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Enhanced scattering from a planar waveguide structure with a slightly rough boundary
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The scattering problem of an incident wave from a waveguide structure with a slightly rough surface
is studied. The waveguide structure is considered to be a dielectric film deposited on a planar, perfectly
conducting metal surface, and the top surface of the film is assumed to be a randomly rough surface.
The stochastic scattered wave fields are represented in terms of orthogonal functionals with the Wiener
coefficients. These coefficients are determined by applying the approximated boundary conditions ex-
panded up to the third order of the random surface function. The analytical expressions for the
coefficients of the first three terms are obtained rigorously up to the second order of the surface rough-
ness so as to satisfy the reciprocity. It can be easily shown that our results are the same as those ob-
tained by perturbation theory if we expand them in powers of the surface roughness. However, we have
the so-called mass operator in the denominator of the coefficients, which can be used to determine the
perturbed propagation constants of the guided waves in the presence of a rough surface and remove the
divergence difficulty in the common perturbation theory. The numerical calculations show that there
are some well-pronounced satellite peaks in the incoherent scattering distribution, in addition to the
enhanced backscattering peak, when the waveguide structure can support two or more than two guided
modes. This is caused by the interference of two double-scattering processes and is attributed to the ex-
istence of the guided waves in the scattering structure.

I. INTRODUCTION

Scattering of waves from a random rough surface is a
problem not only of theoretical interest but also of practi-
cal importance, and at the same time it is a very common
physical phenomenon. ' The problem can evidently be
divided into two groups. The first group is related to in-
teractions of the waves in free spaces or half spaces with
rough surfaces, for instance, the scattering of radio waves
from irregular ground or sea surfaces, the wave
diffraction from a rough body, and the excitation of sur-
face plasmons in random metal surfaces. Common to all
these situations is that the wave field interacts with only a
finite portion of the surface, namely, a single act of
scattering from the rough surface. Afterwards, the scat-
tered waves travel in free space and never interact again
with the boundary irregularities. For this reason, only
slight distortions of the wave field can be produced if the
perturbations of the boundary irregularity are small
enough, and as a result, even the first Born approxima-
tion of perturbation theory gives satisfactory solutions.

The second group is related to interactions of waves
with the rough surfaces in a waveguide structure, and it
can be further divided into two kinds of problems accord-
ing to the location of the excitation source, that is, the in-
terior problem in which the source is located inside the
waveguide, and the exterior problem in which a wave in-
cident on the rough surface from outside the waveguide.
Due to the existence of the guided modes in such struc-
tures, the waves can interact with the rough irregularities
again and again (coherent multiple scattering), and it
leads to some different or new effects absent in the case of
free spaces or half spaces. For example, there is a
stronger enhanced backscattering peak when the struc-

ture can support the guided modes and the additional sa-
tellite peaks appear when the structure can support two
or more guided modes.

By using the stochastic functional approach, we have
successfully studied the scattering problems of guided
waves in a planar waveguide and an optical fiber with a
slightly rough boundary, ' which obviously belong to the
interior problem. The approach was first introduced in
the theory of propagation in random media by one of the
authors, and has been used successfully to develop the
scattering theory of a plane scalar or electromagnetic
wave from various planar, ' ' cylindrical, ' ' and
spherical' random rough surfaces with small roughness.
In these works, the scattered wave field is regarded as a
stochastic functional of the random surface that can be
represented in the form of the Wiener-Hermite expan-
sion ' in the case of a Gaussian random surface, and a
group-theoretic consideration is made to determine the
form of a stochastic wave field based on the statistical
homogeneity of the random surface, which is analogous
to the Floquet theorem for a periodic boundary. A set of
hierarchical equations for the expansion coefficients is ob-
tained from the boundary conditions and can be solved
by making use of the recurrence relations and the ortho-
gonality of the Wiener-Hermite functionals. Various sta-
tistical characteristics of the scattered waves, such as
coherent and incoherent fields, their difFerential cross sec-
tion (the second-order moments), and angular distribu-
tion etc. , can be easily calculated. More importantly, it
has been shown that the so-called divergence difhculty in
the common perturbation theory, which is due to the
multiple scattering in the direction close to the planar
random surface, is automatically removed in our ap-
proach owing to the "stochastic Floquet theorem" and
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the stochastic functional calculus. ' This means that the
stochastic functional approach is good enough for treat-
ing the multiple-scattering effects, and hence can be ap-
plied to the scattering problems from rough surfaces re-
lated to a waveguide structure. In fact, we have also con-
sidered a similar problem in a previous paper, ' in which
the excitation of surface plasmons (modes) in a Ag film
with a rough surface was studied for the incident plane
wave from outside.

In this paper we extend the stochastic functional ap-
proach to the scattering problem of an incident wave
from a planar waveguide with a slightly rough surface.
The waveguide structure is considered to be a dielectric
film deposited on a planar, perfectly conducting metal
surface, and the top surface of the film is assumed to be a
randomly rough surface, as shown in Fig. 1. We note
that the same problem has been studied recently by using
the perturbation theory. The perturbation theory is
a more traditional approach in which the problem of a
deterministic rough surface is studied first and the statist-
ical considerations are imposed afterwards. In contrast,
the scattering problem is directly considered as a stochas-
tic boundary value problem in our approach, and all the
scattered wave fields are regarded as the nonlinear func-
tionals of the random rough surface and expanded in
terms of the Wiener-Hermite functionals. As a result, we
have the so-called mass operator in the denominator of
the Wiener coefficients, which can be used not only to
determine the effect of the rough boundary on the
characteristics of the guided waves in the waveguide, but
also to remove the so-called divergence difficulty in the
common perturbation theory (for example, a small imagi-
nary part of the dielectric constant has to be introduced
for the numerical calculations in the perturbation
theory).

The outline of the paper is as follows. In Sec. II we
first investigate the structure in the absence of roughness
when a plane wave is incident on it from outside. The
reflection coefficient for the outgoing wave outside the
waveguide and the transmission coefficient for the stand-
ing wave inside the waveguide are derived, and the
dispersion properties of the guided waves supported by

the structure are discussed, which will be needed and
play a central role in the remainder of this paper. Then
in Sec. III the stochastic representations of the scattered
waves are given as expansions in terms of the complex
Wiener-Hermite functionals, on the basis that the rough
surface is a Gaussian random surface and has a spectral
representation in terms of a Wiener integral. In Sec. IV
the analytical expressions for the coefficients (the Wiener
kernels) of the first three expansion terms are obtained
rigorously up to second order of the surface roughness so
as to satisfy the reciprocity by applying the approximate
boundary conditions expanded up to third order of the
random surface function. A so-called mass operator ap-
peared in our expressions, which can be used to deter-
mine the perturbed propagation constants of the guided
modes in the presence of a rough surface. The formulas
for the incoherent scattering distributions are given in
Sec. V. An interpretation for the scattering processes de-
scribed by the Wiener kernels is also presented. The nu-
merical results are shown and discussed in Sec. VI. Fi-
nally, the conclusions are summarized briefly in Sec. VII.

We will show that under certain conditions there are
some well-pronounced peaks in the incoherent scattering
distribution, in addition to the enhanced backscattering
peak. These peaks mathematically come from the
second-order Wiener kernel in the approximation under
discussion, and such enhanced scattering can be physical-
ly interpreted as the result of an interference of the
"double"-scattering processes composed of the twofold
"single"-scattering processes described by the first-order
Wiener kernel, which could be interpreted as a "dressed"
single-scattering process. The reason that the enhance-
ment is very conspicuous in the present problem is attri-
butable to the existence of the guided modes in the struc-
ture, since very strong interference can take place in the
double-scattering processes where such guided modes ap-
pear as intermediate states. The above interpretation
bears some similarity to that in Ref. 25 where the term
"degenerated time-reversal symmetry" is used to inter-
pret such enhanced scattering.

II. SOLUTIONS IN THE ABSENCE OF ROUGHNESS

z =-a

z

8o

perfect
conductor

FIG. 1. The scattering structure studied in this work.

= X

Let us first study the structure in the absence of rough-
ness. We will consider the scattering of an s-polarized
electromagnetic wave, whose plane of incidence is the xz
plane, which is incident from the vacuum side, as shown
in Fig. 1. The electric vector of an s-polarized plane
wave has only a nonzero component in the y direction,
which will be denoted by g in what follows. The time
factor exp( icopt) of all the —fields will be suppressed for
brevity.

Let g; denote the incident field of a plane wave, f,p

(g, ) the refiected (scattered) field in the vacuum region,
and g,p (IPt ) the transmitted (induced) field in the dielec-
tric region, respectively. Then they have to satisfy the
boundary conditions at the vacuum-dielectric interface
z =0 [z =f (x)] and the dielectric-conductor interface
z = —a; that is, the tangential components of the electric
and magnetic fields must be continuous across the inter-
face z =0 [z =f (x) ] and the tangential component of the
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g, =exp(iA. ox —iaoz),

p= R pexp( ikox +i apz)

frp = Tp sinyo(z +a )exp(i A px ) (3)

electric field must vanish on the surface z = —a. In view
of the above, these fields can be written in the form

rameter. It should be noted that in the case of the ab-
sence of roughness, no guided mode can be excited by an
incident wave from the vacuum side since A,o & 1. Howev-
er, in the case of the existence of a rough surface, the
guided waves could be excited if the structure can sup-
port them. The guided modes will play an important role
in the scattering as we see in the following sections.

and they have to satisfy the following conditions:

0 +Co—Ao~. =o=0
(4)

III. STOCHASTIC REPRESENTATION
FOR SCA'l l'ERED WAVES

%'e now consider the structure with a one-dimensional,
randomly rough surface expressed by z =f (x;co), where
f (x;co ) is a random function with the mean
(f (x;co) ) =0. In this notation, co denotes a sample point
in the sample space Q, which is the ensemble of the reali-
zations of f, and the angle brackets ( ) indicate the pro-
babilistic average over Q. If f(x;co) is a homogeneous
Gaussian random function on the planar surface, then as
shown in previous papers' ' we have the spectral repre-
sentation off (x;co) in terms of a Wiener integral:

f (x;co)=f e' "F(A,)dB (I,), (9)

~, (4;+4,o—4to)
8

z=0
=0

0&U& —,
2 '

one guided mode for

7T 377—&U&
2 2

two guided modes for

3m Sm&U&
2 2

and, in general, n guided modes for

(2n —1)m (2n +1)m
2

&U&
2

(Sa)

(Sb)

(Sc)

(Sd)

where U =Qs„—lkoa is the normalized waveguide pa-

In Eqs. (1)—(3), Ap=kosin8o is the common propagation
factor in the x direction, ao=Qko —

A,o=kpcos8o, and
yp=Qki —)io with kp=s~~ (cop/c) and ki=si (coo/c)
being the wave numbers in the vacuum and dielectric re-
gions, respectively, and Op is the angle of incidence
measuring from the z axis. The reAection and transmis-
sion coefficients Ro and To are determined by applying
the boundary conditions of Eq. (4) as

(Ao) i2ao 1Rp= TQ
5(Ap)

'
sinypa b, (Ao)

b, +(A. )p=iap+yocotyoa,

b ( A p) =iap yocoty—oa .

We should point out that the common denominator b, (A, )

of Eq. (5} is exactly the same expression with the charac-
teristic (dispersion) equation ' obtained by solving the
homogeneous wave guiding problem for the given dielec-
tric waveguide. Indeed, the real roots of the transcenden-
tal equation b, (A, )=0, for a given dielectric constant
e„=si/sp and the film thickness a, determine the
surface-guided modes supported by the structure. Since
the solutions of b.(A, ) =0 have already been discussed by
many authors, ' we merely give a brief summary of
them here. It is well known that for a guided wave prop-
agating along the x direction, A, has to satisfy the condi-
tion 1&1,&s„atfirst. Having this in mind, a solvability
examination of b, (A, }=0 shows that the structure can sup-
port no guided mode for

where we have put dB(A, )=dB(A, ;co), and will delete co

for brevity in what follows. Here dB(A, ) denotes the
complex Gaussian random measure with the properties

(dB (A. ) ) =0, dB'(A, ) =dB ( —A, ),
(dB (A, )dB'(A, ')) =5(A, —A, ')did', ',

where the + indicates the complex conjugate. From Eq.
(9) and by making use of Eq. (10), we have the following
expressions for the correlation function:

R (x)=(f(x+x';co)f (x';co))
= f e "~F(X)~'dX

and the variance of the roughness that describes the ran-
dom surface

a'=R (0)=f ~F(X)~'dX, (12)

where we have used the relation F(A, ) =F"( —A, ). ~F (A, ) ~z

is called the power spectrum of the random planar sur-
face. ~F(A, ) ~

=0 and then a =0 correspond to an ideal
smooth (fiat} surface.

It is obvious that the wave fields will be perturbed and
become random as the top boundary is statistically a
rough surface, and there are also waves scattered into
various directions (incoherent scattering) in the vacuum
region, in addition to the "specular" direction (coherent
scattering), as well as the induced standing waves with
various wave numbers and the surface-guided waves in
the dielectric region. Regarding the problem as a ran-
dom boundary value problem, we can express the scat-
tered and induced wave fields as stochastic functionals of
the random surface function f (x;co). And if we suppose
that f (x;co ) is a homogeneous Gaussian random func-
tion, then just as what has been shown in previous pa-
pers, ' ' ' the random wave fields are the eigenfunc-
tions of a shift operator D" with the eigenvalue e' " (here
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D" is defined by a translation in the x direction and
denotes the measure-preserving transformation in the
sample space 0; see Refs. 14 and 20 for details). Thus, in
view of the form of Eqs. (2) and (3), we can expand the

I

scattered field f, (x,z;co) in the vacuum region and the
induced field g, (x,z;co) in the dielectric region (here co

denotes that they are random fields) in terms of the
Wiener-Hermite functionals in the following manner:

f, (x,z;co) = Ap(kp)e

+ y f+"f '". f+"A„(X„X„.. . , X„IX,)
n=1

Xe " "f„[dB(A,, ),dB(k, ), . . . , dB(k„)], (13)

f, (x,z; ai) =Cp( Ap)sinyp(z +a)e

+ y f "f'" . . f+"c„(x„x„.. . , x„lap)
n=1

Xsiny„(z+a)e " f„[dB(Ai),dB(A2), . . . , dB(A,„)],
with

(14)

g„=XO+A,1+ . +k„, (15)

which can be interpreted as a composed wave number originated from the scattering process of the rough boundary.
a„and y„are defined as a„=Qkp—i)„and y„=Qk,—il„.f„[ . ] denotes the nth degree complex Wiener-
Hermite differential, which is to be understood as a generalization of Hermite polynomial (notice Kp =1). The Wiener-
Hermite differentials satisfy the following recurrence and orthogonality relations: '

dB (A ) f„[dB(A, , ),dB(A2), . . . , dB (A,„)]=f„+,[dB (A ),dB (A, , ),dB (A2), . . . , dB (A,„)]
+ gf„,[dB(A, , ), . . . , dB(A,;,), dB(A, ;+,), . . . , dB(A,„)]

i=1

X5(A.+X, )did', ,

(f„[dB(A,, ), . . . , dB(A, )] 0 [dB(A, ), . . . , dB(A, )])=5„5,dA, , dA, , dA, dA, (17)

where 5„ is Kronecker's delta and 5,"- denotes the sum
of all distinct products of n delta functions of the form
5(A, ; +A.; ), i =(i„iz,. . . ,i„),j=(j„j2,. . . ,j ), all i

V P
and j„appearing just once in each product.

The integrals of Eqs. (13) and (14) represent the n-tuple
complex Wiener integrals, and can be regarded as the sto-
chastic representations for the scattered and induced
fields. The Wiener coefticients A„'sand C„'sare the un-
known integral kernels to be determined by applying the
boundary condition on the rough boundary. Once the
kernels are obtained, we can even draw a spatial realiza-
tion of the stochastic wave fields corresponding to a given
realization of the random surface. On the other hand, we
can easily calculate various statistical quantities of the
random wave fields by means of an averaging procedure.
We only show here the coherent and incoherent part of

the fields. By taking the average of Eq. (13) and Eq. (14),
the coherent or average fields are given by

y„=(y,&=A, (~,)e' " '"', (18)

g„=( g, ) =Cp(kp)sinyp(z +a)e

where the constant Ap(A, p) is the 0th Wiener kernel. It is
obvious that the coherent scattering takes place in the
direction of specular refiection, so Ap(i, p) represents also
the reAection coefFicient of the random surface.

The incoherent fields are then obtained by subtracting
the coherent parts from the total fields. Let P(e, lep)
denote the angular distribution of the incoherent scatter-
ing, that is, the average power Aow scattered incoherently
from unit surface area into unit solid angle of the direc-
tion 0, when the angle of incidence is Oo, we have

~(e, le, )= y~„(e,le, )
n=1

=kpcos e, I A&(k, kpl~p)l'+2 f "IAz(~, —~p —~2, ~2l~p)l'd~ +. . . (20)

where g„(e,I ep) represents the contribution from A„,A., =kpsine, . As we have shown in Ref. 20, from the reciprocal
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relations held by the Wiener kernels, the incoherent distribution P (8, Op) has also the reciprocity

P(e, ~e, )=P(e,~e, ) . (21)

IV. APPROXIMATION SOLUTION FOR THE %'IENKR COEFFICIENTS

To investigate the coherent and incoherent scattering in detail, we have to determine the Wiener expansion
coefficients A„'sand C„'sby applying the boundary condition at the random boundary z =f (x;co); that is, the tangen-
tial components of the electric and magnetic fields must be continuous across the interface z =f (x;co). For simplicity
and only to demonstrate the usefulness of the stochastic functional approach, we here con6ne ourselves to the ease that
the random boundary is slightly rough, that is g. « 1 . In this case, the boundary conditions can be approximated by
expanding them as the Taylor series in terms of f and V'f =(df ldx)x. To obtain only the first three kernels Ap(Cp),
A, (C, ), and Az(Cz ), and also to satisfy the reciprocity, it is sufficient to expand the boundary conditions up to third
order of the surface functions (f or df Idx or their multiplication). Therefore, we have the approximate boundary con-
ditions as follows:

Q+f ~+ ~+ ~ =0
Bz 2 Bz2 6 Bz3

(22)

8@ df Bg Bg df 8@ f O'P f BP f df 8@
Bz dx Bx g z dx BxBz 2 g 3 6 g 4 2 dx gxQzz

(23)

where g=P;+g, —f, . Substituting the fields into Eqs. (22) and (23), and making use of the recurrence formula and the
orthogonality relation for 0„,' "' we consequently obtain a set of hierarchical equations for the Wiener coefficients as
follows. For n =0:

CX g01—
2g 2

(A +1)— 1—0 2

+ oo

sinypaCp+ [ia, A, —y, cosy, aC, ]F"(A, , )dg, =0, (24)

CX g01—
2

2g 2

ia (A —1)— 1—
0 0 2 y 0cosy 0a C0

—f [(ai+ 1&A &) A i
—(yi+ )iki)sinyiaCi ]F*(ii)dl i

=0 . (25)

For n = 1:

+2g 2
11—
2

1 ——
1 2

»ny i«i —F(~i )f [ai(~z) A i(~z) —y i(&z)»ny i(&z)«,

(&z)]F*(Az)diaz

CX0g+F(k ) 1—
1 2

2g 2

iap( Ap —1)— 1— ypcosypaCp +2f [iazAz —yzcosyzaCz]F*(kz)dkz=0, (26)

CX g11—
2

p (g
EcxiAi 1 p )cosy )aC)

—F(A, i)f I[ai(kz)+pi(Az)Az —Apl, &]ia&(kz)Ai(Az)

—[y', (~,)+ ),(~, )&,—&p, , ]y, (X,)cosy, (z, )aC, (X, ) ]F*(X,)dz,

2g 2
P0g

(a —A, A, )(A +1)— 1—0 0 1 0 2
( ypkpA, i )slnypQCp

—2f [(az+z)zkz)Az —(yz+zlzkz)sinyzaCz]F*(&z)d&z=0 .
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For n =2:

CX 021— 'Vz1—
2 2

siny2aC2 —[ao( Ap+1) ypsinyoaCo]F(ii)F(Az)/2

+ [ia, (A, , ) A, (A, , ) —y, (A, , )cosy i(A, , )aC, (A i ) ]F(A ~)/2

+ [iai(gp)A i(g2) —yi(gp)cosyi($2)a( i($2)]F(gi)/2

+ 00+3 [ia3A3 y3cosy3aC3]F*(A3)dA3=0, (28)

ao21— y 2O 2

2~2 1— y2cosy2ac2

I [ao ~o(~i+~a)]'ao( Ao —1)—[yo ~o(~i+~a)]yocosyo Co]F(k i)F(A2)/2

—
I [ai(ki) —gi(A i)Az]A i(A i) —[yi(A, , ) —g, (A, , )A2]siny, (Ai)aC, (Ai) ]F(A2)/2

[ [al(~2) gl(~2)~i ] A i (~p) —[y i(~2) —gi(~~)~i ]»ny i(4)aCi (4)] F (~i )/2

—3 J [(a3+7J3A3)A3 —( y3+g 3A 3)si ny3a C3]F (A3)dA3 0 . (29)

For n =3:

2g 2
31—
2

P 30'1—
3 2

siny3aC3 —[iao(Ap 1) yocosypaCp]F(A, , )F(A2)F(A3)/6

—[a~(k, )A, (A. , )
—y~(A, , )siny, (Ai)aCi(A, , )]F(A, )F(A3)/6

—[a2(g )A, (Z )
—y2(A, )siny, (A, )ac, (A. )]F(A, )F(& )/6

—[a,(A, , )A, (A3) —y, (A3)siny, (A3)aC, (A3)]F(A, i)F(A2)/6

+ [iax(ki X2) A z(ki, A2) —y2(ki, A2)cosy~(A. „A2)aC2(Ai, A2) ]F(A3)/3

+ [ia2(A i, A3) A2(A i, k3) —y2(A i, A3)cosy~(A, „X,)ac2(A, „A,, )]F(A2)/3

+ [ia~(A2, A3) A2(lz, l3)—y2(A2, A3)cosyz(A2, A3)aC2(A2, A3)]F(Ai)/3

+4f [ia4A4 —y4cosy4aC&]F*(A4)dA4=0, (30)
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A 031—
2

f30'
ia333 — 1— +3cosp3QC3

F (A, , )F (Az )F (A3)+ [ao[ao—Ap(A, , +A 2+ A 3) ]( A 0+ 1 }—yo[yo —A 0(A, , +A 2+ A 3) ]sinyoaC0 I 6

—
j [a,(A, , ) —g, (A, , )(iz+A3)]iu, {A,, )A, (A, , )

—[y1(A1)—g, (A1)(A2+A3)]y, (A, , )cosy1(A, 1)aC, (A, , ) IF (Az)F(A3)/6

—
[ [o'1(&2)—2}1(&2)(&,+&3)]ia,(A2) A1(kz}—[y1(A2) —211(A2)(A1+A3)]y1(A2)cosy1(kz)aC1(kz) IF(&1)F(P3)/6

—[ [~1{~3)—211(~3)(~1+~2 }]i~1(~3)A1{~3)—[y1(&3)—211(&3)(&,+&2) ]y1(k3)cosy, (X3)aC, (A 3) $
F (A, , )F (A 2) /6

[(Xz(A'1/2)(go+A 1+$2)13]A2(A1,&2) —[yz(&1,12)—(Xo+k1+gz)13]sinyz(&1, 12)aC2(A1, 12)]F(A3)/3

—
[ [az(A1, A3) —(Ao+ A1+ A 3)A 2] A 2(A, „A3)—[yz(A, „A3)—(A 0+ A, , +A3)A 2]sinyz(A, „A3)aC2(A, „A3)IF (Az)/3

2(~2 ~3 ~0+~2+~3 ~1]A2 ~2'~3 [y2(~2 ~3 (~0+~2+~3 ~1] Y2 ~2 ~3)aC2 ~2'~3 IF(~1}

+ oo 2—4 [(a4+114k4)A4 —(y4+214A4)siny4aC4]F*(X4)dk4=0, (31)

where we have abbreviated A„( ) and C„( . ) by A„and C„,and omitted the equations for n 4 for brevity. The
notations 711(kz), a, (Az), y, (A2), A, (Az), and Cz(kz) mean to rePlace A, , by Az in their exPressions. Solving the above
equations by an approximate procedure similar to that used in our previous works, ' we finally lead to the following ap-
proximate solutions for the coe%cients of the first three terms Ao, A &, and A z as

Ao(A0) [5 ('90)+MA0('90)]/Q('90)

i2aoVF(A, , )
A1(A1IAp)= [1+MA1{g1&710)]

lo 91

= A 1 (A 1~F0}[1+MA1(ri1 qo)]

iaoVF(A, , )F(A2) v v+ — (ypco—tyoa +yzcotyza)
Q Xo+A, , Q A,o+A,z

(0) iapVF(i1, 1)F(kz)
[A'1 1(A1~A0)F(A2)+A1 (&2~F0)F(&1)] [yocotyoa+'Y2 oty2 ]

2Q gz to 12

(32)

(33)

(34)

(35)

with

Q (ri) =b, (21)+M(21), (36)

(yo+y1)~'
M A 1{go 2}1}= +yoy1a cotyoa c«y 1a

2

[ypcotypaG 1 (21 1 ) +y 1coty 1aG 1 ('gp) ]
Vo.

M(21)= +y (2})o +Gz(21) b(2})

and

+G3(210, 21, ), (39)

+ Vo y(21)coty(21)a —VG, (zi),

2
MA {7/00) = 5(xio)+ [your +Gz (7/0) ]6+ {210)2

+ VG, (go),

(37)

(38)

G, (zi)= f IF(A 21)izdi

G ( )
— + Vy(~) y(~) ~F(g )~ dg

Q (A. )
7l

(40)

(41)
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G3(iso, i)i)= f iF(A, )i dA, , (42)
r)o+A, Q i), +A,

M(g)@n=&n —&n=— (43)

where y(A, )=+k, —A, , V=ko(E„—I), and the
definitions of the other notations or parameters have been
given in the previous sections. We are not concerned
with the coeffi.cients C„'sin the present paper, so we do
not give their expressions here for brevity.

It can be seen that a factor M(i)) has been involved in
the denominators of our expressions for the Wiener ker-
nels, which satisfies the iterative integral equation given
by Eq. (37) and is of the order of o . Since M (i) ) plays a
similar role as a mass operator in the graphical or Feyn-
man diagrammatic method for the scattering problems
in random media or from rough surfaces, we will also call
it the mass operator. To get the exact values of the mass
operator, we have to solve an integral equation. Howev-
er, we can approximately evaluate the mass operator by
neglecting it in the denominator of its integrand as done
in what follows, although we can obtain better values in
an iterative way if it is necessary. As we have shown in
previous works, the mass operator M (il ) can be used to
determine the perturbed propagation constants of the
guided modes that are modified due to the rough surface.
If the roughness is small enough, the perturbed propaga-
tion constants can be regarded as small corrections to the
unperturbed ones, we then have the following expression:

where p„,the roots of Q(i))=b(r))+M(7l)=0, stands
for the perturbed propagation constants; and P„,the
roots of b, (il) =0, stands for the unperturbed propagation
constants of the guided modes. Furthermore, because P„
is always complex even for a real dielectric constant c„
unlike that in the common perturbation theory, in our
theory it is not necessary to introduce a small imaginary
part in the dielectric constant in order to remove the so-
called divergence difficulty for the numerical calculations.

V. INCOHERENT SCATTERING DISTRIBUTION

By substituting 2 i and A2 given by Eqs. (33) and (34)
into Eq. (20), we obtain the incoherent scattering distri-
bution as

P(8, i8 )=P, (8, i8 )+P (8 i8 ),
where P

„

the contribution from A &, is given by

(44)

4koi Vi cos 80cos28,
P, (8, 8O)=

iQ(A, )Q(A,, )i

X
i I+MA, (AO, A2) i iF (A,, —ko) i (45)

and P2, the contribution from A 2, is given by

2ko i Vi cos 8ocos 8, +„V V

Q(A, ) Q(A, +A, —
A, )

XiF(A, —A, )F(A,, —A, )i dA, ,
I

(46)

where A~=kosin8„, A, , =kosin8„yo= kodes„—sin 80,
and y, =ko+E„—sin 8, . It should be noted that al-
though we have just considered the contributions from
the Wiener kernels only up to second order, a part of the
contributions from higher orders has been involved due
to the mass operator. In addition, we hope to point out
that our results really are the same as those obtained by
the perturbation theory if we expand them in terms of
the powers of the surface roughness a and merely retain
the terms up to second order o [notice that M(A, ) and
iF(A, ) i

are of the order of o. ]. In fact, after doing so, we
can easily find that our P, (8, i 80) corresponds to the sum
of Iz(pik) and I4 '(pik) in Ref. 25, and P~(8, i80) cor-
responds to the sum of I~ ' (pik) and I4 ' (pik). It
is then clear that even P, (8, i 80) already involves higher-

order terms than cr, which are usually interpreted as the
result of the multiple-scattering processes. Therefore, we
may interpret the first Wiener kernel A, (A,, —

A,oik, o) as
describing a "renormalized" or "dressed" single-
scattering process, which we express symbolically as
[A.0~A, , ] [see Fig. 2(a)].

As shown in the numerical calculations discussed in
the next section, there are enhanced peaks on the in-
coherent scattering distribution in the backward scatter-
ing direction, and in some additional directions when the
structure can support more than two guided modes. The
calculations also show that these peaks come from P2
given by the integral of the second-order kernel A2,
which involves two terms related to A, as in Eq. (35). By
rewriting Eq. (35) in the following way:

+ [i2aoF(k, , —
A )F(A, —)io)/Q(AO)][yocotyoa +y, coty, a]), (47)

and with the interpretation for the first-order kernel A,
in mind, we may interpret that the process described by
Az involves two double-scattering processes: the first
one gives the double-scattering process [Ao—&A, ~A,, ],

I

and the second is [Ao~(A, , +AD —A)~A, , ] [see Fig. 2(b)].
Thus, P2 of Eq. (44) consists of the integration over inter-
mediate states.

If there are some steady propagating states existing in
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XQ+A, -q

of the peaks at the poles. It is well known that the widths
of the peaks at the poles are dependent on the attenuation
constants (the imaginary part of the propagation con-
stant, denoted by p„ in what follows) of the guided
modes. We show in Fig. 3 the integrand of P2 as a func-
tion of its integral variable A, /ko with 1,, /ko a parameter
for the case where the structure can support two guided
modes (the form of the power spectrum of the rough sur-
face used in the calculation is given in Sec. VI). It is clear
that the enhanced backscattering peak is due to the in-
terference between the modes in the same orders and the
enhanced satellite peaks are due to that between the
modes in the different orders. The interference is mainly
controlled by the peak with the larger amplitude, for ex-
ample, the peak of the second-order mode in the case of
Fig. 3, and hence the widths of the enhanced peaks are

]0 e ~ ~ e t ~ ~ ~ ~

A, Q+A. =q —q XQ+A, -q
5' rn rl nj

(c) enhanced scattering

FIG. 2. Scattering diagrams for "single"- and "double"-
scattering processes. (a) Single-scattering processes [A,o —+X, J

described by A& and its reciprocal process [
—

A,o~ —
A,, ]. (b)

Two double-scattering processes described by A2. A thick ar-
row shows an intermediate state. (c) Enhanced double-
scattering processes for the certain direction with
Ao+A, , =q —q„.
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and in the language of the angle, Eq. (46) is in the form

the structure as intermediate states, then the two double-
scattering processes can interfere with each other to pro-
duce the so-called enhanced scattering under certain con-
ditions. Such steady states are mathematically given by
the poles in A2, and they physically correspond to the
guided modes supported by the structure in our problem
under discussion. As shown in Fig. 2(c), denoting by q„
(n = 1,2, . . . ) the propagation constants (real part) of the
guided modes, the enhanced scattering will take place at

0
1.50 1.55

Integral varable kjk,

4xl0 4

(b) The peak I',

~ comes from P2II3x 10-4-
I

I

I

I
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I
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---- X —00
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2x1O-4-
CO
CD

1.60

sin8, = —sin8o+ (q —q„)/ko, (49)

which means the backward direction when q =q„,and
the additional directions when q Aq„. Of course,

~ (q —q„)/kz ~
should not be too large (at least & 2) since

the scattering angle 0, has to satisfy the condition
—90'&8, &+90.

On the other hand, since the enhanced peaks in the in-
coherent distribution arise from the interference between
the peaks at the surface wave poles in two groups in
which the positions of the poles of one group are connect-
ed with A,, (in other words, the scattering angle), so the
widths of the enhanced peaks are related to the widths of
the peaks at the poles, that means we can roughly esti-
Inate the widths of the enhanced peaks from the widths

1xlo 4-

0
1.20 1.25

integral varable A/k,

1.30

FIG. 3. The peaks in the integrand of P2 as a function of A,

with different values of A,, (neglecting the mass operator). The
parameters used in calculation are a =500 (the wavelength
632.8), c„=2.6896+i0.0075, o./a =0.03, and I/a =0.1. The
structure can support two guided modes. (a) The peaks come
from the first-order mode, and (b) the peaks come from the
second-order mode.
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8 =arcsin(4p /ko) . (50)

If p =0, that is, no attenuation for the guided modes,
then the width of the enhanced peaks will be zero. As
stated in Ref. 25, to calculate the incoherent scattering
distribution, especially the contribution from Az, a small

sqrt(Re{a)) = 1.64
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FICx. 4. Normalized propagation constants of the guided
modes vs film thickness a. (a) The real part; (b) the imaginary
part. The dielectric constant of the film is c„=2.6896+ i0.0075.
The wavelength is assumed to be 632.8 nm.

mainly determined by the width of this larger peak. As-
suming that two peaks do not interfere with each other
after the difference of their positions is twice the width of
the larger peak, then the width of the enhanced peak due
to the interference of those two peaks is about four times
the width of the larger peak. (Exactly, the enhanced
peaks are related to the interference of the peaks at the
poles by an integration, so it is not easy to give an explicit
relationship between their widths. The above arguments
are merely intuitive and rough. ) Denoting by 8~ the
width of the enhanced peaks and by p the attenuation
constant of the mode that gives rise to the largest peaks
in the integrand of Pz, we then have the following expres-
sion for roughly estimating the width of the enhanced
peaks:

imaginary part of the dielectric constant has to be intro-
duced to yield a finite width to each of the enhanced
peaks in the perturbation theory. Otherwise, the pertur-
bation theory will give out the peaks with the zero width
and infinite amplitude. However, attributed to the mass
operator, our theory can always yield peaks with a finite
width and amplitude, because the mass operator has an
imaginary part even for a real dielectric constant [in this
case, we can evaluate the mass operator of Eq. (37) as the
sum of a Cauchy principle value and the half residues
from the poles of 1/b, (A, ) ]. It should also be pointed out
that the mode attenuation and hence the width of the
enhanced peaks depends on the waveguide parameters.
We will show how the mode attenuation changes with the
waveguide thickness [see Fig. 4(b)]. Furthermore, since
the mass operator has also a real part, the nulls of Q(A, )

would be different from the nulls of b, (A, ) [see Fig. 4(a)].
This means that the propagation constants of the guided
modes are perturbed if the boundary of the waveguide is
rough, as discussed in Sec. IV. Consequently, the loca-
tions of the satellite peaks will also be shifted from those
given by the perturbation theory [the perturbed propaga-
tion constants are used to determine the locations of the
peaks by Eq. (46) in our theory, while the unperturbed
ones are used in the perturbation theory], although the
shifts are very slight.

VI. NUMERICAL EXAMPLES AND DISCUSSIONS

For the purpose of numerical calculation we con-
veniently assume that the power spectrum of the random
boundary has the Gaussian form

(51)

where 0. and l are the parameters describing the rough-
ness and the correlation length of the rough surface. The
spectrum is a decreasing function of A, and has a max-
imum at / = 1/&2A, as a function of I. From Eq. (11},the
correlation function of the rough boundary is then given
by

R (x)=cr exp( —x /41 ) . (52}

We note that the power spectrum used by us is related to
that used in Ref. 25 by a factor 1/2m. , and the correlation
length by a factor 2.

For convenience of the discussions below, we have
shown in Fig. 4 the unperturbed and perturbed normal-
ized propagation constants [Figs. 4(a) and 4(b) for the real
and imaginary part, respectively] P„/ko of the lowest and
a few lower-order modes as a function of the film thick-
ness a for the relative dielectric constant
c,=2.6896+i0.0075 and the wavelength 632.8 nm. It
can be seen that the ideal structure (no roughness) can
support no guided mode as a & 121.7, one guided mode
as 121.7 & a ~ 365. 1, two guided modes as 365. 1

& a ~ 608.5, three guided modes as 608.5
& a ~ 852.0, and more than three guided modes as
a & 852.0. The situation changes a little when the bound-
ary of the waveguide becomes rough since the propaga-
tion constants are modified due to roughness. For the
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slight rough boundary, the modifications on the real part
are also slight as shown in the figure, except for the re-
gions near the cutoff points of the modes, where the ap-
proximation Eq. (41) no longer retains its validity. '

This means that the differences of the positions of the
enhanced satellite peaks between our theory and the per-
turbation theory are very slight too. However, the
modifications on the imaginary part (attenuation con-
stant) are somewhat large, which means that the widths
of the enhanced peaks should be evidently different from
the perturbation theory by our theory.

We show in Figs. 5 and 6 the coherent scattering inten-
sity i Ao i as a function of the film thickness a and the in-
cidence angle 80 for different values of the roughness pa-
rameters o /a and I /a, respectively. The coherent
scattering intensity behaves as an oscillating function of
the thickness, even in the case of the absence of rough-

ness. The effect of the roughness is just to make the oscil-
lation deepen. Connecting the increase of the thickness
to the appearance of the guided modes, we can conclude
that the coherent scattering is much stronger in the
neighbors where one of the guided modes begins to ap-
pear than in the regions where all of the guided modes
are well guiding. In virtue of the energy conservation, we
can expect that the incoherent scattering would be strong
when the modes are well guiding, as shown below. The
reason for this may be that in this case the modes can
more actively interact with the rough boundary and. pro-
vide more contributions to the radiation outside the
waveguide. In the same way, we expect that the in-
coherent scattering becomes large as o./a and I/a in-
crease as well as when the incidence angle 8& is around
3G'.

%'e compare in Fig. 7 the incoherent scattering distri-
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FICx. 5. Coherent scattering intensity ~AO~ vs film mean
thickness a for different values of {a) the incidence angle 80=0',
10', and 30 as I/a =0.1, and (b) the normalized correlation
length I/a =0.1, 0.5, and 1.0 as 60=0'. The normalized devia-
tion of the rough surface is o./a =0.03. The dielectric constant
of the film is c,„=2.6896+i0.0075. A plane wave with wave-
length 632.8 nm is normal incident on the rough surface.
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FICi. 6. Coherent scattering intensity
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mean thickness and the dielectric constant of the 61m are
a =500 nm and e, =2.6896+i0.0075. The wavelength of the
incident light is assumed to be 632.8 nm.
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FIG. 7. Comparisons of the incoherent scattering distributions obtained by different calculations. The mean thickness and dielec-
tric constant of the film are a =500 nm and c„=2.6896+i0.0075. The normalized parameters of the rough surface are o. /a =0.03
and l/a =0.1. The incident angle is 0&=0 and the wavelength of the incident wave is assumed to be 632.8 nm. The contributions
from the different orders of the Wiener kernels are plotted separately. (a) P2, the contribution from the second-order kernel A2, (b)
P&, the contribution from the first-order kernel 2 &,

' (c) P„the sum of P, and P, ; (d) an enlarged picture of the part of (a) for the
enhanced backscattering peak; and (e) an enlarged picture of the part of (a) for the enhanced satellite peak (on the positive side). The
solid and dotted lines are, respectively, for the results obtained by our theory with and without the mass operator including in the in-
tegrand of P2. The dashed line is for the results obtained by the perturbation theory. And the dot-dashed line is also for the results
obtained by our theory with the mass operator inside the integrand of P2 but is for c,„=2.6896.



52 ENHANCED SCATTERING FROM A PLANAR WAVEGUIDE. . . 6039

bution of our theory with that obtained by the perturba-
tion theory for the parameters a =500 nm,
e„=268. 96+i0 00. 75, o /a =0.03, and i/a =0.1, when a
plane wave of wavelength 632.8 nm is normal incident on
the rough surface from outside the waveguide. The con-
tributions arising from the first-order kernel 3, and the
second-order kernel Az are plotted separately. In addi-
tion to the well-known, strong, enhanced backscattering
peak, two small satellite peaks symmetrically placed with
respect to the backward direction 0, =0' are also ob-
served, and it is evident that the enhanced peaks origi-
nate entirely in the contribution Pz from A &. To demon-
strate the effect of the mass operator on the enhanced
peaks, we have shown in the same figure the results with
and without the mass operator including in the integrand
of Pz [see Eq. (46)] for e„=2.6896+i0 007.5, and also the
results with the mass operator in for c, =2.6896. The in-
tegration for evaluating the mass operator is done direct-
ly for c„=2.6896+ i0.0075, and with the help of the resi-
due theorem and a principal value integration for
c, =2.6896. For simplicity, only the values of the mass
operator at the nulls of b.(A, ) are used at the neighbors of
these nulls for the integration in Pz, based on the fact
that the mass operator is not large enough to compare
with b, (A, ), besides the neighbors of the nulls. Because we
have already the mass operator in P, and in the outside
of the integrand in Pz, it is not strange for us that our re-

0 =0
S

suits are a little different from those of the perturbation
theory, even without the mass operator inside the in-
tegrand of Pz. More importantly, we note that with the
mass operator inside the integrand of Pz, the width of
each enhanced peak is broadened and the amplitude de-
creases (arising from the imaginary part of the mass
operator). The estimated values for the width of the
enhanced peaks by Eq. (50) are 1.4' from the perturbation
theory and 3.0' from our theory; these values roughly
agree with those shown in Figs. 7(d) and 7(e). Moreover,
as we mentioned in Sec. V, the locations of the peaks
should be slightly shifted (arising from the real part of the
mass operator), although we cannot observe the shifts
easily in the figures because they are so slight. For in-
stance, for the parameters given above, the locations of
two peaks determined by the perturbation theory are
0, =+17.716', while they are 0, =+17.785' by our
theory, so the shift is merely about 0.07' (it is only about
0.77', even for cr/a =0.1). Furthermore, we have also
shown that we can yield the enhanced peaks with the
finite width and amplitude, even for a real dielectric con-
stant, attributed to our mass operator.

Shown in Figs. 8 —11 are the incoherent scattering dis-
tributions calculated by our theory without the mass
operator inside the integrand of Pz, for the different
values of the film thickness a and the number of the guid-
ed modes. As expected, there is just an enhanced back-
scattering peak when the structure can support only one
mode, and other satellite peaks appear when the struc-
ture can support two or more modes. In principle, the
number X of the satellite peaks relates to the number n of
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FIG. 8. Incoherent scattering distributions calculated with
our theory without the mass operator inside the integrand of P&
for different values of the mean thickness a =270, 300, and 330
nm, where the film structure can only support one guided mode.
The roughness parameters are o./a =0.03 and l/a =0.1, and
the wavelength of the incident light is 632.8 nm. (a) The total P,
and (b) only P, .
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support two guided modes. (a) The total P, and (b) only P, .
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the modes by N=n(n —1). For example, there should
be six or twelve satellite peaks in the distributions if the
structure can support three or four guided modes. How-
ever, we cannot observe so many peaks in Figs. 10 and
11. The reason may be due to the fact that certain in-
terferences between the modes can cancel with each other
and a few peaks drop into the angle regions where the in-
coherent scattering is very weak, leading to that some
peaks are so small that they cannot be observed clearly.
It is also noted that the shape and the strength of the in-
coherent distributions depend on the film thickness, or
more precisely, the guiding state of the modes. And
more importantly, the amplitudes of the enhanced peaks
are also dependent on the guided state of the modes, but
are not necessarily inversely proportional to the film
thickness, contrary to their conjecture in Ref. 25.
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FIG. 11. Same as Fig. 8 but for different values of the mean
thickness a =870, 900, and 930 nm, where the film structure can
support four guided modes. (a) The total P, and (b) only P&.

FIG. 12. Incoherent scattering distributions P, calculated
with our theory without the mass operator inside the integrand
of P2 for different values of (a) 00=0, 10, and 30' as o /a =0.03
and l/a =0.1, (b) o./a =0.02, 0.03, and 0.04 as 80=0 and
I/a =0.1, as well as (c) l/a =0.05, 0.1, and 0.2 as 80=0 and
o./a =0.03.
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Figure 12 shows the incoherent scattering distribution
for different values of the incidence angle t90, the normal-
ized deviation o /a, and the normalized correlation
length i/a. The incoherent scattering becomes stronger
as o /a and lla increase and 8o is around 30, as we ex-
pected according to coherent scattering. However, it
should be noted that the enhanced peaks no longer be-
come stronger, but rather smaller after I/a arrived at a
certain value. This is because, with the increase of i/a,
the slope of the rough boundary also increases, and hence
the radiations, contributed by the guided modes and orig-
inated to the enhanced peaks, is weakened by the shadow
effect.

VII. CONCLUSIONS

tor, which contains much information about the interac-
tion of the guided modes in the waveguide with the rough
boundary and is very useful not only theoretically but
also in numerical calculations. The numerical examples
show that there are some satellite enhanced peaks in the
incoherent scattering distribution, in addition to the
well-known enhanced backscattering peak, if the struc-
ture can support two or more guided modes. In our ter-
minology, these peaks originate by the interferences of
two "double-scattering" processes described by the
second-order Wiener kernel, in which the guided modes
play the role of intermediate states. Since this kind of in-
terference does not, after all, strongly take place for the
various parameters, such enhanced peaks cannot be well
observed unless certain conditions are satisfied.

In conclusion, we have treated the scattering problem
of an s-polarized electromagnetic wave from a planar
dielectric waveguide with one of its boundaries being a
slightly rough surface and the other deposited on a per-
fectly conducting substrate, by applying the stochastic
functional approach. Our theory is distinct from the
common perturbation theory by the so-called mass opera-
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