1) —Qo 0

AF (ur2) —1 ns (~2) —8(tl —t2) ) q 0 —[y(tl) —Qo] )
(A34)

Trivial calculations using the identity,

1 /P(x —y) )
[AF(x) —8(t)][nF(y) —8(—t)] = — sign(t) + coth!

2 )I [AF(*) —AF(y)] (A35)

yields the real part:

8 fg oo d 1-
dt2 dtl A(m) cos[u(t2 —tl)] —x(tl)

0 0 —oo 2

+y(tl) [*(t2) —y(t2)] (A36)

where we have neglected the time-local term already in-
cluded in V~, and defined

oo d oo

A((d) = —— dld2 b (d —(ld2
(d ~ 270

—Ml)j f (ldl, &2) [AS (M2) —AF(&1)]
1 d(dy I (ldl cd + ldl ) [AF (cd + ldl )

cc) ~ 27'
—nF ((ul)] . (A37)

The function A plays the central role in our calculation,
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where the kernel is
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and get

tted for different temperaturtures in Fig. 10
(22) It, f th

es on a scale essen ia y
1 h hes onding time sca

1

A varies on a corresp
'

g
the Fourierthan the classical time sca e, w

b A(O) b(t, —t, ).transform of A(w) y
We have that

coth cos((ut),lt(t) = (uA((u) coth
0

2kT
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Gret(~) gret(~) T Gret(0)(

Gkk'(~) = bkk .G$"'"(~) + G,'""'(
) &aG.'"(~)&k G,",'"'(~)

FIG. 11. The spectral function is found from the retarded Green's functions shown diag, ramatically.

and write the total path integral (inserting h),

~Q g( l f' d7[MQ. (r)+V,'qf(Q)+o(Q)Q(~)jt(~) q fo
—d~ fo der t(~)K(7 cr)t—(o) (A44)

We have here made the expansion of Vg,

&.~(&) —&.(r(V) = &.'e(Q)& (A45)

which is justified in the same way as above.
A probabilistic interpretation of this path integral is equivalent to the Langevin equation with the force correlation

function given by K. For further discussion of this point, we refer to Schmid. In the high temperature limit, where
the thermal correlation time determined from K, 5/2vrkT, is much smaller than all the time scales of motion, we
get the familiar result of the time-local fluctuating force,

(f(t) f(O)) = K(t) - 2qkTb(t). (A46)

The correlation time is 1.27ps/K, so it is about 1 fs for a temperature of 1000 K, and we can immediately assume a
b correlation. It is clear by comparing the real part of S,e in equation (A39) that we can identify rI with A(0)/2.

When applying these results, one should keep in mind that A(0) is a quantity that is specific to the position at
which the particle finds itself at a given time to. We, therefore, have arrived at a position- and temperature-dependent
friction coefficient.

Finally, we calculate g in terms of the model parameters. First, we find the spectral functions in terms of 4 and Q
and

2A(Cd, Qp)"-"-=" '= l-- (Q.)-~(-,Q. )~ +~(-,Q. )
(A47)

where we have written the Qp dependence explicitly. From Fig. 11, we see that (u g (k, k')),

R k (cd, Qp) = —2 Im
dCd A(Cd, Qp) 1

27I Cd —Cd + Zh Cd —Ey + 'll (A48a)

1= Ti. (Qo) A(~, Qo) &
Cai —E k

Cd —E~ —R(Cd, Qp)+ A (Cd, Q p ) Ir 6 (Cd —Ek )
o

(A48b)

&xi (,Qo) = 4i, 2~~( —
A:)

—2 I Ti(Qo)T~ (Qo)
dCd A(Cd Qp) 1 1

2~ ~ —(u' + zb (u —eI, + zb ~ —~A. + zb
(A48c)

Inserting these in the expression for I'(cd, cd, Qp) (A33) we get after some trivial manipulations, the space- and
temperature-dependent friction coefficient,
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1
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l

— (~) l

.
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(A49a)

(A49b)

(A49c)

(A49d)
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Introducing the phase shift,

and using the identity

vr t'e (x)+'R(ur, x) —(ui
b ur, x = ——arctan

2 ( AldX j (A5O)

we observe that we can write the kiction as

sin (b) = —4,
2

(A51)

1 f Bb i ( dna.
rl(Qo T) = — "~

I ~ (~ &o) I I d (~)
) & d~ )
E~ IT~(&o) I'b(~ —e~)

E& IT~(qo) I'b(~ —e~)

2

(A52a)

(A52b)

This &iction coefBcient is exactly equal to the result obtained by Nourtier, using a different approach. We can neglect
the last term (A49d, A52b), if we assume the same spatial decay for TI„T& --cT~, for the important k's with el,
within the kT range of e~.
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