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Singularities in the coverage dependence of the chemical diffusion coefficient near the critical points
corresponding to transitions from one phase to another are studied by employing two different lattice-
gas models. (i) For the hard hexagon model, the chemical diffusion coefficient is shown to be exactly
equal to zero at the critical coverage and its behavior near this point is in agreement with the predictions
of the scaling theory provided that one takes into account the Fisher renormalization of the specific-heat
exponent. (ii) For a square lattice with repulsive interactions between nearest-neighbor particles, the de-
tailed transfer-matrix and Monte Carlo data indicate that the chemical diffusion coefficient has a
minimum at critical coverages and its value at these points decreases with increasing lattice size (there is

even evidence that D—0 at L — o0 ).

I. INTRODUCTION

Coefficients of diffusion on single-crystal surfaces are
often strongly dependent on coverage due to lateral in-
teractions between diffusing particles.!™® Discussing this
effect, we need to distinguish two types of such interac-
tions.> The first one is attributed to nonactivated parti-
cles and referred to below as ‘“the interaction in the
ground state.” The second one is introduced in order to
take into account the interaction of the activated com-
plex with adjacent nonactivated particles and is referred
to as ‘““the interaction in the activated state.” The former
interactions affect thermodynamic properties of the ad-
sorbed overlayer. The latter ones are manifested only in
the kinetics of diffusion.

With decreasing temperature, the lateral interactions
in the ground state result in the formation of ordered
phases in adsorbed overlayers.>~7 The simplest phase di-
agram occurs for a square lattice if one takes into ac-
count the nearest-neighbor repulsion between adsorbed
particles, €; >0 (Fig. 1). In this case, the system exhibits
a continuous phase transition from a disordered state at
high temperatures to a doubly degenerated ¢ (2X2) state
at low temperatures T' < T, where T is the critical tem-
perature at 6=0.5. Let us now assume that one explores
diffusion at T < T,. The fundamental question arising in
such a study is: “What kind of singularities may be ob-
served in the coverage dependence of the diffusion
coefficient near the critical points corresponding to tran-
sitions from one phase to another?”’

Employing above the words ‘“diffusion coefficient,” we
bear in mind first of all the chemical diffusion coefficient
because it is of interest for describing the mass-transfer
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processes along the surface. In general, the chemical
diffusion coefficient is defined by the well-known Kubo
linear-response theory.® For an adsorbed overlayer, this
theory yields

— (" 1 _du
p=[ dt(F(OF(0) 5050 (1)

where F(t)=3N_,v,(¢) is the total particle flux, v; is the
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FIG. 1. Phase diagram of an overlayer on a square lattice in

the case of repulsion between nearest-neighbor adsorbed parti-
cles, €, > 0 (from Refs. 5-7). The critical temperature at 9=—;— is
given by T,=0.567¢, (we set kzy=1). At T <T,, the critical
coverages are defined as the ones corresponding to crossing the
dashed line with the phase-separation-boundary line. The
dashed line shown is constructed for T'=¢, /3.
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velocity of the particle i at time ¢, and N and N, are the
numbers of particles and elementary sites, respectively.
Equation (1) may also be rewritten as

D=D,-§:%% , 2

where D is given by

=1 ©
D,= 2<N)f dt{F(t)F(0)) 3)

2
> . @)

The latter expression can be explicitly compared with the
tracer diffusion coefficient defined by

= 11m—< —r;(0)]

t— 4Nt

E[r(t

15;;27(2&(:)—“0)]} (5)

Expression (2) for the chemical diffusion coefficient has
also been proposed by Reed and Ehrlich® but with

D,=(zI*/4)T , ©6)

where [ is the jump length, z the number of nearest-
neighbor sites (z =4 for a square lattice), and I" the aver-
age rate of jumps to one nearest-neighbor site. The origi-
nal arguments of Reed and Ehrlich’® were heuristic.
Later, it has been shown™>!° that, assuming a local equi-
librium in the adsorbed overlayer, Egs. (2) and (6) can be
obtained directly from the grand canonical distribution.
Equation (2) in combination with (6) is now often referred
to as the “jump-rate” expression for the chemical
diffusion coefficient.

Equation (1) presented above shows that the coverage
dependence of the chemical diffusion coefficient is defined
by two factors, namely, D; and (6/7)3u /36. The first of
them is kinetic, and the second one is thermodynamic.

In analogy with such values as free energy or the chem-
ical potential, the coverage dependence of the coefficients
Dy, D*, and T is smooth at critical coverages. This state-
ment, important for further discussion, is more or less ob-
vious. It may be illustrated, for example, by considering
diffusion with no lateral interaction in the activated state.
In this case, the jump rate I' can be directly expressed via
the chemical potential (see Sec. 7.3.1 in Ref. 15 or Ref.
10)

1(0)/T(0)=(P/6) exp(p/T) ,

where 7y, is the probability that a pair of nearest-
neighbor sites is empty. Taking into account that u and
Py, are smooth functions of coverage, we obtain that the
coverage dependence of I' is smooth as well. Our de-
tailed Monte Carlo simulations also indicate that the
coefficients D;, D*, and T have no visible extremes at
critical coverages.

On the other hand, the thermodynamic factor propor-
tional to the derivative o /36 may have anomalies at
critical coverages. To emphasize the physical background
of these anomahes, we recall that according to statistical
physics!! the thermodynamic factor can be represented as
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(N)
((8N)?) ’

where ((8N)?) is the mean square number fluctuation.
At critical coverages, fluctuations are well developed.
The latter may result in unusual behavior of the thermo-
dynamic factor.

Our goal is to study in detail the anomalies mentioned
above. This problem can be explored by employing vari-
ous analytical approaches or by Monte Carlo simulations.
In both cases, the requirements for calculations are high
because an accurate analysis of fluctuations at critical
coverages is difficult. This is a reason why at present the
available data in this field of theory are rather scarce.
The analytical results!?>~!* based primarily on the scaling
hypothesis are controversial and not quantitative (see
Sec. II). The Monte Carlo simulations carried out in the
past are devoted to the “global” coverage dependence of
the chemical diffusion coefficient connected first of all
with the coverage dependence of D; (see the review in
Ref. 5 and also Refs. 16—19). A lot of attention has also
been paid to the relationship between the results obtained
in the framework of different schemes of simulations cor-
responding respectively to the Kubo equation, fluctuation
method, or Boltzmann-Matano procedure. On the other
hand, the anomalies of diffusion at critical coverages were
not explored carefully. In fact, this phenomenon was ig-
nored because the lattice size employed in simulations
was often too small, the coverage grid was too rare, and
the statistics were too poor. (In the 3D case, the effect
under consideration has apparently not been studied in
detail either.2%2})

Our paper is organized as follows. Section II contains
a brief review of the available analytical results'?™!3
based on such ideas as scaling, critical exponents, Fisher
renormalization, and renormalization-group theory. The
information collected in this section is essential for a
deeper understanding of the types of problems we want to
discuss and the significance of the results obtained in our
work for the hard hexagon model by employing the
analytical solution constructed by Baxter?? (Sec. III) and
for the lattice-gas model (a square lattice with nearest-
neighbor repulsion) by using the transfer-matrix tech-
nique (Sec. IV A) and Monte Carlo simulations (Sec.
IV B). Our main conclusions are summarized in Sec. V.

6 du _

T 20 @)

II. REVIEW OF ANALYTICAL RESULTS

The mean-field approximation and phenomenological
Landau theory are well known to result in a stepwise cov-
erage dependence of the chemical diffusion coefficient
near critical converges (see, e.g., Ref. 23). These ap-
proaches are, however, too approximate. More accurate
predictions may be obtained by employing the scaling hy-
pothesis, which yields for the singular contribution to the
temperature dependence of the free energy at 6=const
the following well-known expression:2*

Fe|T—T,(6)* %, (8)

where 7,(6) is the critical temperature at a given cover-
age, and a the specific-heat exponent. Using simple argu-
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ments, Bolshov and Veshchunov!? (see also Ref. 13) have
shown that Eq. (8) can be converted into the singular con-
tribution to the coverage dependence of the free energy at
T =const,

FOC|9—91'2;“ ’ (9)

where 0, is the critical coverage corresponding to a given
temperature [the transition from (8) to (9) is possible at
T <Ty, where T, is the maximum critical temperature].
Corgidering that u=0F /360 and D «du/d6, one then
has

D«|6—6, . (10)

Discussing Eq. (10), Bolshov and Veshchunov!? treated
a as a formal parameter and admitted that it may be both
positive and negative. If a>0, Eq. (10) was assumed to
predict an infinite power-law anomaly at 6=60,. For
a <0, the diffusion coefficient was expected to have a
cusplike minimum at coverages near 8, with D (6,)=0 at
6=0,.

From our point of view, Eq. (10) is correct but its for-
mal application may result in confusion. The problem is
that the critical exponents are customarily calculated
(and measured) at extreme points such as 6,=0.5 (Fig. 1).
These points correspond to zero external field if we em-
ploy the “magnetic” terminology. Critical exponents at
other points can be calculated by assuming that the na-
ture of the phase transition is the same along lines with
fixed external field (i.e., with a fixed value of the chemical
potential for a lattice gas). Using this hypothesis, Fish-
er?® has shown that beyond the region near 6, the free en-
ergy along lines with fixed coverage can be represented as

FQ:|T_TC(9)|(2*a)/(1~a) , (11)

where a is the specific-heat exponent calculated or mea-
sured at 6=46, [formally, Eq. (11) can be obtained from
Eq. (9) by replacing @ by —a/(1—a)]. Then, we have
(see Ref. 13 written by one of the authors of the present
paper)

D x|p—0,|*/ 17 (12)

Equations (11) and (12) hold at a > 0. On the other hand,
if a <0, Fisher?® has shown that the critical exponents
should not be renormalized [i.e., we may use Eq. (10)].
Using the Fisher renormalization, it is possible also to
show that for a=0 (the Ising case) the theory yields'?

D x<1/|In|6—6,]]| . (13)

In all the cases [Eq. (12) for >0, Eq. (10) for a <0, or
Eq. (13) for a=0], the diffusion coefficient is seen to be a
continuous function of coverage, and contrary to the pre-
dictions of Bolshov and Veshchunov!? any infinite
anomalies are absent. In fact, we have no grounds to ex-
pect at 6+0, even finite cusplike maxima caused by the
factor du/d6. Instead, we should have cusplike minima
(the cusplike maxima really occur but at such points as 6,
where a low-temperature phase is well ordered, fluctua-
tions are suppressed, and the derivative du /96 is very
high®!7). The value of the diffusion coefficient at 6=6,
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was not discussed explicitly in Ref. 13. Implicitly, the au-
thor, however, bore in mind that D >0 at =60, due to
regular terms in the expansion of free energy near 6,.

From symmetry consideration, 26 the continuous phase
transitions in adsorbed overlayers usually belong to one
of four universality classes: Ising (¢=0), x-y with cubic
anisotropy (nonuniversal), three-state Potts (a=1), and
four-state Potts (¢ =2). For all these classes, @ = 0. Thus,
the Fisher renormalization discussed above is particularly
important for real systems.

Responding to the comments in Ref. 13, Veshchunov
wrote a paper'* containing the following three state-
ments. (i) With the Fisher renormalization for a >0, the
coverage dependence of the chemical diffusion coefficient
is described near critical coverages by Eq. (11) and the
diffusion coefficient precisely equals zero at 6=0,. (ii) In
some exceptional case, the Fisher renormalization may
occur at a <0 and the diffusion coefficient may have an
infinite anomaly. (iii) In Ref. 12, the sign and values of
the critical exponents are confused.

From our point of view, Veshchunov’s statements (i)
and (ii) support in fact the main conclusion of Ref. 12
where the infinite anomalies were rejected (the exception-
al cases mentioned by Veshchunov may take place only
under the conditions that do not have any physical
sense). Comment (iii) written by Veshchunov is wrong (it
has no grounds).

Special features of the coverage dependence of the
chemical diffusion coefficient at T <T, have also been
studied by Tarasenko and Chumak!® employing the site-
cell renormalization technique to describe diffusion on
triangular and hexagonal lattices. According to their cal-
culations, the diffusion coefficient has shallow cusplike
minima at critical converges. Qualitatively, this result is
in agreement with the scaling analysis given in Ref. [13].
On the other hand, the quantitative accuracy of the data
obtained is not quite clear because they are based on the
simplest renormalization procedures.

In summary, the available analytical results seem to in-
dicate that at T <T, the chemical diffusion coefficient
should have cusplike minima at critical coverages. There
is even a prediction!* that the diffusion coefficient should
equal zero at these points.

III. THE HARD HEXAGON MODEL

The ideas outlined in Sec. II are based primarily on the
scaling hypothesis. It is of interest to verify the predic-
tions obtained in such a way by using the results derived
for exactly solved models. At present, the exact solutions
are available for a few models.?? Almost all these solu-
tions correspond unfortunately to the ‘“zero-field” case
(i.e., to points such as 6,) and accordingly cannot be em-
ployed for our discussion. Some relevant results seem to
occur only for the hard hexagon model. Our goal is to
consider these results in the context of surface diffusion.

The hard hexagon model involves a two-dimensional
gas of hard (i.e., nonoverlapping) particles on a triangular
lattice.?? If one regards each particle as the center of a
hexagon covering the six adjacent faces, then the rule
only allows hexagons that do not overlap. This model in
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fact does not contain temperature but, with increasing
coverage, exhibits a continuous phase transition at
0=6,=0.276 with a=1. Near this point, the Baxter ex-
act solution [see Eqgs. (14.7.10) and (14.7.11) in Ref. 22]
yields

|60—6,| < |p—p, 1>, (14)
or
n—py | <|6—6,1°". (15)
Using Eq. (15), we have
%% «|6—6,]172 . (16)

This equation indicates that the diffusion coefficient
should have a cusplike minimum near 0,, with D (6,)=0.
Taking into account that =1, we also conclude that the
exponent in Eq. (16) is in agreement with that predicted
by Eq. (12) [in other words, Eq. (16) is in agreement with
the Fisher renormalization].

IV. DIFFUSION ON A SQUARE LATTICE

In this section, we consider diffusion of particles on a
square lattice. The nearest-neighbor adsorbate-adsorbate
interaction is assumed to be repulsive, £, >0. The other
interactions are ignored. A phase diagram for the system
under consideration is shown in Fig. 1. To study peculiar-
ities of the chemical diffusion coefficient at critical cover-
ages, we use the transfer-matrix technique (Sec. IV A)
and Monte Carlo simulations (Sec. IV B). All the numeri-
cal results presented below have been obtained for
T =¢,/3 (see the dashed line in Fig. 1).

A. Transfer-matrix technique

In the framework of the transfer-matrix technique
(TMT), the lattice is replaced by a strip infinite in one
direction and of the finite width L with periodic bound-
ary conditions along the other direction. Then, the grand
canonical partition function, free energy, and chemical
potential can be obtained exactly by calculating the larg-
est eigenvalue of the transfer matrix, A, (see, e.g., Refs.
27-29). In addition, one can obtain the correlation
length given by é=a/In(Ay/|A,|), where a is the lattice
spacing, and A, the second largest (by its absolute value)
eigenvalue. The critical temperature is calculated from
the equation given by the scaling hypothesis for the
correlation length,

EL)/L=&L,)/L, , (17)

where £(L) and &(L,) are the correlation lengths for
strips with the sizes L and L,. Employing TMT, one can
also calculate the probabilities of different arrangements
of adsorbed particles.?>?° The latter makes it possible to
use TMT to describe the kinetic processes in adsorbed
overlayers.

Studies of surface diffusion by employing TMT are just
beginning. The results available at present®®3° have been
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obtained at small L, such as L =4 or 6. Such L are
reasonable if the goal is to obtain a “global” coverage
dependence of the diffusion coefficient. The anomalies at
critical coverages can, however, be explored only if L is
much larger than 6. In the present study, we changed L
from 6 up to 16 in order to calculate the coverage depen-
dence of the chemical potential.

In principle, we are interested in the derivative du /96.
In practice, however, it is reasonable to calculate d6/0u
because the latter derivative is proportional to the mean
square number fluctuation [cf. Eq. (7)],

T 36 _ ((5N)?)
0 du (N)

and can be directly compared with the results of Monte
Carlo simulations (Sec. IV B).

Using Eq. (17), we have obtained that at T'=¢,/3 the
critical coverage is 0.387. Near this coverage, the deriva-
tive 36 /0u has a maximum (Fig. 2). The important point
is that this maximum increases with increasing L. The
asymptotic behavior of the maximum value of 06/du is
expected to be given by

96
du

Our calculations indicate that y =0.2 at L =16 (Fig. 3).
If representation (19) is correct and the parameter y is

(18)

=A+BL7 . (19)

max

016 —

014 16 T
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FIG. 2. Derivative 86/3u as a function of coverage for
T =¢,/3. The different curves have been obtained by employ-
ing the transfer-matrix technique with L =6, 8, 10, 12, 14, and
16, respectively.
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FIG. 3. Parameter y in Eq. (19) as a function of L. For a
given value of L, this parameter (together with the parameters
A and B) was derived from the maximum values of the deriva-
tive 30/0p at L —2, L,and L +2.

really positive at L — oo, the derivative 860 /du should be
infinite at the critical coverage. Accordingly, the deriva-
tive du /00 should be equal to zero. In the context of this
analysis, it is of interest to note that our TMT calcula-
tions for the hard hexagon model yield y~=0.42 at
L =20, and in this case the derivative du /90 is really
equal to zero at the critical coverage (Sec. III).

In summary, the TMT results indicate that the deriva-
tive du /36 has a minimum at critical coverages. Accord-
ingly, the chemical diffusion coefficient should have the
same anomalies. The minimum obtained is fairly weak
even at L =16. On the other hand, the calculations
clearly indicate that the effect should be more pro-
nounced upon further increasing L. The latter is unfor-
tunately beyond our capabilities.

B. Monte Carlo simulations

General schemes of Monte Carlo (MC) simulation of
surface diffusion are described in detail in Refs. 16,17. In
the present study, the results have been obtained by em-
ploying the approach based on the Kubo theory [Eq. (2)
with expression (4) for D;]. The kinetic and thermo-
dynamic factors, D; and (6/T)du/06, were calculated
separately. The first one, given by Eq. (4), was derived by
using the canonical ensemble (CE) and assuming that the
lateral interaction in the activated state is absent (i.e., the
saddle points for jumps are unaffected by adjacent parti-
cles). The second one was calculated by analyzing fluctua-
tions of the number of particles on the whole array of
sites in the framework of the grand canonical distribution
[see the right-hand part of Eq. (18)]. All the simulations
were carried out on square arrays containing L XL sites
with L from 32 up to 256. The numerical algorithm in-
volved parallelized steps in order to take full advantage
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FIG. 4. Square of the order parameter as a function of cover-
age for the 256 X256 lattice at T =g, /3. The data presented in-
dicate that the critical coverage, defined as that corresponding
to the inflection point, is 0.385.
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and (d) 256X256 at T'=¢,/3. Filled circles show the data obtained from Monte Carlo simulations. Solid lines were constructed by
“hands” in order to emphasize general tendencies observed.
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of the computational power of the Paragon XP/S-10
supercomputer at Jiilich.

Our preliminary simulations have shown that the num-
ber of Monte Carlo steps (MCS) required for equilibra-
tion in the grand canonical ensemble (GCE) is well below
1000 for all the lattice sizes studied (both for ordered and
disordered initial arrangements). In the final runs, we
used 2000 MCS for equilibration and then an additional
5000 MCS for determination of the desired quantities. In
this case, the statistics are good for relatively small and
medium lattices (e.g., for L =32 and 64). With increas-
ing the lattice size (e.g., for L =128 and 256), the data
contain a considerable noise. Our experience indicates
that the noise decreases with increasing the number of
MCS but very slowly. To reduce significantly the noise
for large lattices, one should increase the number of MCS
by at least one order of magnitude (the latter was beyond
our capabilities).

Typical results for GCE are presented in Figs. 4—6. In
particular, Fig. 4 shows that at T"=g¢, /3 the critical cov-
erage is 0.385. Figure 5 indicates that the chemical po-
tential is a smooth function of coverage. Figure 6 demon-
strates that the coverage dependence of the mean square
number fluctuation has a maximum at critical points and
this maximum increases with increasing L. All these pre-
dictions are in qualitative agreement with those obtained
by employing TMT (Sec. A). One may naturally expect

0.16 ——————————————————
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FIG. 7. Derivative 00/0u as a function of coverage for
T =¢€,/3. The solid line represents the results given by the
transfer-matrix technique with L =16 (cf. Fig. 2). The filled cir-
cles were obtained by substituting into Eq. (18) the Monte Carlo
data shown in Fig. 6(a) for the 32X 32 lattice.
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that the agreement should be quantitative if L in MC
simulations is slightly higher than that in TMT. Figure 7
shows that the latter does take place.

Figure 8 exhibits the coverage dependence of the Kubo
chemical diffusion coefficient. As pointed out above, the
thermodynamic factor has been calculated by employing
GCE, and the kinetic factor has been gotten by using CE.
Simulations with CE including an analysis of correlations
in the arrangement of different particles [Eq. (4)] are ex-
tremely time consuming [to construct Fig. 8 it was neces-
sary to spend 10 h of the CPU time on 64 (out 140) nodes
of the Paragon]. However, the result obtained justifies
the expenses because it clearly indicates that the chemical
diffusion coefficient does have a minimum at the critical
coverage. ’

V. CONCLUSION

We have studied anomalies in the coverage dependence
of the chemical diffusion coefficient at points correspond-
ing to continuous phase transitions. The results obtained
are of interest from the differential points of view includ-
ing methodology of simulations, general theory, and ex-
periment.

Our methodological finding is that the anomalies under
consideration are visible only if the lattice size is consid-
erable. Employing TMT, it is desirable to use L >20. In
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0.34 0.36 0.38 0.40 0.42 0.44
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FIG. 8. Chemical diffusion coefficient as a function of cover-
age for T'=¢,/3. Filled circles show the Monte Carlo data for
the 64X 64 lattice. The solid line was constructed by “hands” in
order to emphasize general tendencies observed.
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MC simulations, L should be larger than 50. In our TMT
and MC calculations, the maximum L was 16 and 256,
respectively. Our main result (Fig. 8) was obtained by
MC simulations. We should also note that by employing
TMT we can in principle calculate the average jump rate
in Eq. (6) (see Refs. 28-30), but we are not able to obtain
the coefficient D; defined by Eq. (4) because the latter
coefficient depends in general on long-range correlations
in the arrangements of particles. Calculating the thermo-
dynamic properties (e.g., the chemical potential), TMT
takes into account correlations with lengths up to L au-
tomatically but such correlations cannot be tracked in de-
tail in order to calculate the coefficient D; given by Eq.
(4). Thus, one might conclude that MC simulations are
much more powerful compared to TMT. However, this
conclusion is not quite right because if the computer
resources are the same and we are interested only in the
thermodynamic properties, the TMT results may be more
accurate compared to MC simulations (note that the
computer resources employed to obtain the TMT data
presented in Sec. IVA were much lower compared to
those used to get the MC results shown in Sec. IV B).
Our main contributions to general theory of surface
diffusion are as follows. (i) For the hard hexagon model,
we have shown that the chemical diffusion coefficient ex-
actly equals zero at the critical coverage and its behavior
near this point is in agreement with the predictions of the
scaling theory provided that one takes into account the
Fisher renormalization of the specific-heat exponent. (ii)
For a square lattice with repulsive interactions between
nearest-neighbor particles, our detailed TMT and MC
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data indicate that the chemical diffusion coefficient has a
minimum at critical coverages and its value at these
points decreases with increasing lattice size (there is even
evidence that D —0 at L — o).

Our simulations show also that the phase-transition-
induced peculiarities in the coverage dependence of the
chemical diffusion coefficient are localized in rather nar-
row regions near critical points. Typically, the width of
these regions is lower than or about a few percent of the
monolayer. The change in the value of the diffusion
coefficient near critical points is, however, considerable.
On the other hand, the contribution of the critical points
to the “global” coverage dependence of the diffusion
coefficient is relatively minor. All these conclusions may
be instructive from the point of view of experimental
studies of surface diffusion.
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