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I. S. Tilinin and A. Jablonski
Institute ofPhysical Chemistry, Polish Academy ofSciences, ulica Kasprzaka 44/52, 01-224 Warsaw, Poland

S. Tougaard
Institute ofPhysics, Odense University, Campusvej 55, DK 5230-Odense M, Denmark

(Received 23 January 1995)

The path-length distribution function characterizing the probability for a photoelectron to escape
from a homogeneous solid after traveling a certain path length R has been found analytically by solving
a Boltzmann-type kinetic equation with appropriate boundary condition. The solution is obtained in the
transport approximation and is valid for an arbitrary geometry and under the condition that the typical
angular spectrum of photoelectrons is a smooth function of the angular variable. It is shown that, de-
pending on the initial anisotropy of the photoelectron emission, the path-length distribution may either
reach a maximum value at a certain path length or be a monotonically decreasing function. The path-
length distribution has also been calculated by the Monte Carlo technique employing realistic Mott
differential elastic-scattering cross sections. The theoretical results were obtained for a number of photo-
electron lines in Al, Cu, and Au with different asymmetry parameters and photoelectron energies. It was
shown that within about 10% accuracy the path-length distribution function is a universal function of
the path length divided by the transport mean free path. This conclusion is in full accordance with the
prediction of the transport approximation. The consequences and implications of elastic-scattering
effects for the inelastic background analysis of Auger electron spectroscopy and x-ray photoemission
spectroscopy energy spectra are discussed.

I. INTRODUCTION

The energy spectra of photon-excited core electrons
emitted from solids are influenced by the inelastic-
scattering processes experienced by the electrons on their
way out of the solid. The electron energy loss depends on
the path-length distribution function Q(R, Q) which de-
scribes the probability for a photoelectron generated in-
side a sample to leave the surface in the direction Q after
traveling the path length R (here Q is a unit vector along
the particle velocity). Knowledge of Q(R, Q) for Auger
electrons or photoelectrons makes it possible to evaluate
the energy spectrum of the peak, provided that the
inelastic-scattering cross section for electrons moving in
the sample is known. ' The geometrical configuration
corresponding to a typical x-ray photoemission (XPS) ex-
periment is shown schematically in Fig. 1. A target is ir-
radiated by a beam of x rays incident at the polar angle 0.
Photoelectrons generated inside the sample and leaving
the surface, in a given direction, without a major energy
loss are collected by the analyzer. The monitored energy
spectrum of signal electrons in the vicinity of the charac-
teristic peak is proportional to a convolution of the path-
length distribution function and the energy distribution
as a function of the traveled path length. The path-
length distribution function is therefore important for a
quantitative interpretation of electron energy spectra,
and has been the subject of several investigations in the
past. '

Different analytical models have been applied to deter-

n
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FIG. 1. Outline of the XPS configuration and the notation
used.

mine the path-length distribution. The most general
theoretical approach is based on solving a kinetic
Boltzmann equation (Ref. 9, p. 6). Although the exact
solution of the kinetic equation may be obtained by
Case's method of singular eigenfunctions (Ref. 9, p. 87),
this procedure is rather complex in practical applica-
tions. ' For this reason, several approximate solutions
were attempted in the past. The quantity Q(R, Q) was
calculated analytically in the diffusion approximation by
Tougaard and Sigmund. Later, the I', approximation
approach was applied by Tofterup and Dwyer and
Matthew to describe the energy spectrum in the vicinity
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of the characteristic peak.
Whereas the diffusion approximation becomes valid for

large path lengths, it is inadequate to describe the func-
tion Q(R, Q) for electrons in the vicinity of the peak,
where the typical electron has traveled a path length only
of the order of a few inelastic mean free paths. In addi-
tion, the latter approximation implies an expansion of the
distribution function into a sum containing only the first
two Legendre polynomials, which obviously do not form
the complete set of solutions of the transport equation.
As a result, the boundary condition at the target surface
cannot be satisfied.

A relatively new development in the field of approxi-
mate solutions of the kinetic equation is the so-called
transport approximation. '" ' Within this approxima-
tion, the actual elastic-scattering cross section is replaced
by the uniform cross section, equal to the corresponding
momentum-transfer cross section. This makes possible
an analytical solution of the resulting integrodifferential
equation for a number of problems associated with elec-
tron transport. The transport approximation was suc-
cessfully applied to determine the emission depth distri-
bution function, "' photoelectron intensity for different
XPS configurations, ' and the elastic backscattering
probability of electrons from solids. '

The path-length distribution function can also be cal-
culated using the Monte Carlo approach. In the pub-
lished algorithms, ' ' the generated path lengths were
directly used for calculating the photoelectron intensity.
However, with a slight modification, the same algorithm
can be used to estimate the path-length distribution.

In the present work, we consider different theoretical
models to evaluate the function Q(R, Q). This function
is derived analytically within the transport approxima-
tion and by the Monte Carlo technique. Using the calcu-
lated functions Q (R, Q), we also investigate the influence
of elastic photoelectron scattering on the shape of the
XPS spectra and the inelastic background intensity.

II. THEORY

A. Common formalism of XPS

Elastic scattering of photoelectrons is neglected in the
formalism routinely used in a quantitative XPS analysis.
Let us consider a layer of thickness dz at a depth z. The
contribution to the recorded signal strength, dF, corre-
sponding to the considered layer, is given by the follow-
ing expression

cross section. For unpolarized radiation and a random
orientation of atoms or molecules, this cross section is
given by'

der /dQ=o 1
1 ——(3 cos e—1) =o S(Q), (2)

where o. is the total photoelectric cross section, 8 is the
angle between the direction of x rays and the direction of
the analysis, and P is the so-called asymmetry parameter.
We see from Eq. (1) that, in this formalism, the photo-
electron trajectory lengths corresponding to the con-
sidered layer are assumed to be identical and equal to
z /cosa.

In the typical experimental XPS arrangement, a semi-
infinite solid is exposed to a broad beam of x rays, irradi-
ating an area much larger than the area being analyzed.
Usually it is assumed that the analyzed area is propor-
tional to 1/cosa, and this accounts for the corresponding
term in Eq. (1).

Within the common XPS formalism, the photoelectron
creation is assumed to be uniform in the layer submitted
to analysis. This assumption is reasonable in view of the
much stronger attenuation of photoelectrons than that of
x rays in the solid. Consequently, the Aux E is indepen-
dent of the depth z.

Assuming a homogeneous-in-depth composition of the
solid, after integration of Eq. (1) over all depths we obtain

Y =CA, ;pS (Q), (3)
where

C = TDF„(Hot)D, QMcr„, (4)

and p=cosa. Ebel et al. ' have shown that deviations
from the above model of photoelectron transport result in
a distribution of the length of trajectories originating
from a given layer. They indicated that this may be due
to (i) a large solid acceptance angle of the analyzer, (ii)
surface roughness, and (iii) elastic photoelectron col-
lisions. Knowledge of this distribution leads to a more
realistic formalism describing the photoelectron intensity.
In the present work, we approach the problem of the tra-
jectory length distribution assuming a small solid angle of
the analyzer. In experimental practice of XPS, indeed,
the acceptance angles usually vary within a few degrees
(e.g. , 1.4' or 4.1', cf. Ref. 14). Let us denote by q (R, Q, z)
the distribution of the lengths R of trajectories originat-
ing at a depth z. Equation (1) can be written as

dY= J q(R, Q z) exp( —R/A, ;)dR dz, z &R & oo,Cp oo

4~ o
2Y= TDF„(Ao/cosa)b QM(der„/dQ)

X exp[ —z/(A, ; cosa) jdz, (1 where
where T is the analyzer transmission function, D is the
detector efBciency, E is the Aux of incident x rays, Ao is
the analyzed area at the normal direction of analysis, AA
is the solid acceptance angle of the analyzer, M is the
atomic density of the element, k; is the inelastic mean
free path of the analyzed photoelectrons, and a is the
detection angle with respect to the surface normal. In
Eq. (1), do.„/dQ denotes the differential photoelectric

q (R, Q, z) =4rrS ( Q )5(p R —z),
and 5(x) is the Dirac function. The integration with
respect to the depth, z, can be performed as follows:

Y= f Q(R, Q) exp( —R /A, ;)dR,
4m o

where Q (R, Q) is the total path-length distribution
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Q(R, Q)= f q(R, Q, z)dz . (8)
0

For the common XPS formalism, from Eqs. (6) and (8) we
have

defined by

2m.M f (1—cosg) singdg
0 dQ

Q(R, Q)=4mS(Q)=const . (9)

It follows from Eqs. (2) and (9) that, within the con-
sidered formalism, the path-length distribution is only a
function of the XPS configuration. However, due to elas-
tic photoelectron collisions, the function q(R, Q, z) de-
pends on the path length R in a much more complicated
way than that described by expression (6), and, conse-
quently, function Q (R, Q) is no longer a constant. Since
the knowledge of the path-length distribution is of crucial
importance for a quantitative XPS analysis [cf. Eq. (7)],
in the present work, the function Q(R, Q) was deter-
mined from the Monte Carlo algorithm and from the
transport approximation. Details of both theoretical ap-
proaches are given in the following sections.

where der/dQ is the differential elastic-scattering cross
section, and g is the polar scattering angle. Note that
negative values of v & 0 correspond to electrons moving
toward the surface, while positive v values refer to elec-
trons moving toward the bulk of the target. Equation
(11) follows from the usual time-dependent transport
equation for a nonabsorbing medium (Ref. 9, p. 16) when
taking into account that the path length traveled by the
electron is related to the time t and the particle velocity U

by the simple formula R =vt.
We are looking for a solution of the problem, defined

by Eqs. (11)and (12), in the form

B. Transport approximation

Let us consider the XPS configuration shown in Fig. 1.
The electrons generated inside the target by photoioniza-
tion of atoms escape from the sample in the direction 0
specified by the polar angle o, counted from the surface
normal and the azimuthal angle P counted from the plane
of incidence. The initial angular distribution of photo-
electrons emitted in the sample, S(Q), is assumed to be
described by the probability density function given by Eq.
(2), in w'nich e is now the angle between vector Q and the
direction of x rays. We denote by I'( Q )d Q the
di6'erential yield of photoelectrons escaping from the
sample in the direction (Q, dQ) without being scattered
inelastically. Furthermore, let us denote by N(z, R, Q)
the Aux density of electrons moving at the depth z in the
direction 0 after traveling the path length R. The trajec-
tory length distribution function is related to the Aux
density by the equation

Q(R, Q)=4nN(z =O, R, Q) . (10)

N(r=O, Q,p)=0 for v)0, (12)

where v is the cosine of the polar angle between vector Q
and the z axis, ~ is the dimensionless depth

r =z/A, „,
p is the dimensionless path length

Hence to find the path-length distribution function one
should determine the electron Aux density N. The latter
quantity satisfies the kinetic equation with the boundary
condition implying that no secondaries enter the sample.
Thus, applying the transport approximation, we have

= —N+(4~) ' f dQ'(r, Q'p) — +S(Q)5(p),ax
ar 4~ 9p

N(r, Q,p) =(2ni)

X f dQOS(Qo)

X f G (r, Q~QO) exp(pp)dp,
p —

g oo

(13)

where y is located to the right of the integrand singulari-
ties (Ref. 9, p. 175), and the Green's function G (r, Q, Qo)
satisfies the equation

BGp
v = —g(p) 'G +(4m. )

' f G (r, Q'iQO)dQ'
a7. p s 0

+5(Q —Qo), (14)

with a boundary condition of type (12). In Eq. (14), the
single scattering albedo, g(p), reads

g(p) =(1+p) (15)

The solution of Eq. (14) with the boundary condition of
type (12) can be found by splitting the Green's function
into two components.

' The first component corresponds
to the solution of the secondary emission problem for an
isotropic source of power, g/4m, while the other is pro-
portional to the Green's function for the albedo problem
in the case of an isotropically scattering medium. More
details are available elsewhere. ' In particular, the value
of the Careen's function G at the surface for v & 0 is given

by the expression

p=R jA,„, Gz(O, Q~QO)=T&(Q, Qo) for any v(0, (16)

and A,„denotes the so-called transport mean free path where
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Pp)voH [ —v Pp)]H [vo Pp)]
for vo&04n(v.o v—)

T (/ g )
0(p)H[ — Pp)l+ (17)o 4~[1 g( )]I/2 5(Q —Qo) for vo & 0.

In the latter expression H (v, g) is the H function of Chandrasekhar.
Substitution of formula (16) into (13) yields the explicit expression for the outgoing fiux density of photoelectrons

X(O, Q,p). Then, by making use of relationship (10), we arrive at the final result for the path-length distribution func-
tion:

Q (R,0)= (2~i) ' f g(p)
' [1—g(p) ]

' H [p, g(p) ]—(P/4) [3cos 8—1]

+ [P(3p —I )/16]g(p) f xH [x,g(p) ]H [p, g(p) ](x +p) '(3x —1)dx '
exp(pp)dp .

0
(18)

In formula (18) p =cosa, and pr is the cosine of the incidence angle of x rays. The contour of integration I in Eq. (18)
embraces the cut from —1 to 0 along the real axis in the complex p plane. In the case of an initially isotropic angular
distribution (P=O), expression (11) reduces to formula (17) of Ref. 7.

To facilitate an analysis of the path-length distribution behavior, it is advisable to present the function Q(R, A) in
terms of real integrals. For this purpose we rewrite Eq. (18) in the following way:

Q(R, Q)=EC, (p, p) —(P/4)[3 csoe 1]e—xp( —p)+[P(3pr 1)/16]I—C2(p, p),
where the notation

(19)

(21)

&,(p, V )=(2~i) ' f r(p)[1 —C(p)] '"H [i,C(p)] exp(pp)dp, (20)r
E2(p, p)=(2mi) ' f g (p) f xH[x, g(p)]H[iu, , g(p)](x+iu) '(3x —1)dx exp(pp)dpr 0

is introduced. Integrals (20) and (21) over the complex p variable can be reduced to real integrals along the upper and
lower edges of the cut from —1 to 0. By applying the approximate expression for the H function of Chandrasekhar,

H [p, g]=H(p, 1)[1+[H(p,1)—1](1—g)'i ]

the integrals mentioned above may be transformed to the expressions

K, (p, iu)=k f [(1—u)/u]' [I+uV(p)] 'exp( —up)du,
0

(22)

(23)

~ ( iJ) ke„p( )f—'.„in(1 „)—in( ex [p(1 —u)] —I]
i xH x, 1)(3x —1)[H(P, 1)+H( xl) —2] d d

o [1+uV(iM)][1+uV(x)](x+p, )

(24)

The factors k and V in formulas (23) and (24) are defined
by the equations

k '= f [(1—u)/u]'~ [1+uV(p)] 'du,
(25)

V(t)=[H(t, 1)—1]'—1 .
The accuracy of the approximate formulas (23) and (24) is
about 1 —2 %%uo. Expression (19) together with Eqs.
(23)—(25) is very convenient for numerical evaluation of
the path-length distribution function. Close inspection of
the terms entering the right-hand side of Eq. (19) reveals
that the third term is usually small compared with the
first two terms. The first term diminishes very slowly
with increasing path length p, proportionally to p

'~ (cf.
Ref. 7). From a physical point of view, it corresponds to
the randomized fraction of the photoelectron Aux since
no dependence on the initial emission direction as well as
on the angle of incidence of x rays is present. The second

term may be either negative or positive depending on the
angle e. This part of the path-length distribution func-
tion describes the inQuence of anisotropy of photoemis-
sion. In the transport approximation, information about
the anisotropy is retained by particles that are not scat-
tered at all or that experience multiple small-angle
deAections. That is why the second term decays ex-
ponentially and the rate of decay is determined by the
transport mean free path A,„. Due to this fact, an in-
teresting competition occurs between the first and second
terms. Consider, for example, the case of normal emis-
sion and incidence and the asymmetry parameter being
equal to P=2. In this situation no photoelectrons are ini-
tially emitted in the direction p=1. As a result the
path-length distribution function is zero for p=0 and
Q(O, Q) =0. However, owing to elastic-scattering effects
some electrons after traveling a certain path length may
change their direction of motion and escape from the sur-
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face along the normal. In this case, the function Q will
have a maximum at the path length po 1 ~ 5.

C. Monte Carlo scheme

The Monte Carlo approach has frequently been used to
describe photoelectron transport in solids. ' ' These cal-
culations were devoted to the problems of the angular
distribution of photoelectron emission, photoelectron in-
tensity, and the sampled depth. The algorithm used in
the present work for calculations of the trajectory length
distribution was based on assumptions similar to the al-
gorithms published earlier. These assumptions are briefly
summarized below.

(1) The scattering potential corresponding to the
scattering centers of the solid is approximated by the
Thomas-Fermi-Dirac potential. The total scattering
cross section o.„and the differential elastic-scattering
cross sections der/dQ, are determined for this potential
prior to Monte Carlo calculations.

(2) The elastic-scattering events along the photoelec-
tron trajectory are assumed to follow the Poisson sto-
chastic process. In that case, the linear step lengths be-
tween elastic collisions follow the exponential distribu-
tion

E(A) =(1/A. , ) exp( —A/A, , ),
where A,, is the elastic mean free path:

A., =(Mo, )

(3) The scattering event is described in the local coor-
dinates (the z axis in the direction 0) by the azimuthal
scattering angle and the polar scattering angle g. A uni-
form distribution, in the range from 0' to 360', is assumed
for the azimuthal scattering angles. The polar scattering
angles are described by the distribution

f (g) = =2m sing .1 da 1 do.

o, d o., dA

(4) The probability density function for the initial dis-
tribution of photoelectron emission is described by Eq.
(2).

(5) Photoelectron emission is assumed to be uniform
with depth, corresponding to a homogeneous solid.

The photoelectron trajectory was followed until the
photoelectron left the solid, or until its length was too
large to make a significant contribution to the intensity.
In the present work, the largest length considered was
equal to 10K,;. As in earlier calculations, ' the solid ac-
ceptance angle of the analyzer was defined by the half-
cone angle 10'. The value of the function Q(R) for the
interval R +DR was estimated from

(26)

Suppose that the ith photoelectron traveled the distance
R; in the solid. The quantity b, , (R) for this photoelec-
tron was assigned the following values:

1 if R —AR (R; (R +DR
b,;(R)= ' and the photoelectron entered the solid angle b,Q

0 in all other cases.
(27)

The histogram resolution AR was 0. 1X;. To obtain good
statistics, 3 X10 photoelectron trajectories were generat-
ed for each energy and XPS configuration. The
confidence interval was followed for the total photoelec-
tron intensity corresponding to a given function Q (R).
This interval decreased below l%%uo in all considered cases.

III. RESULTS

Calculations of the trajectory length distribution func-
tion were made for photoelectrons ejected in elemental
aluminum, copper, and gold by Mg Ea radiation. The
kinetic energies considered correspond to Al 2s (1135 eV),
Cu 2@&&2 (320 eV), Cu 3s (1130 eV), Au 4s (491 eV), and
Au 4f7&2 (1169 eV). For each kinetic energy, three
values of the asymmetry parameter p were assumed:
p=0, 1, and 2. This was made in order to establish the
inhuence of the initial anisotropy on the shape of the
function Q(R, fl). Two XPS configurations were con-
sidered in the present work.

(1) a=15', /=0', and 8=20'. This is the geometry of
the spectrometer based on the VG CLAM 100 analyzer.
For this geometry 8=35', and we expect that the elastic

I

photoelectron collisions increase the peak intensity. '

(2) a=45', /=0', and 8=45'. For this geometry
6=90', and the elastic-scattering effect is expected to de-
crease the peak intensity. '

The function Q (R, Q) was calculated for three theoret-
ical models, described in Sec. II: (i) the common XPS
formalism, also called the straight-line approximation
(SLA) [Eq. (9)]; (ii) the transport approximation [Eqs.
(19) and (23)—(25)]; and (iii) the Monte Carlo simulation
[Eqs. (26) and (27)]. Results of calculations for copper
and gold are shown in Figs. 2 and 3. One can see that, in
all cases, the transport approximation and the Monte
Carlo algorithm provide very similar path-length distri-
bution functions. The function Q(R, A) calculated from
the Monte Carlo scheme, implementing the actual distri-
bution of scattering angles, should be identical to the
function resulting from the accurate solution of the kinet-
ic equation. For this reason, the Monte Carlo results
may be considered as a reference for testing the reliability
of the approximate solutions. Figures 2 and 3 prove that
the transport approximation is a powerful tool for deter-
mining the functions Q(R, Q), the more so as the corre-
sponding algorithm is several orders of magnitude faster
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than the Monte Carlo calculations.
As follows from Figs. 2 and 3, the elastic photoelectron

collisions considerably inAuence the shape of the trajecto-
ry length distribution. The value of the function Q (R, Q)
at R =0 resulting from the straight-line approximation is
always the same as the value obtained from theories ac-
counting for elastic scattering. This result is obvious
since the probability of elastic collision within a short tra-
jectory is low, and the straight-line approximation is then
valid. Pronounced deviations are observed, however, for
larger trajectory lengths. The shape of the function
Q (R, Q) depends dramatically on the XPS configuration
and on the asymmetry parameter. This function, calcu-
lated from theories accounting for elastic collisions, may
be smaller or larger than the constant value predicted by
the straight-line approximation. In some cases, an in-
volved shape with a maxirnurn has been obtained. The
analysis of the shape of the function Q (R, Q) is facilitated
by the normalization defined by Eq. (7). As follows from
Eqs. (19) and (23)—(25), the function Q (R,Q) within the
transport approximation depends on a dimensionless
variable p. This means that, for a given experimental
geometry, the path-length distribution as a function of p
is of a universal character, and its shape is independent of
the material and the photoelectron kinetic energy. To
verify this prediction, extensive comparisons were made
with the Monte Carlo results. The universal curves cal-

culated from Eqs. (19) and (23)—(25) are compared with
the results of Monte Carlo calculations in Figs. 4 and 5.
One can see that the agreement is very good. Somewhat
larger deviations are observed only for photoelectrons in
aluminum for P=2 (Al 2s) and for geometry a= 15' and
I9=20'. Furthermore, the shape of the universal curve
depends critically on the geometry of experiment and the
anisotropy of photoemission. This shape is very well
reproduced by the Monte Carlo simulations over a wide
range of energies and atomic numbers. Therefore, the
universal curves calculated for the geometry of a given
spectrometer and for several ranges of the asymmetry pa-
rameters make it possible to estimate the effects of elastic
photoelectron collisions in quantitative XPS. An exam-
ple of such an application is described below.

Evaluation of the model spectra

From the path-length distribution function Q(R, Q),
the photoelectron spectrum can be calculated from the
expression '

J(E,Q)= fdEOF(Eo) J g(R, Q)G(Eo, R;E)dR,

where F(EO) is the primary excitation spectrum, and
G(EO, R:E) is the distribution of electron energies E for
an electron originally excited at energy Eo as a function
of path length R. The latter function is given by

Cu 1 130 eV Cu 1 130 eV

(b)

cx — 1 5
8 = 20

cx =45
9 = 45

CL

C3
0

CL'

C3
0

0
0 2 4 6 8 10

Path length R (IMFP)
2 4 6 8 10

Path length R (lMFP)

FIG. 2. The path-length distribution function calculated for 1130-eV electrons in elemental copper and for diferent va}ues of the
asymmetry parameter. Solid line: transport approximation; dashed line: straight-line approximation; circles: Monte Carlo calcula-
tions. (a) XPS configuration defined by 0=20 and a= 15'. (b) XPS configuration defined by 0=45' and a=45'.
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(b)

0'
0 6 8 10

Path length R (IMFP)

0
0 2 4 6 8 10

Path length R (IMFP)

FIG. 3. The path-length distribution function calculated for 1169-eV electrons in elemental gold and for difterent values of the
asymmetry parameter. Solid line: transport approximation; dashed line: straight-line approximation; circles: Monte Carlo calcula-
tions. (a}XPS configuration defined by 0=20 and a=15'. (b) XPS con6guration defined by 8=45' and a=45 .

6 (EO,R;E)= 1/(2m. )Ids exp[is(EO E) RX(s)—], —
where

X(s)=Id T K ( T)[1—exp( —isT) ],
and K ( T) is the inelastic electron-scattering cross section
for energy loss T. In the present work this was done by
applying an existing software package, using the
universal inelastic electron-scattering cross section.
The primary excitation spectrum E(E) was taken to be
an asymmetric Doniach-Sunjic line shape with the
width y =3 eV and the asymmetry constant a=0. I cen-
tered at the respective peak energies. The results are
shown in Figs. 6 and 7. The inelastic background, as well
as the peak height, are distinctly affected by elastic pho-
toelectron collisions. In the geometry de6ned by u= I5
and 8=20, the spectrum intensity is increased or de-
creased depending on the anisotropy of the photoemis-
sion. These results are in agreement with recent studies
of the inhuence of elastic scattering on the intensity of
signal electrons emitted from gold. ' The signal photo-
electron intensity collected in the considered geometry
has been found to be increased by elastic collisions for
0(P&2.

The intensity of the photoelectron spectra calculated
for the second geometry (a=45', 8=45') always de-
creases due to elastic collisions. Again, this result is in
agreement with earlier studies. ' The elastic-scattering
effects, in this case, distinctly increase with increasing
asymmetry parameter P.

In all cases considered, the peak shapes calculated us-

ing the Q (R, Q) function obtained from the transport ap-
proximation and from Monte Carlo simulations are prac-
tically identical. One should note, however, that the time
of computations associated with the transport approxi-
mation is shorter by several orders of magnitude as com-
pared with the Monte Carlo approach. Both facts indi-
cate a prospective use of the transport approximation for
estimating the contribution of elastic-scattering effects in
the inelastic background analysis.

On close analysis of Figs. 6 and 7, we see that the peak
intensity and background are modified by elastic col-
lisions in the same direction, i.e., either increased or de-
creased. A question arises if the intensity variation due
to elastic collisions is equivalent to multiplication of the
spectrum intensity by a certain constant factor. To check
this hypothesis, we plotted the calculated spectra for Cu
3s photoelectrons (P=2) after normalization with respect
to a common peak height (Fig. 8). We see that the back-
ground shape is still different for the SLA model and for
models accounting for the elastic scattering. Thus a sim-

ple estimation of the contribution of elastic collisions to
the spectra shape, by making use of a single correction
factor, seems to be impossible.

IV. DISCUSSIQN

The exceptionally good performance of the transport
approximation can be explained by applying the so-called
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FIG. 6. The energy spectrum calculated from Eq. (28) for
1130-eV electrons in copper using the path-length distribution
function resulting from difFerent theoretical models. Solid line:
transport approximation (TRA); dashed line: Monte Carlo cal-
culations (MC); dotted line: straight-line approximation (SLA).
(a) XPS configuration de6ned by 9=20 and a=15. (b) XPS
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culations (MC); dotted line: straight-line approximation (SLA).
(a) XPS configuration defined by 8=20 and a=15. (b) XPS
configuration defined by 0=45 and a=45 .
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generalized radiative field similarity principle. ' ' This
principle may be considered as a criterion for reliability
of any approximate solution of the kinetic equation.

According to the similarity principle, the exact
difFerential elastic-scattering cross section may be re-
placed in the transport equation by an approximate cross
section which makes possible an analytical solution of the
boundary problem. However, this can be done only un-

der the condition that the scattering cross section pro-
vides a similarity between exact and approximate solu-
tions at least in the limiting cases of weak (A, ; »A,„)and
strong (A, ((A,„)absorption. Additionally, the initial an-

gular distribution of electrons is assumed to be a smooth
function of the angular variable, i.e., the following condi-
tion is satisfied:"

N & I~X/»I .

The main postulate of the similarity principle is the state-
ment that the approximate solution thus obtained is also
close to the exact one in the intermediate case of scatter-
ing parameters (A,;-A,„) when neither the straight line
nor the diffusion approximations yield satisfactory re-
sults. The similarity of the exact and approximate radia-
tive fields in the limiting cases mentioned above is
achieved since (1) the approximate solution reduces to the
straight-line approximation result when elastic scattering
is negligible, and (2) the transport cross section is equal to
the exact transport cross section. The latter requirement
follows from the usual similarity relationship in the
diffusion-limiting case. This relationship has a simple
physical meaning: the exact and approximate distribu-
tion decay rates at large distances from a source should
be identical. The major corollary of the similarity rela-
tionship is that the particle transport is governed mainly
by the momentum-transfer cross section in the limiting

case of pronounced elastic scattering. Hence we arrive at
the important conclusion that any approximate
differential elastic-scattering cross section satisfying the
similarity principle should be selected in such a way that
it provides the same value for the transport cross section
as the exact elastic cross section does. It should be em-
phasized that the generalized radiative similarity princi-
ple implies a much more powerful statement: the trans-
port cross section governs the particle transport not only
under the condition of pronounced elastic scattering but
also in all other physical situations, provided the typical
angular distribution is not highly anisotropic. Due to
this fact, the transport mean free path gains much in im-
portance in secondary-emission problems as one of the
principal quantities of electron-solid interaction. The
quasiclassical solution of the problem of elastic scattering
in electron-atom collisions allows one to evaluate
analytically the momentum transfer cross section of
medium-energy electrons and to study its dependence on
the atomic number and the electron energy. It turns out
that the ratio X, /A, „is of the order of unity in the energy
range relevant for XPS. ' ' Thus the generalized radia-
tive field similarity principle may be an effective tool for
solving photoelectron transport problems.

The path-length distribution Q(R, A) along with the
depth distribution function" is one of the emission
characteristics which are essentially length dependent.
The remarkable feature of the path-length distribution is
that it does not depend on the inelastic interaction quan-
tities, in contrast to the escape probability. It follows
from the above discussion that the only typical length of
the radiative transfer process is the transport mean free
path A,„when the absorption is negligible. Consequently,
one can state without referring to a solution of the kinetic
equation that the path-length distribution should be a
function of the ratio R /A, „and a geometrical
configuration if the generalized radiative field similarity
principle is true. This conclusion is perfectly supported
by comparison of the Q(R, Q) function found in the
transport approximation with the Monte Carlo calcula-
tions based on a realistic differential elastic-scattering
cross section. The discrepancies between the universal
dependence and the Monte Carlo data in the case of P=2
and the near-normal-incidence-emission geometry
(a = 15', 8=20') [Fig. 4(c)] are caused partially by the rel-
atively large half-cone acceptance angle (b,a = +10') used
in the Monte Carlo simulation code. In the case of P=2,
the path-length distribution function increases rapidly
with increasing emission angle a for near-normal in-
cidence of x rays. The Monte Carlo results represent the
path-length distribution averaged over the solid angle
defined by ha and thereby slightly overestimate the value
Q(R, Q). The other reason for the discrepancies may be
a higher degree of anisotropy of the angular distribution
of photoelectrons escaping from atoms in near-normal
directions. In the transport approximation, the actual
shape of the exact differential elastic-scattering cross sec-
tion is neglected. Therefore, specific features of elastic
scattering of electrons which traveled the path lengths
R «A,„and thereby suffered 1 —2 elastic collisions are
not fully accounted for. Obviously, the inhuence of the
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shape of the elastic cross section is more pronounced for
higher anisotropy of the initial distribution and smaller
ratios A,, /A, „(here A,, is the elastic mean free path). This
may be especially significant in the case of aluminum,
which is characterized by a sharply forward peaked
differential elastic-scattering cross section.

The practical relevance of the analytical expression for
the function Q (R, Q) [formulas (18) and (19)] is prompted
by its prospective application to the inelastic background
substraction needed for the quantitative Auger electron
spectroscopy (AES)/XPS analysis. ' The elastic-
scattering effect diminishes generally the anisotropy of
the angular distribution of photoelectrons, leaving a sam-
ple as compared to the initial anisotropy. As a result, the
inelastic background which is to be removed to obtain
the intensity of a signal line becomes a complicated func-
tion of the geometry. Figures 6 and 7 clearly indicate
that the background may be increased or decreased due
to redistribution of electrons over the emission directions.
Moreover, the neglect of the elastic-scattering effect may
result in the peak intensity being in error up to 20—25 %.

At present, the path-length distribution function can-
not be approached experimentally. Verification of the re-
liability of the proposed models can only be done in-
directly by comparing some other characteristics of elec-
tron transport obtained experimentally and derived
within the same theories. One of them is the angular dis-
tribution of photoemission from polycrystalline solids. It
was shown that both the analytical and Monte Carlo ap-
proaches describe the experimental angular distribution
of photoelectrons much better than the straight-line ap-
proximation. ' ' Furthermore, relatively large experi-
mental material on electron elastic backscattering from
surfaces is presently available. Several theoretical papers,
approaching this problem, were recently pub-
lished. ' ' Very good agreement was found for angu-
lar distributions of elastically backscattered electrons, ob-

tained experimentally, analytically, and by the Monte
Carlo technique. Another example has been the theoreti-
cal prediction of the presence of double maxima in the
energy dependence of the backscattered probability,
which was later confirmed experimentally.

It should be noted that the problem of the path-length
distribution function is also relevant for elastic peak elec-
tron spectroscopy. However, the angular distribution
of elastically and quasielastically backscattered electrons
depends strongly on the exact shape of the differential
elastic-scattering cross section' ' ' ' and so does the
corresponding path-length distribution function. There-
fore no universal dependence of the function Q(R, Q) on
the ratio R /A, „is expected in the general case of the elas-
tic reAection problem.

Finally we would like to stress that the results of the
present paper are valid only for a homogeneous medium.
Finding a depth distribution function for targets of an ar-
bitrary concentration depth profile represents a much
more complicated problem. In this case, a helpful ap-
proach may be based on the so-called partial escape prob-
ability as a function of the depth of origin. The
knowledge of the latter quantity allows us not only to ob-
tain the energy spectrum of the signal electrons leaving a
specimen but also to reconstruct simultaneously the un-
known depth profile.

The formalism presented in this work is of a general
physical interest since the concept of the similarity prin-
ciple can be applied to various boundary problems in-
volving a Boltzmann-type kinetic equation. This refers to
neutron and atomic particle transport as well as to radia-
tive transfer.
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