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The T&„ hg Jahn-Teller system is studied analytically on an icosahedral cluster model. This system is

a model for the e6'ects of vibronic coupling in the C6o molecule. Vibronic coupling is very important in

this system because both the electronic and vibrational states are of high symmetry. The method em-

ployed is to apply a unitary transformation to the Hamiltonian for the system in order to obtain expres-
sions for the states associated with minima in the potential-energy surface. Quadratic coupling terms are
included in the Hamiltonian in order to obtain distinct minima located at either pentagonal (Dsh ) or tri-
gonal (D3h ) positions in Q space. These states are good eigenstates of the system as a whole in very

strong coupling. For finite couplings, projection operator techniques are then used to obtain explicit ex-

pressions for the vibronic ground and inversion states from these basis states for both the pentagonal and

trigonal cases. Expressions for the corresponding energies are then derived as a function of the coupling
constants. These results are necessary in order to be able to calculate further properties of the system,
such as Jahn-Teller reduction factors, which are in turn necessary to explain experimental data on these
systems.

I. INTRODUCTION

The discovery of the isolated C6p molecule' and subse-
quently the solid form of C6p followed by the realization
of its superconducting properties led to an explosion of
work by experimental and theoretical physicists and
chemists in this area. A recent description of the most
significant work on these fullerenes can be found in the
comprehensive review by Gelfand" and in the more gen-
eral article by Ramirez, for example. In order to under-
stand the superconducting properties of the solid materi-
al, much work has appeared about the significance of the
electron-phonon interaction (vibronic coupling) within
C6p. Within the last year, interest in the role of the
electron-phonon coupling and the resultant Jahn-Teller
(JT) efFect it induces in C&o molecules has continued.
Much of this stems from the original work of Ceule-
mans' and subsequent publications. ' ' The JT prob-
lem has also been studied in further detail but from
different points of view by a number of other au-
thors. ' However, despite all this work, no papers
have been published which give explicit expressions for
the vibronic states of such systems and their resultant en-
ergies.

Prior to the discovery of C6p, virtually all JT work had
been undertaken in either octahedral or tetrahedral sym-
metry, with the exception of Khoplin, Polinger, and Ber-
suker, who investigated JT effects in icosahedral sym-
metry. Following the work of Chancey and Cullerne
and O' Brien, it became clear that a range of JT prob-
lems which had not been considered previously is present
in such system because of the existence of four- and five-
dimensional representations for both the orbital and pho-
non states. In this paper, we will investigate the particu-
lar case of the T&„h JT problem. This is of consider-
able interest because when an additional electron is added

to the C6p molecule, it occupies an excited T,„orbital
state. '

Understanding the molecular structure of the ful-
lerenes, including within it the vibronic coupling, has
other important applications, particularly in relation to
the formation of solid C6p and hence of superconductivi-
ty. Here we mention the very recent work of You, Xie,
and Tang' on the Raman fine structure involving the in-
tr amolecular vibrational modes, the optical absorp-
tion, ' vibrational infrared spectra, giant vibrational
resonances in A6C6p compounds, and charged phonon
absorption. ' There is also considerable interest in the
way C6p molecules attach themselves to surfaces. The ap-
plication of the scanning tunneling microscopy (STM)
technique to control the movement of such molecules
across silicon surfaces has obvious device applications.
Interactions with Ag and In surfaces and with Au sur-
faces have also been reported.

The C6p molecule has a truncated icosahedral structure
of Ih symmetry. Many calculations of the undoped mole-
cule have been undertaken to determine the molecular
energy spectrum. ' These calculations clearly show that
all molecular levels up to and including the molecular or-
bital of h„symmetry are filled, and that the unfilled
orbital of lowest energy is of t&„symmetry. On doping
the molecule with an impurity such as potassium, the ad-
ditional electron occupies the t,„orbital. In a similar
way, when the fullerene solid is formed or when one mol-
ecule interacts with another solid surface, for example,
the t&„orbital is usually directly involved and is partially
or totally filled with the extra electrons. In such cases, it
is necessary to take into account the coupling between
the electron or electrons in the t&„orbit, which is spread
over the entire surface of the molecule, and the vibrations
of the molecular cage itself. From group theory, cou-
pling to two A and eight H modes is expected.
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The above is obviously a very complex problem even
allowing for the redundancy of the two Ag modes. How-
ever, a model in which a single T&„orbit interacts with a
single h mode of vibration of a simple icosahedron will
be a good starting point for modeling such systems, and
can adequately account for virtually all the relevant vi-
bronic properties of the real C6p molecule. The vibronic
coupling is described therefore as a T,„h~ JT problem.
(For a general review of vibronic interactions, see the
book by Bersuker and Polinger. )

For many years, the authors have been involved in
modeling dynamic JT effects in strongly coupled systems
of tetrahedral symmetry (for application to magnetic-ion
impurities in III-V semiconductors). They developed an
analytical method for solving such problems based on an
initial unitary transformation followed by an energy
minimization procedure. They then obtained symmetry-
adapted vibronic states for the system, and their corre-
sponding energies, using projection operator tech-
niques. The work of Cullerne and O' Brien indicat-
ed that this transformation method had attractive
features which could be applied to the C6p molecule.
Also, the theoretical method described by %'ang and co-
workers ' ' for the C6p molecule had somt. ,- features in
common with our transformation method, particularly as
it highlights the dynamic properties of the resultant
states. However, the latter calculations were restricted to
the involvement of minima in Q space of D5d symmetry
only (as are most other discussions), and some of the im-
portant details, such as the positions of the minima in Q
space, were not given. The primary object of this paper is
to apply our transformation method to the T,„(3h JT
problem and obtain explicit expressions for the states.
Minima of both D3d and D5d symmetries will be con-
sidered.

The ultimate aim of this work is to set up a model from
which fundamental explanations of some of the experi-
mental data obtained by others and summarized above
can be explained. In particular, we mention the calcula-
tion of the electron-phonon coupling constants from an
analysis of photoemission spectra of C6p and the lower-
ing of the total energy for C6p" due to electron-phonon
coupling. '

II. THE HAMILTONIAN
AND TRANSFORMATION METHOD

A. Definitions

&=v 8d 2 z Q~d3z „z

(2.1)

of the hydrogenlike d(3 2 2) and d~ 2 2~ functions. It
will also be useful to work with combinations of them
corresponding to functions associated with the x and y
axes:

(2.2)

In the following, these labels, together with 4, 5, and 6,
which denote the equivalent of the tz-type modes of cubic
symmetry transforming like yz, zx, and xy, respectively,
will be used to denote the 6ve components transforming
like H. In particular, they will be attached to the dis-
placements Q and their conjugate momenta P.

Using the tables in Ref. 42, it can be seen that the
linear interaction Hamiltonian for the Th system can
be written as a matrix acting on the set of electronic basis
states (x,y, z) in the form

In principle, the formulation of the T(eh JT problem is
well known to be the same as that for the cubic
T (e+ t2 ) JT problem in the special case when the cou-
plings to the e and t2 modes are the same. However, fol-
lowing the work of Fowler and Ceulemans, it is more
appropriate for Iz symmetry to define the equivalent of
the cubic e modes 0, =0 and e, =e in a difFerent manner
to that for the cubic systems, such that they are the linear
combinations

v' —,'. Q6 v' —,', Q5

&,=V, v' —,'.Q6

—,'. Qs

2 5
—i&34'Qg+0 'Q, l

v' —,'. Q4

v' —,'. Q4

—,
' [v'-,'Qg —Q, ]

(2.3)

where P =
—,'(1+v'5 ) is the golden mean, and V, is the linear vibronic coupling constant.

Analysis of the potential-energy surface using numerical means' ' shows that when only linear coupling and har-
monic terms are included, there is a continuous spherical equal-energy surface. (This statement is also true if more than
one h mode is included in the analysis. ) However, when small anharmonic and quadratic coupling terms are added, '

the minimum-energy surface is warped to give local minima.
In this paper, we will consider the effects of the two types of quadratic couplings which are possible in these systems.

Again, using the tables in Ref. 42, the Hamiltonians for the two forms of quadratic coupling with coupling constants V2
and V3 are written as
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2
'V' —'A, + —A22&S

-v'-', Q,Q, —,
' V'-', (

—&3Qg+ Q, )Q5

—v'-', Q,Q.

—,
' V'-', ( —&3Qg+ Q, )Q5

2—
—,'4V', ~ 1

——' —~2 —,
' V'-', «3Q, +Q, )Q4

—,
' V' —,'«3Qg+ Q, )Q4

(2.4)

and

—,'~ 'V'-', B + —,B v'-,'(Q, Q, -&2Q.Q, )

~3 V3 V g (QgQ6 &2Q4Q5 ) —
—,'OV'-', B 1 Di (2.5)

,'V ', B—,——,
'—B2

where

~1=v' —,
' QeQ, +v' —', (Q4 —Q3 ),

~2 =v'8(Q e Q'+ Q4+ Q3 —2Q6»

Bl =v'-', (Qe —Q', ) —v' —,'. (Q4+Q5 —2Q6»

B2 = —V' —', QeQ. +V'-,'(Q4 —Q s»
(2.6)

p2
+pc@ Q;

I

(2.7)

C, = —
—,'V'

—,'[{Q,+&3Q, )Q, +2+2Q, Q, ],
Di = —

—,
'V'

—,
'

I:(Qg —&3Q, )Q4+2&2Q5Q6) .

As usual, the Hamiltonian describing the vibrations is

%coa =P a, E'=P E,E V l VQ
1 1

(2.9)

(2.10)

VzV' = V3=
pco pco

&, can then be obtained from & by replacing the Q by—aj, V2 by V2, and V3 by V3, omitting Vl from &1 and
writing &„;b as —,'ga;. The resulting Hamiltonian ~,
will be written as a 3 X 3 matrix with elements a;.. Subse-
quent results will be expressed in terms of the parameters

&tv, VrKl=—,K;= (i=2, 3) .v 2',gj 21Mco

By diagonalizing &„an expression for E' as a function
of a; can thus be found in the form

where p is the mass of each of the nuclei at the corners of
the icosahedron with the sum taken over all modes (8, e,
4, 5, and 6). The total Hamiltonian for the system is thus

&=&,+&2+&3+&;b .

B. The transformation and energy minimization

According to the transformation method, a unitary
transformation of the form

E'= —+A, ,
I
3

where A, are the roots of the cubic equation:

A, +3pk+2q =0,
with

I 2I IJ3p=J—,2q= — +X,
3 ' 27 3

(2.11)

(2.12)

(2.13)

( g)
whel eU=exp i g aJ.PJ

J

can be applied to &. This transformation has the effect
of displacing each of the coordinates QJ to the points
(QJ-a~A). This in turn leads to a transformed Hamiltoni-
an &=U '&U which can be split into a contribution
&, which does not contain any P 's or QJ's, and hence
does not contain any phonon operators, and a second
part &2 which contains all remaining terms. It follows
that &, is a good Hamiltonian for determining the
ground states of the system. Further work shows that
the Hamiltonian is also a good basis for determining ex-
cited states.

It is convenient to eliminate some of the constants in
&by defining

(~ 11 ++22+ + 33

(+11 22++11+33++22+33) ( 12+ 13++23 )
2 2 2

2K = —a&&a22a33 —2a &2a&3a&3+a &&a23

2 2+a22a &3+a33a,2

The solutions are X=u+v, where

u = —q+vq +p
V3= —q —&q2+p3 .

(2.15)

The five equations which define the minima in E' can
then be written down by differentiating this expression
with respect to a;. After much algebra, we find that these
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(2.16)

equations can be written in the form

—12&10a]]—&6y + V2 [&3ya, —za]]+3V 2(p3a4 —p2a 5 )]+V3 [3ya]]+&3za, +&2(2p]a6 —p2a5 —p3az ) ]=0,
—12' 10a,+&2z+ V2[v 3ya]]+za, +v 6(p3a4+p2a5 —2pla6)]+ V3[ —3ya, +&3za]]+V'6(p3a~ —p2a3)]=0,
—12&10a4—2&3p3+ V2[a4(3y —z) —2v 6p3a, ]+V3[ —a4(y +z)+2v 2p3a]]„—4(p]as+p2a6)] =0,
—12' 10a5 —2V3p2 —V2 [a5(3y+z)+2v 6p2a,~ ]+V3 [a5(z —y)+2v 2p3a]]~ —4(p]a&+ p3a6)] =0,
—12v'10a6 —2v 3p]+ V2 [2a6z —2v 6p]a, ]+V3 [2a6y+ 2/2p]a]] —4(p2a4+p3a5 ) ]=0,

where the combinations a]], etc. are as given in (2.2) and III. TRANSFORMATION PROPERTIES
OF ICOSADHEDRA AND DODECAHEDRA

y=[ —
4 'a»+Pa22 —a33]&

+[0 '( 23 22 33) 0( 13 11 33)

+(a]2 alla22)]~

z = [y'a]] y'a—2, &5a 3—3 ]n

+[ 0 (a23 a22a33)+0 (a]3 alla33)

+v 5(a ]2
—a]]a22 ) ]a,

pl 2 12~+2( 12 33 13a23 )~

p2= —2a]35+2(a]3a22 —a, 2a23 )a,
p3

—2a235+2(a23a» —a,2a 13

(2.17)

In order to obtain the states associated with each of the
minima, it is first necessary to write down the coordinates
of the corners of the icosahedron and dodecahedron
which both belong to the Iz group. We choose the same
coordinate system for both in which Oz is a twofold axis
such that each edge of the icosahedron has a length of
two units. As in Refs. 36 and 37, it is possible to write
down the form of both the electronic orbital states and
phonon states associated with each corner of the
icosahedron and dodecahedron from these coordinates
based exclusively on the transformation properties of the
corners.

A. The icosahedron

with

In5=p—
3

CK= +1 1

Q V

'I

V'q2+p3 u' v' (2.18)

The coordinates of the 12 corners of the icosahedron
using the above coordinate system are shown in Fig. 1.
Six of these coordinates are given explicitly in Table I;
the remaining six coordinates are obtained by inversion
through the center of the icosahedron such that the
corner labeled A, at the point (0, ])I], 1) for example, be-
comes A at the point (0, —P, —1). (We note that the
coordinates given in Table I are very similar to those
given in Boyle and Parker and Mermin but with small
changes introduced in order to systematize our subse-
quent calculations. ) There will be a minimum in energy

V'q2+p' u' v'

Unfortunately, these equations are highly nonlinear and
cannot be solved for the general case using analytical
means.

The potential-energy surface is known to contain either
minima of D5d symmetry and maxima of D3d symmetry
or Dice Versa' ' (and referred to as pentagonal and trigo-
nal epikernels, respectively, in Ref. 13), depending on the
parameters in the nonlinear perturbations. Cullerne and
O' Brien showed that these minima or maxima corre-
spond to the corners of an icosahedron or dodecahedron,
respectively, when mapped onto the original spherical
potential-energy surface. The only other points which
could possibly be minima are the so-called dihedral
points of D2& symmetry. Thus we can restrict our at-
tempt at solving Eqs. (2.16) by searching specifically for
solutions which will give eigenstates corresponding to the
trigonal, pentagonal, or dihedral points in the potential-
energy surface. In all of these cases, the equations can be
easily solved.

(1,0, (j))

FICx. 1. The icosahedron showing the coordinates of the
corners.
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TABLE I. States for pentagonal minima.

Label Coordinate Electronic state Phonon state a4 a6

(0,$, 1)
(0, —$, 1)

(1,0,$)
(1,0, —P)
($, 1,0)
(
—P, 1,0)

z+Py
4y

x+Pz
x —Pz

y+Px
y —Px

yz+ V'
—,
' e„

—yz+ V' —,
' e„

ZX+ V 2 Ey

xy+ V' —2e,
—xy+ V' —', e,

—p/v 2
—p/v'2
p/Vz
p/v'Z

0

—p/v 6
—p/v'6
—p/v'6
—p/v'6
pv'-,'
pQ-,'

p—
0
0
0
0

0
0

0
0

0
0
0
0

corresponding to each of these six coordinates. The mini-
ma have D~d symmetry, so will be called pentagonal
wells. The resultant states are given in columns 3 and 4
of Table I. (Throughout, we ignore all normalizing fac-
tors in electronic and phonon states, as they complicate
the expressions and will automatically drop out of the en-
ergy results. )

B. The dodecahedron

As the corners of the dodecahedron lie at the center of
each equilateral triangle forming the icosahedron, their
coordinates are easily obtained. Table II gives the coor-
dinates of ten of the 20 corners of the dodecahedron.
Again, the associated electronic and phonon states associ-
ated with wells at trigonal points in Q space of D3d sym-
metry follow automatically, and are given in Table II. (A
factor of P has been removed from each electronic state
compared to the coordinates for simplicity. )

C. Analytical form for the vibronic states

The method described above yie'. ds electronic and pho-
non states having correct transformation properties asso-
ciated with particular wells in Q space. However, it does
not. give the absolute positions of these wells but this in-
formation is sufficient to allow Eqs. (2.16) to be solved.
This allows the values of a. (which give the well posi-
tions) to be found, as indicated below. We consider wells
associated with the pentagonal and trigonal wells in turn.

1. Pentagonal minima

Consider the (un-normalized) pentagonal electronic
states ~y+Px ). The condition that these are eigenstates
results in the additional identity

a )) a22 —+a )2 (3.1)

The phonon part of the state contains e- and 6-type exci-
tations only. This implies that only a, and a 6 are
nonzero. It is then a simple matter to show that
a, =+V' —', a 6, as would be expected independently from
the form of the phonon state shown in Table I. Equa-
tions (2.16) are then readily solved with the result

a, =V' —', P and a 6
= +P, where

v'6

(5 —4v'2 V2 )
(3.2)

Hence these states are found to have energy

I

(5 —4v'ZV,') (3.3)

Thus if V2 is positive, the states are lower in energy than
the linear-coupling value of E'= —

—,'. All of the states
contained in Table I have this same energy. It should be
noted also that the energy and eigenstates are indepen-
dent of the second form of quadratic coupling V3.

Table I shows the values of a; which specify the posi-
tions of each well. The full states appropriate in the
transformed picture may be written in the form

~
A;0),

for example, where 3 is the (un-normalized) orbital state
and 0 denotes that all the h oscillators are in their ground

TABLE II. States for trigonal minima.

Group Number Coordinate Electronic state Phonon state aq aa as

(0,$,$')
(0, —P, P')
(P', 0,P)
(P', 0, —P)
(P, P', 0)
( —P, |t',0)

'y+ Pz

y+Pz
'z+ Px

'z+ Px
'x+Py

'x -+&Py

yz —&20.
—yz —&20„
zx —&20,
—zx —&20
xy —&20,
—xy —&20,

yyv'2
yyv'2

y/V 2
—yv'2
—yv'2

—1V'-', )
—1V'-', —

)

yv —', 0
0 0
0 0

y 0
—y 0
0 y
0 —y

h

l

J

(p2 p2 p2)

( p2 p2 p2)

(p2 p2 p2)

(x +y +z)
( —x+y+z)
(x —y+z)
(x +y —z)

yz+zx +xy 0
yz —zx —xy 0
—yz+zx —xy 0
—yz —zx+xy 0
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state. States
~

A ';0 & appropriate to the untransformed
picture can be obtained by multiplying the transformed
states by the value Uz of U appropriate to that well by
substituting with the particular values of az. Thus

~

W';0& = U„~ W;0&, (3.4)

1+Vq /4&2+9 V3/4&10EI
l —V,'y5 —3V,'Z5 (3.9)

However, for this point to be an absolute minimum, the
value for E' given in (3.9) must be less than both EI in
(3.3) and ED in (3.7). This implies that

for example. As U~ contains phonon excitations, this re-
sults in states which are automatically vibronic.

3V', «5V,' and V5V', &3V', , (3.10)

2. Trigona1 minima

The group-I un-normalized states
f ( ~+P 'x+Py & ) must satisfy the condition

e and

which is obviously contradictory. Hence it can be con-
cluded that these points can never become absolute mini-
ma, and can thus be discounted. It has been verified that
the same conclusion also holds when anharmonic terms
are included to first order.

5~&z=+(~» ~z2) (3.5)

in order to be eigenstates. Together with the fact that,
from group-theoretical arguments, they are expected to
involve 0- and 6-type excitations only, it can be estab-
lished that a6 = + atL/V 2 and hence, by substituting into
(2.16), that as= —&2y and a6=+y, where

v'2
(v'15 —4Q-', V,')

(3.6)

The group-II state g is only an eigenstate if
(a»+a»)=(a2z+a23) and also if (a,z+a22)
=(a&3+a33 ). This leads to the result a~ =a5 =a6 =@.

The positions of the wells for all of the states in groups
I and II are given in Table II. Each state is found to have
the energy

1Et
(5—4v 10V3/3)

(3.7)

which is lower than the linear-coupling value of —
—,
'

when V3 is positive. The energy and eigenstates are in-
dependent of the first form of quadratic coupling V2. As
in the case of the pentagonal states given in (3.4), states
appropriate to the untransformed picture such as ~a', 0&
are obtained by multiplying normalized transformed
states ~a;0& by U, such that ~a', 0&=U, ~a;0&. Again,
this state is automatically vibronic in character.

D. Dihedral points

As mentioned above, the only positions which can pos-
sibly become minima other than the tetragonal and pen-
tagonal points are the dihedral points of D2I, symmetry.
One such point would have the orbital state ~z &. For this
to be a turning point, it is necessary to set
a4=a5=a6=0, and thus

1+ V2 /&2+ V3 /& 10

1 —V' /5 —3V' /5

IV. PROJECTION OPERATORS AND
SYMMETRY-ADAPTED STATES

The results obtained above give vibronic states associ-
ated with the minima. These are good eigenstates of the
system as a whole in infinite coupling. However, in finite
coupling, it is necessary to take combinations of these
vibronic states which transform among themselves with
the required symmetry. Such states can be constructed
using projection operators as described in Hallam, Bates,
and Dunn, for example. The principle used is that the
projection operator method generates a set of symmetry-
adapted states from a set of nonsymmetrized states + by
operating on 4' with the projection operator p'„' given by

p"= g D'(R),*,R,
R

(4.1)

A. Vibronic states belonging to the pentagonal wells

where g is the order of the group, d, is the dimension of
the representation of symmetry I,-, R is an element of the
icosahedral group Iz, and D'(R)„ is the tsth element of
the matrix representation of R.

Our interest is centered on the T,„electronic state of
the C60 molecule. One of the ground states localized in
one of the wells (such as

~

A', 0&) is taken as the state 4,
and (4.1) is used to determine the required vibronic states
of symmetry T&„containing a component localized in
that well. This procedure to obtain vibronic states has
been carried out for both the pentagonal and trigonal sets
of wells. All 60 matrices of the Ih group belonging to the
T,„representation are needed. While some of the re-
quired matrices are given in McLellan, insufticient de-
tail is presented from which all the others may be de-
rived. Consequently the full set has been obtained by
determining the way in which each corner of the
icosahedron shown in Fig. 1 is translated into another
corner or remains unchanged as a result of the 60 allowed
symmetry operations of the Ih group.

1 —V2/5&2+ 3 V3/&10
a = ——

2 1 —V2 /5 —3V3 /5

This results in an energy for these states of

(3.8) Consider first the wells which correspond to the
corners of the icosahedron when mapped onto the origi-
nal spherical potential-energy surface. Following the
procedure outlined above, the T&„symmetry-adapted
ground vibronic states obtained from the pentagonal
minima are found to be
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I T,„)=x,„[y '(
I
c';0) + ID';0) )

+(Iz', 0) —I~', 0) )],
IT;., ) =~;,„[y-'(l~',0&+ l~';0) )

+(l~', 0& —Ia', 0&)],

I
T', „,& =x,',„[@-'(I~';0&+ Ia';0&)

+(Ic';o) —ID', 0) )],

(4.2)

ground states. Such a state is often referred to as the in-
version state and has Tz„symmetry. A similar method
to that for the T,„states can formally be used to derive
these states, but that requires knowledge of the 60 ma-
trices for the Tz„ irreducible representation. However,
an alternative simpler procedure is to use the orthogonal-
ity property of the Ti„and Tz„states. The three com-
ponents of the Tz„vibronic states are thus found to be

I T,I„„)=x,',„[(Ic',o)+ ID';0) )

where XTi„ is the normalization constant. XTi„can be
determined after using the identity

exp[k(b;+ —b; )]=exp(kb;+ )exp( —kb, )exp( —k /2)

(4.3)

and expanding the exponentials exp(kb;+ ) and exp( —kb; )

as power series, ' with the result

—p '(IE'o) —F';0) )],
I
T',„,& =x',„[(IE', 0 &+ IF';0 & )

—y-'(I a':0& —Ia', 0&)],

I
T'...& =+TI,.[(I ~', 0 &+ la';0& )

—y '(Ic', o) —ID';0))],

(4.6)

X =[10(1+S )] (4 4) where

~,',„=[1O(1—S,)]-'" (4.7)
2

Ki—2 P
AQ)

(4.5)
is the normalizing factor (evaluated in the same manner
as above).

is the phonon overlap between any two states.
The first excited vibronic state for finite coupling has

the same energy as the T]„vibronic ground state in the
infinite coupling limit as all of the oscillators are in their

B. Vibronic states belonging to the trigonal wells

For the trigonal wells, the symmetry-adapted T&„vi-
bronic ground states are

ITD)..&=&TD). [
—p'( c',»+ d', o&)+( f'0& —le', 0&)+y( —g';o&+ h', 0& —i';0& —j',0&)],

IT(., & =&T)„[—p'(le';0&+If';0&)+(Ib';0& —l~';0&)+4( —Ig', 0& —b';0&+ li', 0& —Ij';0&)],

I T,„,) =xT,„[—y'(l~', 0&+ lb', o &)+(ld', o &
—lc';0 &)+y( —Ig', 0 &

—b', 0 &
—

I
~';0&+ j';0 & )],

(4.8)

=[10/ (3+5S +2S )] (4.9)

Li
S~ —exp 2 (4.10)

The phonon overlaps between any two wells are either SD or SD.
In this case, there are two inversion levels, one of symmetry Tz„and one of symmetry 6„. As there are two inversion

levels, orthogonality alone cannot be used to determine the appropriate combinations of states. The states can be de-
rived systematically using the 60 matrices for Tz„and the 60 matrices for 6„. However, a much simpler method has
been used by noting that it seems likely that the Tz„states are composed of the same basis states, and in a similar com-
bination, as the corresponding T,„states. This suggests that, in order to be orthogonal to the T~ states the
symmetry-adapted combinations must be

TD2,„„&=xTD,„[p '(Ic';o&+ Id', 0&)—(If', 0& —le', 0&)+y '( —Ig', 0&+ lb', 0& —li', 0& —Ij';o&)],

IT2„y) =mT2 [y (le'o&+lf''o&) (lb'o& la'0&)+y ( Ig'o& lb'0&+li'0& IJ'o&)]

IT ..&=& .[p '(l~', 0&+Ib', 0&)—(Id';0& —lc', 0&)+0 '( —Ig', 0& —lb', 0& —l~', 0&+lj '0&)],

(4.1 1)

Xz~„=[10/ (3—5S +2S )]

In order to be orthogonal to both T,„and Tz„, the G„vibromc states must then be

(4.12)
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IG..&=&5NG. [lg';0& —lh';0& —l~';0& —Ij';0&],

I G„„&=NG„[2(la';0 &+ Ib', o &
—

I
c'; o &+ ld', o & )+( —Ig', o &

—lh', 0 &
—li', 0 &+ lj', 0 & )],

IG„, & =N,„[2(le';o&+If', o&+ lb';o& —la';o&)+( —Ig';o& —lh';o&+ l~';0& —lj';0&)],
IG„, & =N G [2(lc', 0&+ Id';0&+ If';0& —Ie', 0& )+(—Ig';0&+lb', 0& —It';0& —

I
j',0&)],

6003

(4.13)

where

NG„= [60(1—S ) ] (4.14)

The calculations of energies below will show that all of
the proposed T2„states have the same energy as each
other, and that the G„states also have the same energy as
each other but a different energy from the T2„states.
This confirms that the correct combinations have indeed
been identified.

V. KNKRGEES OF THK
SYMMETRY-ADAPTED STATES

The energies of all of the above states can be found
after evaluating the matrix elements of the full Hamil-
tonian & between all relevant pairs of untransformed vi-
bronic states IX';0&. This can be done by writing the
operators in second-quantized form, using the commuta-
tion relation

(b, +b;+)"ex.p[k(b; —b;+)]

= exp[k(b; b;+ ) ][(b; +b(+—)
—2k ]" (5.1)

and its complex conjugate, applying the identity (4.3) and
then expanding the exponentials in U, 's, as was done for
the evaluation of the oscillator overlaps.

Figure 2 shows a plot of the energy of the T2„state rela-
tive to the T&„state for the case of zero quadratic cou-
pling (i.e., V2 = V3 =0). The T2„ inversion level can be
seen to be A'co above the ground state in the weak-
coupling limit, and degenerate with the ground state in
the strong-coupling limit, as would be expected.

B. Energies of the trigonal states

The matrix elements of iV between the state associated
with any one of the trigonal wells and itself can be ex-
pressed in the form 30», where

H~& =—s2A'co+ —y( —2+—', +3y) —8+—', K3y . (5.6)

Similarly, the matrix elements between any two different
states is either +&5HP2, where

K,
HP~ =SD -s-A'co+ y( —2+—'+y) — K2y

%co 5

—6+—,'K3 y

or +aa3, where

K)
H, 3 =S~ —,'A'co — y(2+ —', +y) —2v~2K2y~

A. Energies of the pentagonal vibronic states

It is found that the matrix elements of gf' between the
state associated with any one of the pentagonal wells and
itself can be expressed in the form &5$H», where

E
H)) —sero+ p( 2~x+ sp) K p

f1CO
(5.2)

The matrix element between any two different wells is
found to be +QH, 2, where

5 Ki —, pH =S —%co — P 2+—'+—
12 I 3 3

The energies of the T&„states are thus found to be

ET „=10/ (NT, „) (3H„+SH,2+H, 3)

(3H „+H,2+2H, 3 )

(3+5SD +2'

1.2—

(5.9)

—2Q —'K P

The energies of the T i„states are thus found to be

(H„+H,~)
ET,„=IONT, „(H„+Hf2 ) =

(5.3)
cn 08

UJ
06

0.0—
0

I I
12 SEr2. +10NTz. (H ii —H i2 ) =

I
(5.5)

Similarly, the energies of the T2„states are found to be K]

FIG. 2. The energy of the T2„ inversion level relative to the

T&„ground state for the states based on the pentagonal minima.

(Both axes are given in units of Ace. )
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Similarly, the energies of the T2„states are found to be

E „=10/ (X ) (3H —5H, +2H )

(3Hp, 5H—,2+2Hp~)
(3 —5S~+2SD )

and those of the G„states to be

(H„—H)p)ED =60XD'(HD HD—)=
(1 —S )D

(5.10)

(5.1 1)

Figure 3 shows a plot of the energies of the T2„and G„
inversion levels relative to that of the T,„state for zero
quadratic coupling. Again, the expected results that the
inversion levels are Am above the ground state in the
weak-coupling limit, and also degenerate with the ground
state in the strong-coupling limit, are seen to be satisfied.

Figure 3 also shows the energies of the T,„and Tz„
states (again when Vz = V3 =0) relative to the energy of
the T,„state. It can be seen that the T&„ground states
for both the pentagonal and trigonal minima have the
same energy in very weak and very strong coupling, but
that the T,„state for the trigonal minima is lowest in en-
ergy for intermediate coupling strengths. However, in
order to know which state is lowest in a real C6o mole-
cule, it would be necessary to know the relative strengths
of the Vz and V3 quadratic coupling constants, and also
to evaluate the effect of other perturbations such as
anharmonicity which have not been considered in this pa-
pcI'.

VI. DISCUSSION

1.0

P 0.8

LU

0.4

0.0

FIG. 3. The energy of the Tz„and 6„ inversion levels rela-
tive to the T&„ground state for the states based on the trigonal
minima (solid lines). The energies of the T&„and T2„states are
also plotted relative to the T&„state (dashed lines}. (Both axes
are given in units of Am. )

In this paper, minima in the potential-energy surface
for the T&„h~ Jahn-Teller system have been found of
both D~d (pentagonal) and D3d (trigonal) symmetries us-
ing analytical means. States associated with each of the
wells have been deduced, and are appropriate eigenstates
of the system in the strong-coupling limit. Symmetry-
adapted states for the ground and inversion level(s) ap-

propriate for finite couplings have then been constructed
using projection operator techniques, and their energies
evaluated. The method adopted is very similar to that
used earlier by the authors in their studies of tetrahedral
centers, particularly for the cases of Ee (Refs. 40 and
48) and for T(e+t2) for both the orthorhombic case
and when the trigonal and tetragonal wells coexist. As
in the T(3) h case, the we11s were generated by the second-
order vibronic couplings which warped an otherwise con-
tinuous equal-energy surface. The importance of such
second-order terms was pointed out by Bersuker and Pol-
inger, and it is also clearly demonstrated here. The
simplification of using a T,„(3h& model as a good ap-
proximation for what should be a T&„(38h~ model for C6O
is justified partially by previous work on the multimode
JT effect, but further investigations are needed to verify
this.

Although our calculations above begin by calculating
the positions of the wells, which is in effect a static JT
model, the introduction of tunneling automatically con-
verts the problem to that of a dynamic JT model. The
physical reason for the tunneling is that other perturba-
tions are present, such as spin-orbit coupling, which gen-
erate the finite overlaps between states localized in the
wells. In many of the experiments cited in Sec. I, it was
concluded that the JT effect was dynamic.

To our knowledge, this is the first time that vibronic
states and their energies have been written down in an ex-
plicit algebraic form for systems of icosahedral symme-
try. Wang et al. give expressions which are equivalent
to those given here in Eqs. (5.4) and (5.5) for the energies
of the T,„and T2„vibronic states associated with the
pentagonal minima, but they do not give explicit expres-
sions for the states themselves or for the matrix elements
H;. in terms of the fundamental constants. These authors
obtain expressions for their vibronic states using degen-
erate perturbation theory and symmetry arguments in
comparison to our method of using projection operators.
It is therefore not possible to compare the results direct-
ly. Also, we note that they used the fivefold axis of the
icosahedron as O„which meant that the form of their
states is different from our own. However, the pro-
cedures adopted by Wang and co-workers ' ' appear to
resemble closely that given here, in that their origin-
shifting unitary operator UP for their well P is very simi-
lar in both appearance and effect to our unitary operator
U given in (2.8). The major difference appears to be that
the positions of the wells given here are defined explicitly
through the parameters a., whereas those of Wang et al.
are given through the c numbers via the gap equation.
As explicit expressions for these quantities are not given,
again no direct comparison between the results obtained
can be made. However, there is one significant difference
between the two approaches in that Wang et al. assume
that the wells are of pentagonal symmetry only, and they
do not consider the possibility of trigonal wells.

We found previously that, for magnetic impurity ions
in semiconducting hosts, the procedure of solving the JT
problem by a unitary transformation followed by an ener-
gy minimization and the construction of symmetry-
adapted states from appropriate projection operators was
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very successful. The same conclusions apply in the case
of the T,„(sh JT problem considered here. The states
automatically have the correct symmetry properties, and
are automatically vibronic in character on account of
operators such as U„acting on the state

~ A;0) accord-
ing to Eq. (3.4). The other advantage of the method is
that expressions for the energies of the vibronic states can
be determined entirely by analytical methods, and graphs
such as those in Figs. 2 and 3 are very easily obtained.
However, many more calculations are needed before
direct comparison between our first results and experi-
ment can be undertaken.

An additional problem for the future is to evaluate the
first-order JT reduction factors for the T&„h system.

These in turn can be used in erat'ective Hamiltonians to
help interpret the results of experiments such as EPR and
the measured phonon spectrum on real examples of these
JT systems, such as the C6O molecule. In addition, the
methods developed in this paper can be used (after much
algebraic manipulation) to obtain expressions for the ex-
cited states of these systems, and subsequently to deter-
mine second-order JT reduction factors.
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