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Electronic states of the cap structure in the carbon nanotube
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The cap of a carbon nanotube is characterized by six five-membered rings called disclinations. Its
electronic structure is studied by the simple tight-binding models for a monolayer nanotube. The
method of the development map is used to systematically define the atomistic structures of the cap. The
topological feature of the bond network is determined by the configuration of the six five-membered
rings. The effects of such topological features on electronic structure are elucidated by the model in
which the hopping integrals and the site energies are taken to be common at every atom. Though there
are neither disorder of the potential nor that of the coordination number, some localized states emerge
around the cap. The wave function and the energy eigenvalue can be obtained analytically for simpler
cases. These results show explicitly that the localized states are formed by an analytic continuation of
the wave number from the real number space to the complex number space. Some of them are near the
Fermi level and coexist with the extended states in the same energy. The effects of magnetic field parallel
to the tube axis are also discussed.

I. INTRODUCTION

Many kinds of nanoscale materials made of curved lay-
ers of graphitic carbon have been reported recently and
attracted much attention to their exotic structures. Typi-
cal examples are found in fullerenes, ' graphitic nano-
tubes, helically coiled tubes, ' and related carbon struc-
tures. It has been reported that nanotubes become
semiconductors or metals according to their helicity and
diameter. ' The nanotubes have been treated as periodic
infinite one-dimensional crystals in theoretical studies so
far, but actual nanotubes have finite length. It is a natu-
ral idea that the edge of nanotubes takes the structure of
a half fullerene. It means that the edge is closed without
dangling bonds by introducing six five-membered rings in
the honeycomb lattice. The five-membered ring is a topo-
logical defect which is a sort of disclination causing
significant effects on the local electronic structure. ' The
configuration of the disclinations determines the topolog-
ical structure of the bond network of the graphitic layer.
In spite of the presence of the topological defect, the
number of nearest-neighbor atoms is always 3 at each
atom everywhere. We call the edge structure a "cap"
and the nanotube with the cap a "capped nanotube"
hereafter. The aim of the present paper is to investigate
its influence upon the electronic state of the nanotube.
There are many kinds of caps such as those with n-fold
rotational symmetry with respect to the tube axis
(n =2, 3, 5, 6), and/or mirror symmetry, or without any
symmetries. Among a variety of cap structures, we study
in the present paper those with fivefold or sixfold rota-
tional symmetry, since these are considered to be the pro-
totypes of the cap. The cap is considered as a "surface"
of the one-dimensional crystal of the nanotube and it is
expected that there are "surface states, " i.e., states local-
ized at the cap. It will be shown in this paper that such
localized states can occur even if there is no surface po-
tential. Strangely enough, some of their discrete levels lie

in the continuum of the density of states (DOS). In Ref.
10, we reported that a localized state emerges very near
the Fermi level when a pair of a 4j-membered ring
(j =integer) and an odd-membered ring is introduced in
the two-dimensional honeycomb lattice in some
configurations. It is also caused by the topological disor-
der. This state decays as a power of the distance from the
pair of disclinations and the exponent of the power nearly
equals —1. We will report these features of the localiza-
tion elsewhere. In sharp contrast to it, the localized
states of the capped nanotubes discussed in the present
work decay exponentially with distance from the cap.
The localized states can be controlled by a magnetic field
parallel to the tube axis, which will be discussed in con-
nection with the axial rotational symmetry of the capped
nanotubes in this paper. These localized states cause
sharp peaks in the spectra which might affect various
electronic phenomena. Especially the localized states
near the Fermi level or in the gap might have much
inhuence on transport phenomena.

II. MODEL FOR THE CALCULATION

A systematic way to construct cap structures of nano-
tubes is to draw the development map. " If the cap is
made of six-membered and five-membered rings, it should
include six five-membered rings. The way to make the
development map of the cap is illustrated in Fig. 1. This
is done by the following steps. (1) Cut a sector with the
apex angle 60 from the perfect two-dimensional (2D)
graphite lattice. (2) From this sector remove another sec-
tor whose sizes are parallel to the original sector. These
removed sectors are shown by the shaded areas in Figs.
1(a) and 1(b). Here there are two cases: (i) any sides of
the removed sector do not coincide with the sides of the
original sector, or (ii) one side of the removed sector coin-
cides with a side of the original sector. (3) For the case
(i), connect the two corresponding dangling bonds direct-
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ly which are formed by the removal of the inner sector.
Then a semi-infinite belt of honeycomb lattice is formed
as seen in Fig. 1(a). For the case (ii), a semi-infinite belt is
already formed by the procedure (2) as seen in Fig. 1(b).
In the case shown in Fig. 1(b), the belt includes only the
zigzag line of the carbon atoms. (4) Connect six of five
belts side by side with each other to form the six- or five-
membered ring in the center. These correspond to Figs.
1(a) and 1(b), respectively. In this procedure the corre-
sponding side atoms in the neighboring belts should be
connected one by one. For the sake of explanation, the

connection in the process (4) is illustrated by the dotted
line, but there is no distinction between the original
bonds (full line) and the new bonds (dotted line) in the ac-
tual system. We assume the same values of the hopping
integrals between the atoms connected by the full lines or
dotted lines and this value is represented by h (h (0)
hereafter. A five-membered ring is always provided by
the apex part of the removed sector. An additional five-
membered ring appears at the central part, if the five
semi-infinite belts are joined together as seen in Fig. 1(b).

Once the connection between the atoms, i.e., the topo-
logical structure, is determined in this way, the Hamil-
tonian of the tight-bindin„=:" model is defined as below.
The carbon m orbital at site i will be indicated by ~i ), and
for simplicity they are assumed to form an orthogonal
normalized set. In the real system, the m orbital is mixed
with the 0. orbital, because the system is not on a Oat
plane. But this e6'ect is ignored, since we are interested
mainly in the topological feature of the capped nanotubes
governed by the distributions of the five-membered rings;
the efFects caused by difference of the bond lengths and
bond angles are ignored. The assumption is reasonable
when the radius of curvature of the graphite layer is
large. We choose the origin of energy as the common site
energy (i~Hei), and assume the matrix elements of the
Hamiltonian as

if i and j are nearest neighbors

0 otherwise.

FIG. 1. Development maps of the capped nanotube. These
are formed by connecting n belts side by side. n =6 in (a) and
n =5 in (b). The black circles indicate positions of the six five-
membered rings. Following the definition in the text, the belts
in {a) are (1,1) and those in (b) are (1,0). The unit vectors used
for the symbol {I, m) are represented by two arrows. The way to
obtain the belt is illustrated in the right side of each figure; the
original sector is shown by dashed lines in (a), and the shaded
areas are the removed sectors. See text for details.

Generally speaking the five or six belts connected to
form the cap can be of di6'erent shape, respectively. For
the sake of simplicity, however, we consider here only
systems made of identical belts. Therefore the cap has
axial symmetry with respect to the tube axis. To define
the shape of the belt we use the symbol (l, m), which is
the position vector of the inner sector apex relative to the
original sector apex in the unit vectors of the 2D graphite
shown in Fig. 1. The case (i) corresponds to l&0 and
m%0 and the case (ii) corresponds to I =0 or m =0. The
cap made of n ( = 5 or 6) ( I, m ) belts is identified by n

(I,m). The corresponding tube is specified by a pair of in-
tegers (nl, nm) in Ref. 8, so it is metallic when n (l —m) is
a multiple of 3 and semiconducting when n (I —m ) in not
a multiple of 3. Following this definition the caps in Figs.
1(a) and 1(b) are represented by 6-(1,1) and 5-(1,0), respec-
tively. The 5-(1,0) cap and the 5-(1,1) cap correspond to a
half dodecahedron and a half C60, respectively. The
shapes of the 5-(1,1) cap and the 6-(1,1) cap are shown in
Fig. 2.

Since the cap n-(l, m) belongs to the point group C„,
the electronic states are characterized by the characters

ip.of the irreducible representation e ', where P~=2~j /n
with j =0, 1, . . . , n —1. We can block-diagonalize the
original Hamiltonian into H(13 ) with j=0, 1, . . . , n —1

describing the subsystem where only the atoms in the
same belt are included. The hopping integral between the
corresponding boundary atoms is multiplied by the phase

2

factor e ' as illustrated by Fig. 3. If a magnetic field is
applied along the tube axis, the phase should be continu-
ously changed as
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(b)
fl

p, (E)=—g p, (E,P;),n,
(2)

where p (E,p; ) is the local density of states at site j of the
H(P;) system. When the magnetic field is absent, only
the values of P 0, 4 ', m—, and +—', m for n =S systems, and 0,
+~/3, +—,'n, and vr for n =6 systems are relevant. There-
fore Eq. (2) becomes

p (E)= ,' Ip~(—E,O)+2pl(E, ', m )+—2p (E, 4, .n) I

for n =5 and

pj(E) = ,' I p/(E—,O)+2pj(E, —,
'm. )+2pJ(E, —', n )+p/(E, m ) I

(3)

(4)

FIG. 2. The shape of the cap for (a) the 6-(1,1) cap and (b) the
5-(1,1) cap, where the positions of five-membered rings are
shown by the filled circles.

2mj 2~+
n n+0 '

where @ is the value of the magnetic Aux penetrating the
n-membered ring at the top of the cap and %0 is the value
of the magnetic flux quantum. For simplicity, we assume
that there is no magnetic Aux penetrating the carbon
plane except at the n-membered ring. In other words, we
consider the Aharonov-Bohm efFect. This assumption
makes no significant difI'erence from the actual case when
the diameter of the tube is small. It is easily confirmed
that the energy spectrum of H ( —P) coincides with that
of H(p), so the region of p is taken as 0~ p~ rr. The lo-
cal density of states (LDOS) at the site j of the total sys-
tem, pj (E), is obtained as

for n =6. With the increase of the distance from the cap,
the shape of the LDOS approaches that of the DOS of
the corresponding tube without a cap. So the Fermi level

EF of the capped tube coincides with that of the tube
without a cap, i.e., EF =O.

III. ELECTRONIC STATES
OF THE CAPPED NANOTUBE

For simpler systems such as n-(1,0) and n-(1, 1), the
edges of the continuum bands and the energy levels of the
localized states are analytically determined, as will be dis-
cussed in Secs. III A and III B. The nondimensional pa-
rameter s=E/~h~ =E/ h is used —in these sections in-

stead of E to simplify the notation. The energy spectrum
of the Hamiltonian H(p) is easily obtained by the recur-
sion method for any values of P and ( l, m ), ' as will be
discussed in Sec. III C. The region of p is taken as
0 ~ p ~ m. without losing generality.

A. Green's function of n-(1,0) cap

0 2h cosP

h e'&

he'

In Fig. 4, the belt of (1,0) and the matrix elements of
the block-diagonalized Hamiltonian H(p) corresponding
to the n-(1,0) cap are shown. The sites are numbered
along the zigzag line of the (1,0) belt. The apex site is

FIG. 3. The phase factor appearing in block-diagonalized
Hamiltonian H(P). Dashed lines represent the boundaries of
the belt. h is the value of the hopping integrals of the inner
bonds. For the bonds joining the boundary atoms with the cor-
responding atoms in the opposite boundary, which are intro-
duced by the block diagonalization, the hopping integrals are
multiplied by the phase factor e*'~. They are shown by dotted
arrows. Because the apex site is joined to itself by these bonds,
it has the diagonal element 2h cosP which is shown by the cir-
cle.

2h cosP

h(1 + e )

h(1 + e's )

FIG. 4. The matrix elements of the block-diagonalized Ham-
iltonian corresponding to one-dimensional representation P for
the case of the n-(1,0) cap. Sites are numbered along the zigzag
line of the (1,0) belt. The two kinds of hopping integrals, h and

h (1+e+'~), appear alternately along this line and are represent-
ed by the solid lines and the dotted arrows, respectively. It has
a diagonal element 2h cosP only at the apex site which is shown

by the circle.
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numbered 1. The matrix element of H (p) is given as

H(P)2 +I 2 =H (P)2 2 +i=(1+e )h =bh

band at the jth site, pj (E,p), is obtained as below:

p (E,P)= —Im lim G (E. i5—,P) .
1

s-+o " (14)

lirn G (E I'5, p—)= 1+ tj
s +o j'J '

IhIp r —s
(6)

where

(E —3—U+p)
8+4U

if j =oddj+1
2

. 2
if j =even,

p if j =odd
( —E —U)p if j =even,

H(p)2j, 2' —I H(p)2j —1, 2j

H (P)ii =2 cosPh = Uh (j ~ 1) .

The other matrix elements of H(p) are zero. The nondi-
mensional parameter E=E/IhI=E/ —h is used instead
of E to simplify the notation hereafter. The Green's
function G '(E,p):—[E H(p—) jjj

' is derived as
r

The first term of Eq. (6) turns out to be the density of
states p (E,p) of the p band of the corresponding nano-
tube without the cap given as below:

p (E,P)=—0

~ IhIQ(e —E+)(c. —E )

The second term of Eq. (6) occurs from the interference
between outgoing and incoming waves at the cap. Figure
5 shows the LDOS pI(E,P) for P=O, ir/3, —', m, ', vr, ——4m,

and m, where the discrete levels discussed below are also
shown by vertical lines. When P=~,H(P) becomes the
Hamiltonian of the set of independent molecules because
b =0 so that there are no extended states and no continu-
ous spectra in this case; the molecule of sites 1 and 2 has
two discrete levels of E= U+ =1+&2 given by Eq. (16),
and the other molecules have those of a=+1. The value
of the Green's function is a real number outside the con-
tinuum region of the spectrum and has a pole when
r —s =0. The pole corresponds to a localized state de-

and

e +2Ue+1+U—:f(e) if j =odd

( —e —U)f (E)+ if j =even.f(e)2 2

2E,

The range of the continuum of the spectrum. is the same
as that of the corresponding nanotube without the cap,
i.e., I

s
I I

e
I I e+ I, where

c+=2 cos—+1 .
2

1.5
I

O 1.0

0.5

0.0A

I I I I I ~ I'

: I

l
I3

I

: I

: I

:
I

: I

I

/

—2

ENERGY (

I I I I I

2
5

0 2
units of Ihl )

When the energy is in the continuum of the spectrum
~

E
I

~
~
e I

~
~ e+ I, p is a purely imaginary number:

iQ(e+ —E )(e —e ) if IE
~

~8~ Ie+~

—IQ(E', —e')(e' —e' ) if —IE I

(12)

In this case, t is a complex number whose absolute value
is 1 ~ Half of its phase is the wave number of the corre-
sponding extended state. On the other hand, when the
energy is outside the continuum, p is a real number:

O
10

~ r&+I

0.5

0.0

(b)

I ~ I I I I

I:
I

I

I

I

I

I

I

I

I

I

I

l

—2 0 2

ENERGY ( units of Ihl )
Q(e —s+)(E —s ) if ~eI

—V (s —e+)(E —e ) if IE+( ~ (EI.
(13)

In this case, t is a real number less than 1. It corresponds
to an analytic continuation of the wave number from the
real number space to the complex number space. From
this Green's function, the local density of states of the p

FICx. 5. The LDOS's of P bands at the apex site for the n-(1,0)
cap. The solid line, the dotted line, and the dashed line in (a) [in
(b)] correspond to P=O(P= 2m), P=m. /3( —,m), and P= rr (vr), —

respectively. The unit of energy is the absolute value of the
hopping integral, Ih I

= —h. The vertical lines show the discrete
levels which are about —0.59

I
h I,

—0.41
I
h I,

—0.36I h I,—0.29lhl, 2. 14lhl, and 2.41lhl. When P=n there are no con-
tinua but only the discrete levels.
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O 0.4
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0 2h cosy he he I'

0.0 I I I I I I I rt $ I I I

eral features with certain kinds of caps as will be seen in
Sec. III C.

B. Localized states of the n-(1,1) cap

The amplitudes of the wave function of H(P), i.e., Ip~ I
and I q~ I shown in Fig. 9, whose energy is E, are given by

j—1
p2j+1 =CW

1

P2j+2=W1 ~

W1
q2j+1 =

W2

(19)

ENERGY ( units of Ihl )

FIG. 8. Local density of states at the apex site in the n-(1,0)
cap. The unit of energy is the same as that of Fig. 5. The solid
line and the dot-dashed line correspond to n =6 and 5, respec-
tively. The vertical lines indicate the discrete energy levels.
The values of P that each discrete level belongs to are also
shown.

FIG. 9. The matrix elements and the wave function of the
block-diagonalized Hamiltonian corresponding to the one-
dimensional representation P for the case of the n-(1, 1) cap. The
amplitudes of the wave function are represented by p, and q,
where the integer j shows the distance from the apex site. The
two kinds of hopping integrals h and he +'~ are represented by
the solid lines and the dotted line arrows, respectively. It has a
diagonal element 2h cosP only at the apex site, which is shown
by the circle.

be 1 and 2a is the wave number. In contrast to it, it is
shown in Table I that the n-(1, 1) capped tube can have
states of x ~ 1 which exponentially decay with distance
from the cap. These states are obtained by an analytic
continuation of the wave number from the real number
space to the complex number space. The equations to
determine x and c in Table I come from the Schrodinger
equation —cp2 =p1+p3+q3 and their solutions can be
gained easily by numerical calculations. The amplitudes
at sites 1 and 2 are taken as pi=p2=0 in (3) and

p i
= —1/(s+ U), p2 = 1 in the other cases.
At least one of the four conditions (i), (ii), (iii), and (iv)

shown below has to be satisfied, because the imaginary
part of s must be zero. The satisfied condition(s) is (are)
also listed in Table I. The four conditions are

9'2j+2 = CW1 (j~ 1), 1(i) x+ — cosa+ cos—=0,
x 2

(23)

where complex numbers w1, w 2, and c have to satisfy the
following two equations

(ii) a=0,
(iii) a=~,

(24)

(25)

s=+Q(1+w, +w2)(1+ w, '+ w2
' ), (20) aild

c= 1+W1+W2 E

1+W1 +W2
(21)

From the boundary condition for the circumferential
direction of the nanotube expressed by wz/w1=e'~, '

w, and w2 can be written as

x 2e l2
1

w2=xe' +~ ' (0&x & 1, —m & a & m. ), (22)

So this wave function is represented by P(x, a) hereafter.
In the case of the perfect nanotube without cap, x must

(iv) x =1 . (26)

sin ——IEI —&5+4cos(P/2) .
2

(27)

It coincides with that of the corresponding nanotube
without the cap. Table I(a) shows the case when the lo-
calized states and the critical states appear for only a cer-
tain value of p. The state (1) has the same amplitudes at
every site and is not a localized state but a critical state
causing divergence at the band edge of the LDOS, as will

The condition (iv) corresponds to the extended states
which form the bands of the continuum shown by the
shaded areas in Fig. 10. The region of the continuum
spectrum is
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be seen later. The localized state (2) is symmetric about
the mirror plane of the (1,1) sector, i.e., p; =q; (i ~ 3). So
we call it the symmetric localized state hereafter. It
seems strange that the symmetric localized state lies in
the continuum spectrum of the P=0 band. But it is un-
derstandable when one notices the following. The bands
of P can be divided into two subbands with a definite
symmetry, i.e., symmetric or antisymmetric about the
mirror plane only when P=O or m. . In the case of P=~,
the continuous spectrum of the symmetric subband and
that of the antisymmetric subband coincide with each
other. But in the case of P=O they are diff'erent from
each other; —3~v. ~1 for the symmetric subband and—1~v. &3 for the antisymmetric subband. The sym-
metric localized state of P=O lies outside the continuous
spectrum of the symmetric subband but buried within

that of the antisymmetric subband. When P&0, the sym-
metric localized state changes into the resonant state.
The smaller the ~P~ value, the sharper is the resonant
peak in the spectra. However, it is rapidly widened and
the peak intensity is reduced with increase of P, as seen in

Fig. 11. This indicates that this localized state is sensitive
to the magnetic field; it changes into a resonant state
discontinuously. That the symmetric localized state ap-
pears when l =m, i.e., when the (I, m) belt has a mirror
plane, is confirmed also for the other n-(l, m) caps by the
recursion method. Its energy is about 2.43~h~ when
l =m =2 and about 2. 73~h~ where l =m =3. The state
(3) is a critical state at the band edge c, = —1 whose am-
plitudes are zero at site 1 and 2j sites. So it causes in-
verse square-root divergence at c, = —1 in the LDOS only
at (2j + 1)th sites (j ~ 1).

TABLE I. The equations to determine the localization factor x and the energy c of the localized states and the critical states in the
n-(1, 1) capped tube. The condition for Im(e2) =0 is also shown. The equations are listed for various values (ranges) of the phase P
and the energy e. See the text for the definition of P(x,a) and the physical meaning of P, x, a, and Im(e ) =0. (a) corresponds to the
case when the localized states and the critical states appear for only a certain value of P and (b) to the case when they appear for a
finite range of P.

(a)
(2) (3)

Wave function

Equation
to determine x and c,

Condition(s) satisfied for
Im(c2) =0

(((1,0)

(ii)„(iv)

0
—1+x +—= 1.383

1

x

P(x, n. )

x +x +x —1=0
(x =0.5437)

'iT 7T

'2 2

(i),(iv)

(4)
(b)

Range of P
Pi ~P~P2
Range of c,

Wave function

Equation

to determine
x and c,

P, =O,P2=0.64m

c, ~sin—
2

z, P(x, a)+zz(((x, —a)
1—c, + —zd —zd+U ~ +

—xe '~ (ze'+ze ' )=0
where

2 +2ia+ Xei ( +a+P/2)

P, =0.73m. ,p, =m.

~e~
~ +5+4cos(P/2)

z P( x, ) 0++z(( (+x, vr)

16+ z+ c+
c, +U—z c —(z x —z+x+ )e '~ =0
where

1+X2g -+x+e'~/2

1
zl =1—z2 =——

2

—ise'S +sin(P/2)
2(x —1/x) sina

1 i sin(P/2)+Ee'S~
z+ +

2+e —sin (P/2)

cosa=—
1/2,

5 —s —+(5—e ) —16 cos2(P/2)
8

and

and

x ~ + =V e2 —sin (P/2)+ cos —.
xy 2

Condition(s)
satisfied for
Im(c )=0

1x
2

cos(P/2)
cosa

cos (P/2)
cos a

(ii), (iii)
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0

2x
3

I

1

-I

I::.::.::::::::::.:::.;:.::.::.:.:;:. .:.:.:;::..::.'. ::.::::.::.::.;:,::.'.:::,::::,:.::-:::::.:,:.:,'.:I.'': .". : -.
'

1: ". .'. :.':::.;::::::::::.:;::::.::.::.-'.::.'.::.:.:.::::.::-::::,::.::::::.:::::.-I:.
'

, i,
0 0.8 0.4 0.6 0.8 1

1.0

0.8

0

0.6

0.4

0.2
I

0.0
0 0.2 0.4 0.6 O.B

FIG. 10. The discrete energy levels of the localized states vs

P for the n-(1, 1) cap. They are shown by solid lines. The unit of
energy is the same as in Fig. 5. The vertical lines, the shaded
area, and the dashed lines have the same meanings as those of
Fig. 6. The energy level of the symmetric localized state which
can exist only when P=0 is shown by a cross.

Table I(b) shows another type of localized states which
exist in a finite range of p unlike the symmetric localized
state that exists only when P=O. Their discrete levels are
shown in Fig. 10 by solid lines. There are two branches
of discrete levels of the type (4). One has a positive ener-
gy and the other has a negative energy. Another branch
of the discrete level of type (5) lies above the upper con-
tinuous band. As in the case of the n-(1,0) cap, critical
states occur when these branches coincide with the band
edges, i.e., when (P, E)-(0.41', —0.61), (0.64m, 0.84),
and (0.73m, 2. 57) and (p, e)=(0,0). The behavior at the
band edges of the LDOS of the P band is determined by
whether there is a critical state or not just in the same
way as in the case of the n-(1,0) cap. In Fig. 12, the solid
lines and the dotted lines show x corresponding to the
types (4) and (5), respectively. The value of x is called

80

I

60
0.01&

40

0.02&

0 20—
A

0.03 &

0
1.37 1.375 1.38

I

1.385 1.39 1.395 1.4

ENERGY ( units of Ihl )

FICx. 11. LDOS's of the n-(1, 1) cap near E =1.383~h~ for
p=O. Olm, 0.02m, and 0.03vr. The sharp resonant peak becomes
dull as P increases.

FICr. 12. The localization factor x vs P for the n-(1, 1) cap
where x is defined in Sec. III B. The absolute value of the wave
function of the localized state is proportional to x where j
represents distance from the cap. The solid line and the dotted
line correspond to the discrete levels in the gap and those above
the upper continuous band, respectively. The latter localized
states are a superposition of the two degenerate states having
different values of x both of which are shown in this figure.

the localization factor hereafter because it determines the
exponent of the localization. The type (5) has two
different values of x, x and x +, of which x should be
taken as the localization factor because x ~ x+. The lo-
calization factor behaves also in the same way as that of
the n-(1,0) cap. That is to say, as the discrete level leaves
the band edge, the localization factor becomes smaller,
i.e., it decays more rapidly. This character is similar to
that of impurity levels in the gap of semiconductors.

In Fig. 13, the LDOS's of the P bands at the site be-
longing to the n-membered ring are shown for p=0, ~/3,
5

77
3

77
5 ~, and w. They are calcu lated numerical 1y with

Haydock's recursion method explained in the next sec-
tion. The discrete levels obtained in this section are also
shown by the vertical lines in Fig. 13. The LDOS of p=0
is divergent at E= —3 because of the critical state [(1) in
Table I]. The LDOS's of P= ', n and —', ~ hav—e sharp peaks
near the lower and the upper gap edges, respectively.
They are precursor states of the localized states of type
(4) as is understood by Fig. 10. The latter resonant peak
becomes widened and lowered as P increases as is shown
by the peak near 8=1.5 when P= 4m and near F. =1.8
when P=vr. There are also small peaks near c, =1.6 for
P=7r/3 and —2m and near E=2.4 for P= 2rr. They are-
resonant with the symmetric localized state of p=0,
a=m, c.= 1.383 as well as with the discrete level above
the upper continuous band. In this way, type (2) and type
(5) shown in Table I are connected continuously by reso-
nant states. The LDOS's at the apex site are shown in
Fig. 14 for n =5 and 6 by the solid line and by the dot-
dashed line, respectively, in the case of no magnetic field.
Both of them have no gap, i.e., they are metallic, since
the band of P=O has no gap. The discrete levels are
shown by the vertical lines. The total continuous spec-
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trum of the n-(1, 1) cap has the energy range —3 ~ E ~ 3 in
which all the discrete levels appear. But the LDOS's in
Fig. 14 are zero near c, = 3 since the LDOS's at a site on
the mirror plane such as the apex site do not include the
antisymmetric subband of P=O whose continuous spec-
trum is —1 ~ E ~ 3. As in the case of the n-(1,0) cap, lo-
calized states and extended states with different sym-
metries exist at the same energy. The symmetric local-
ized state of P=0 appears in both the 5-(1,1) cap and the
6-(1,1) cap.

C. General capped nanotubes
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Goo(E) = 1

[E—a, b,g, (E)—]

gI(E) = 1

[E—a2 —b2gz(E) ]

(28)

In the case of n-(l, m) caps where l ) 1 and/or m & 1, it
is difficult to obtain the analytical solution of their
Green's function or localized states. But it is easy to cal-
culate numerically the Green's function by Haydock's re-
cursion method. We give a brief summary of Haydock's
recursion method relevant to the present system. '

The index 0 is assigned to the site where we want to
obtain the LDOS, pII(E). Then Goo(E) is given by the re-
cursion formula

FIG. 13. The LDOS's of P bands at the apex site for the n

(1,1) cap. The correspondence between the types of lines and P
is the same as in Fig. 5. The unit of energy is the same as in
Fig. 5.
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FIT&. 14. Local density of states at the apex site in n-(1, 1) cap.
The unit of energy is the same as that of Fig. 5. The solid line
and the dot-dashed line correspond to n =6 and 5, respectively.
The vertical lines indicate the discrete energy levels. The
dashed vertical line indicates the discrete level appearing in
both the 5-(1,1) cap and 6-(1,1) cap. The values of p that each
discrete level belongs to are also shown. The discrete energy
levels are about —0.82IhI, —0.75IhI, —0.66IhI, 0. 17IhI,
o. 221 hI, l. 38lh I, 2.60 fh I, and 2.75Ih I.

(29)

(E —
aIv ) 4b~

gx 1(E)=-
2bIv (E —

aIv )
(30)

If the block-diagonalized Hamiltonian H(P) is substitut-
ed for the total Hamiltonian H in the above procedure,
the LDOS of the P band is obtained instead of the total
LDOS. But it sometimes occurs that a2J and b2J con-
verge to a different value from a2.

&
or b2. &, respective-

ly, as

lim a2 &
=a, ,

J —+ QO

lim a2. =a, ,J~ QO

lim b2 ) =b, ,
J—+ QO

lim a2 =b, .
J~ QO

(31)

One example is the case of the n-(1,0) cap. The corre-
sponding H(p) has already a tridiagonal form as dis-
cussed in Sec. III A. Therefore if site 0 is taken as site 1,

1g, (E)=
[E —a bg (E)]-

where a = Ij IH J I /[j jII and b, I= Ijlj]/[j —I Ij —I]
with Ij I defined by the standard recursion formula. Then
po(E) is obtained from the Careen's function Goo(E) by
Eq. (14). The above procedure can be continued to any
desired values of j. When a and b. converge to an essen-
tially constant value after iV steps of the above process,
we can terminate this process with Eq. (30):

r 1/2
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FIG. 16. The LDOS's of p bands at the apex site for the n

(4, 1) cap. The correspondence between the types of lines and P
is the same as in Fig. 5. The unit of energy is the same as in
Fig. 5.

as its diameter becomes larger. As a result, the discrete
levels approach the band edges and the region of P where
the discrete level exists becomes gradually narrower. The
LDOS's of the P band, Po(P, E) (P=O, —,'m, 5',——,'m, —5m. ,
and m ), obtained by the recursion method are shown in
Fig. 16 for (l, m)=(4, 1) and in Fig. 17 for (l, m)=(2, 1).
The site 0 is taken to be the apex site. For the case of
(l, m) =(2, 1), the discrete level in the gap does not coin-
cide with the lower gap edge at P=0 unlike the case of
(l, m)=(1, 0), but is quite close by it at P= —,'m and at
P= —,'m as seen in Fig. 15, so that the LDOS of P=O is not
divergent at the lower gap edge unlike the case of the n;
(1,0) cap, but the LDOS's of P= —,'m and —', m have sharp
resonant peaks there as seen in Fig. 17. The LDOS of
P=O (P= —,

'n. ) has no gap and takes a finite value at the
Fermi level when l —m is a multiple of 3 (when l —m is
not a multiple of 3). Though the LDOS of the band P=O
in Fig. 16 has a very small value near the Fermi level, a
large enough value of the LDOS appears there at a site
far from the apex site. In this way, when l —m is a multi-
ple of 3 the amplitude of the wave function for P=0
around the Fermi level is smaller at the top of the cap
than that at sites far from it. As in the cases of the n-(1,0)
and the n-(1, 1) cap, discrete levels exist in the total con-
tinuous band. As l and m increase, i.e., as the distances
between five-membered rings increase, the LDOS shows
more oscillations caused by interference of the waves
from the different five-membered rings. In addition to
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FIG. 17. The LDOS's of p bands at the apex site for the n

(2, 1) cap. The correspondence between the types of lines and P
is the same as in Fig. 5. The unit of energy is the same as in Fig.
5.

that, sharp peaks emerge showing the Van Hove singular-
ity, e.g., the peak for (l, m) =(2, 1),P= —', m, E = —0.9Ih~.

IV. SUMMARY AND DISCUSSION

In this paper, the important effect of the cap structure
of the nanotube is demonstrated. It causes localized
states decaying exponentially with distance from the cap.
The mechanism of the appearance of the locahzed states
is neither due to the local potential nor due to the change
of the coordination number, since the model assumes a
constant site energy and a constant hopping integral
everywhere and the coordination number at every site is
3. Therefore the localization of the state is due to the to-
pological disorder caused by the assembly of the six five-
membered rings. The localized states are caused by an
analytic continuation of the wave number from the real
number space to the complex number space. This point
is demonstrated most clearly in the simpler cases of the
n-(1,0) and n-(1, 1) caps; the imaginary part of the wave
number appears as a localization factor whose analytic
form is given without ambiguity and shows the localiza-
tion feature. Though it becomes dificult to show such a
clear result about general caps, we believe that the
essence of the appearance of the localized states is the
same as that of the simple special cases. Interestingly,
some of the localized states coexist with extended states
at the same energy without being mixed with each other
because they have different symmetries. If there are per-
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turbations that mix the states with the different sym-
metries, such as phonons, bond alteration, electromagnet-
ic field, and so on, the discrete level in the continuum will
be mixed with the extended states and become a sharp
resonant state which can carry electric current. The ap-
pearance of such a sharp resonant state close to the Fer-
mi level might induce remarkable properties of the cap of
nanotubes from the viewpoint of applications. For exam-
ple, excellently coherent electron emission can be expect-
ed from the cap of the nanotube, which is quite ideal for a
scanning tunneling microscopy (STM) tip and electron
source materials.

Aside from the fact that the gap is generated by the
magnetic field, '" it is significant that the localized states
in the gap are controlled by the magnetic field. They
might be donor and/or acceptor levels as in the case of
impurity levels in a semiconductor. The discrete levels
and their dependence on the magnetic Aux along the tube

axis are characterized by whether I —m is a multiple of 3
or not. This rule about I and m rejects the band struc-
ture of the nanotube without the cap ' and suggests that
the n-(1,0) cap and the n-(l, l) cap whose localized states
can be analytically given have some common features
with general n (l-, m) caps. When 1 =m, the symmetric
localized state appears only in the band P=O and it be-
comes a resonant state for a finite value of P, while the
other localized states appear for a finite range of P.
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