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We show that the coupling between electrons and acoustic phonons in semiconductor confined
structures occurs via an interaction, which we call the "ripple mechanism, " in addition to the usual
deformation potential coupling. Coupling due to the ripple mechanism arises from the perturbation
of the electron wave function by the motion of interfaces. In this work we provide a general derivation
of this coupling mechanism and give detailed expressions for it that are valid for all nanostructure
systems, including those with quasi-zero-, one-, and two-dimensional geometries. For the purposes
of illustration, calculations of the electron scattering rates due to acoustic phonons are given here
for semiconductor quantum dots in a variety of shapes, including spheres, cubes, and rectangular
parallelepipeds. From these results it is found that scattering due to the ripple mechanism dominates
that from the deformation potential for dot sizes less than 500 A and that for smaller dot sizes
the ripple mechanism contribution can be much larger than that from the deformation potential.

I. INTRODUCTION

Electron scattering by acoustic phonons plays a key
role in the physics of semiconductor nanostructures and
in their potential applications. Recently it has been of
particular interest in the context of carrier relaxation in
quantum dots. Acoustic-phonon scattering controls the
relaxation of carriers to their band bottoms, which is
necessary for efficient laser action, for optical modula-
tion, and for other optical and transport phenomena.
It has been suggested that these relaxation rates may
be slowed in lower-dimensional systems, leading to de-
creased optical efFiciency. In considering the optical effi-
ciency of nanostructure systems it is important to have
a quantitative understanding of the relative importance
of confinement on intrinsic processes, such as electron-
phonon scattering, as compared to extrinsic e8'ects such
as those from fabrication induced defects. Such extrin-
sic efFects generally degrade efficiency, but can often be
controlled by improved fabrication. Intrinsic efFects such
as electron-phonon scattering rates, on the other hand,
represent fundamental physical properties of these lower-
dimensional systems. In particular, it is important to
understand whether acoustic phonon relaxation rates are
significantly altered by confinement.

The role of confinement on electron-phonon scatter-
ing has been of considerable interest recently. Extensive
work has been done in recent years on confinement in
LO-phonon scat tering. Although acoustic-phonon emis-
sion rates are generally not as fast as the corresponding
LO processes, the former processes are the only ones ca-
pable of electronic relaxation down to the ground state.
Only recently have the efFects of confinement on electron—
acoustic-phonon scattering begun to be addressed. In

this context, the issue of a possible "phonon relax-
ation bottleneck" in dot structures has been of partic-
ular interest. Bockelmann and Bastard have made cal-
culations of the eKects of dimensionality on scattering
rates by acoustic phonons and they have shown that in
the case of quantum dots in the shape of parallelepipeds,
these rates drop ofF dramatically for lateral sizes less than

100 nm. Benisty et al. have used results like these in
a model of carrier relaxation to argue that the optical
efficiency of such dots should decrease greatly for these
small sizes because the electrons would not thermalize on
the time scale of nonradiative losses due, for example, to
defects.

All of the work to date on electron —acoustic-phonon
scattering in nanostructures, however, has been based on
the deformation potential coupling between electrons and
the phonons. In the present work we show that there is
an additional coupling mechanism between electrons and
acoustic phonons that is intrinsic to systems that have
interfaces. It arises when acoustic phonons cause the in-
terfaces to move and to perturb the electron wave func-
tions. In the present context we refer to this scattering
as due to the "ripple mechanism. " It is analogous to the
interaction involved when photons scatter inelastically
from acoustic phonons in the vicinity of a &ee surface
or when free electrons scatter &om the &ee surface of
liquid He. We show that this mechanism gives contri-
butions to carrier scattering rates in nanostructures that
can greatly exceed those of the deformation potential at
small sizes and thus can potentially give qualitatively dif-
ferent results for carrier relaxation.

In the present work we Grst give a full derivation of
the coupling due to the ripple mechanism for semicon-
ductor nanostructures within the effective mass approxi-
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mation for the electrons and elastic theory for the acous-
tic phonons. We derive compact expressions for the total
carrier-phonon interaction that are valid for all geome-
tries including quasi-zero-dimensional, one-dimensional,
and two-dimensional systems. In addition, expressions
are obtained for the limiting cases for which the poten-
tial offsets become infinitely large, leading to complete
confinement of the electron states, which requires special
care in the case of the ripple mechanism. This latter sit-
uation is one that is often used in discussing the physics
of semiconductor nanostructures.

In order to illustrate the effects of the ripple mechanism
we present here calculations of the electron —acoustic-
phonon scattering rates in quantum dots of varying sizes
and shapes. These shapes include spheres, cubes, and
rectangular parallelepipeds. To facilitate comparison
with experimental work and also comparison with pre-
vious calculations, the numerical results given here are
for the system of unstrained Ino 47Gao 53As surrounded
by InP, which is of considerable current interest. We 6nd
that in the case of quantum dots the ripple mechanism
scattering dominates that from the deformation poten-
tial for sizes & 500 A. . It should be noted that this is the
regime of sizes in which the separation of the electroni-
cally quantized states becomes a few meV or greater and
thus this is the class of systems that is of interest for its
optical properties. Such quantum dot systems involving
a number of materials are currently being investigated
actively. Examples include approximately spherical dots
of CdSe and CuCl in glass matrices and a wide variety
of lithographically formed dot structures in III-V and
other materials approximately in the shapes of squares
and rectangular parallelepipeds.

In these calculations for quantum dots we discuss the
effects of wave-function penetration into the barrier ma-
terial on the scattering rates. We also discuss the relative
contribution of the LA- and TA-phonon branches to the
ripple mechanism scattering rates. Previously we have
made explicit calculations of acoustic phonons and of
their scattering by electrons including the effects of con-
6nement on the acoustic phonons and we find that the
effects of con6nement on the acoustic phonons in these
such nanostructures have only small efFects on the scat-
tering rates. Thus, for simplicity, in the present work
we represent the acoustic phonons as plane waves, two
branches of which are transverse (TA) and one branch of
which is longitudinal (LA).

In Sec. II we give a general derivation of the ripple
mechanism interaction between electrons and acoustic
phonons for nanostructures of arbitrary shape and com-
position. In Sec. III we give results for carrier scatter-
ing in quantum dots having a number of shapes, due to
both the ripple mechanism and the deformation poten-
tial. Some concluding remarks are given in Sec. IV.

A. Potential term

We calculate this term in the interaction Hamiltonian
using a Taylor expansion of the potential for small acous-
tic displacements

H.P,' = V[r + u(r)] —V[r]
= V(r) + u(r) V'V(r) —V(r)
= u(r) . V'V(r).

The matrix elements then are

(i~Hr~ ~g) = f a r@;(r)@&(r)rr(r) VV(r).

In the case of a piecewise-uniform potential V(r)

(2)

1——V' V'@ + V(r)g = EQ,
2 m(r)

where V(r) and m(r) are the potential energy and eff'ec-

tive mass governing the electron wave function Q(r). We
will often be interested in materials for which V(r) and
m(r) are "piecewise uniform, " i.e., have (different) uni-
form values through each of several regions, such as is the
case for material 1 (the "nanostructure") embedded in
material 2 (the "barrier"). Examples of such systems in-
clude quantum wells, quantum wires, quantum dots, and
superlattices. In this case the wave function is continu-
ous across the interface separating the media and has a
continuous "velocity" component m(r) i0$/Bn normal
to the interface. If, in addition, V(r) is taken to be infi-
nite everywhere outside the nanostructure, then vP(r) is
completely con6ned to the interior and vanishes on the
boundary.

Charge carriers couple with acoustic phonons via two
mechanisms, the deformation potential (DP) and the rip-
ple mechanism (RM). The matrix element for the DP
coupling is D(i~V . u~ f), where u(r) is the (appropri-
ately normalized) acoustic displacement field, D is the
DP coupling constant (typically 1 —10 eV), i is the ini-
tial electronic state, and f is the final electronic state.
Hence the DP couples charge carriers to LA phonons but
not to TA phonons. In the case that the LA phonon dis-
placements are taken to be plane waves (proportional to
qexpiq r), the DP matrix element M(q) becomes the
Fourier transform of the product of the iiutial [g;(r)] and
final [g&(r)] carrier wave functions.

Carrier-phonon coupling via the RM interaction occurs
because of the spatial dependence of both V(r) and m(r)
in Eq. (1). We call these two terms in the interaction
Hamiltonian the "potential" term and the "mass" term
in the ripple mechanism. It is convenient to derive the
matrix elements due to these effects separately.

II. FORMALISM

For nanostructure systems having a spatially depen-
dent carrier mass, Schrodinger's equation in the effective
mass approximation is written

&V(r) = (~V) d& b(r —r~)n~.
S

Here S is the interface between the inner and outer me-
dia, r~ is a position on this interface, n~ is the outwardly
pointing surface normal, and LV —= V2 —Vj, where Vj(2)
is the value of the uniform potential inside (outside) the
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nanostructure. Now the matrix element becomes

(i~H~, '~ f) = (EV) dA Q;(A)gy(A)u~ . n~.
S

nanostructure. Adding Eq. (10) to the corresponding
limiting form of Eq. (9) yields for this case

B. Mass term

We let f(r) = 1/m(r), which gives for the interaction
&om the first term on the left-side of Eq. (1)

As expected, b, V and m2 do not appear in Eq. (11) for
this case (of a diverging potential in medium 2).

III. SCATTERING RATES IN DOTS

For this case the matrix element becomes

(i~H;„, "~f) = —— d rg;7' (u. 9'f)V @&

d r(V'@; Vgy)u Vf'
2

by using Green's first identity. In the case of piecewise-
uniform m(r), the normal derivatives of the wave func-
tions are continuous across the interface only if divided
by m(r). Here we use V'@; . V'v/jf' —— VvP; V'@& +
(Bg;/Bn)(BQ&/Bn), where 8/Bn is a normal derivative

and V' is a tangential gradient. Then

(i~HP, -~f) = — d r (V@; V'Qf)u. V'f
52

By using formulas for 9'f and 9'm analogous to Eq. (4)
we obtain

(&l~;.-'If& =

(»@;l f»@P
+/ — '

// — uq nq, 9
qm Bn) qm On)

where mq is the value of the eBective mass inside the
nanostructure and m2 is the value outside. The quanti-
ties in parentheses in Eq. (9) are continuous across the
interface and thus are we11 defined at r = r~.

The electronic properties of nanostructures often are
treated by taking the potential outside to become infi-
nite. In this case LV diverges, thereby confining the
carrier wave functions to the nanostructure interior, and
the quantities @(A) [and V'@(A)] go to zero, making the
expression in Eq. (5) indeterminate. However, careful
analysis yields the well-defined limit for this case:

(10)

where the normal derivatives are evaluated in8ide the

In order to illustrate the eKects of the RM interaction
in carrier scattering, we present here the results of cal-
culations of electron scattering rates from both the RM
and the DP interaction for quantum dots with a num-
ber of shapes. These calculations are done for dots of
unstrained Ino 4ycao 53As in InP. The scattering rates
are calculated using Fermi's golden rule, which in the case
of the single-phonon processes considered here yields

(12)

Here q is the phonon wave vector, v is the longitudi-
nal sound speed, and M(q) is the matrix element for
electronic scattering accompanied by the emission of a
phonon. We take the final state to be the dot's ground
state and the initial state to be one of the (possibly de-
generate) first-excited states.

Prom conservation of energy for single-phonon emis-
sion the typical phonon wave vector q is found to be con-
siderably larger than the typical inverse nanostructure-
size a and these relatively large phonon wave vec-
tors lead to several interesting consequences. (i) The
phonons' spatial dependence can be approximated well

by plane waves. In previous work we have incorporated
fully the eKects of confinement on the acoustic-phonon
spectrum by the nanostructure and we have found that it
has only small effects on the electronic scattering. This is
because for these relatively short wavelengths the acous-
tic discontinuity at the interface does not cause signifi-
cant changes in the acoustic-phonon energy or wave func-
tion. (ii) For the RM scattering, the phonon momentum
must be almost parallel to the surface normal in order
that the integrand in Eqs. (5) and (11) does not contain
many oscillations. Hence the TA-phonon displacements
give rise to only small rippling of the interface and ac-
cordingly we find that the TA-phonon emission rate is
smaller than the LA-phonon emission rate by a factor on
the order of (qa) 2 (« 1). (iii) The scattering rates can
be calculated analytically owing to simplifications that
can be made to the integral in Eq. (12). These simplifi-
cations are outlined separately below for each dot shape.
(iv) The dependence of the scattering rate on the dot
size exhibits rapid oscillations for the dot shapes studied
here. For the DP coupling these oscillations mirror the
high-q oscillations in the matrix element M(q), which
for this case is a Fourier transform. For the RM cou-
pling these oscillations are due to the alternate presence
at the interface S of nodes and antinodes of the phonon
displacement u. We have found that in realistic systems,
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slight deviations in shape kom the models studied here
will smooth out these oscillations. Additionally, these
deviations in shape will electively prevent coherent in-
terference between the DP- and the RM-coupling matrix
elements. (v) The overall magnitudes of the matrix ele-
ments and scattering rates for both the DP and the RM
are relatively small because the electron's wavelength is
much larger than that of the acoustic phonon.

A. Spherical dot of radius a

For simplicity we take the potential outside of the dot
to be infinite. Then the wave functions are given straight-
forwardly by

(i3)

10

5

C0
~ A

C0
C0

where n (= 1, 2, ...) is the radial quantum number, l and
m are angular quantum numbers, YL is a spherical har-
monic, ji(x) is a spherical Bessel function, x„i is the nth
zero of ji(x). The corresponding electronic energies are

h2x2
nLE

2m~a2 (14)

The quantum numbers (nLm) for the ground state are
(100) and for the threefold-degenerate first-excited state
(nl) equals (11) and m equals 0 or +1.

For this shape the DP scattering rate is

0 141(N +.l)D2msivsa2 sin (
. ")

ph6
(i5)

where N is the phonon occupation function, v is the lon-
gitudinal sound speed, and p is the mass density. The
RM scattering rate is

6.15(N+ 1)h2 sin (
' „")

pm' va (16)

B. Cubical dot of dimensions 2a x 2a X 2a

For infinite potential barriers, the wave functions
are given straightforwardly by @„„„.(x, y, &)

integers, and the electronic energies are E L

These scattering rates are shown in Fig. 1 as a function of
the dot diameter 2a. The DP scattering rate is larger for
large dot sizes, the RM rate is larger for small sizes, and
these two scattering rates are equal for the diameter 2a =
3.215/(Dmsiv2)i~4 = 56 nm for In Gai As. Note from
Eqs. (15) and (16) that the ratio of RM scattering to DP
scattering increases without bound as the dot diameter
decreases below 56 nm. In these calculations we find it
useful to rearrange the integral over acoustic plane waves
in Eq. (12) into an integral over spherical waves (with
scalar quantum numbers l, m, and q). In this way we
see that owing to the high symmetry of the spherical dot
shape only one (spherical) phonon mode participates in
the scattering process, making simple the calculation of
the scattering rate I'.

10

5

40
I I I I I

45 50 55 60 65
sphere diameter 2a (nm)

70

FIG. 1. Acoustic phonon emission rates for deformation
potential scattering (dotted line) and ripple mechanism scat-
tering (dashed line) for a spherical In Gai As dot in Inp at
T = 300 K. The solid line gives the total rate (Ref. 14).

, (n + n„+ n, ). For the ground state (n n&n, )
equals (111)and for the threefold-degenerate first-excited
state (n n„n, ) equals (211), (121), or (112).

The DP scattering rate is

0.42(N + 1)D2msivsa2 cos (
"

)
ph6

and the RM scattering rate is

40.1(N + 1)h cos ( s „" )

pm' va

Thus the two rates are equal for the size 2a
3.54h/(Dmsiv2) )'4 62 nrn for In Gai As and the RM
rate is considerably larger for smaller sizes. These results
are qualitatively similar to those for the sphere, verifying
the robustness of the conclusions given here about the
importance of the ripple mechanism for small dot sizes.
|A'e 6nd that the wave vectors of the phonon modes that
participate in the scattering are predominantly oriented
along one of the six equivalent cubical directions. This
yields for the scattering rate l an integral over a spherical
surface in k space whose integrand is peaked sharply for
k near these six diferent directions. Each of the result-
ing six integrals (which are added together) can be made
dimensionless through a suitable change of variables and
calculated straight forwardly.
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C. Parallelepiped

0.20(N + 1)D mdiv a
ph6

sin gzaz

a a2 ——,
z

where q, = 3vr2h/(8mzva2) The. RM rate is

For a dot of dimensions 2a x 2a x 2a surrounded by
a material having an infinite band offset, the wave func-
tionsare@ .„„(x,y, z) = sin 2 sin "~z "sin "2* ' and

z

the energies are E ~
——8, " + ~ . Here we

are interested in the case az « a, and a, is often small
enough that carrier tunneling in the z direction gener-
ally cannot be ignored, in which case the z part of the
wave function and of the energy is altered in a straight-
forward fashion. For the ground state (n n„n, ) equals
(111) and for the twofold-degenerate first-excited state
(n n„n, ) equals either (211) or (121).

First we assume that the electron is not allowed to
tunnel into the barrier. In this case the DP rate is

+ 10

5

C
D

~ 1+4
CPJ

0
C
O~ 10
G4

5

0.617(N+ 1)h sin q a,
pm1va

From Eqs. (19) and (20) the DP scattering rate is once
again found to be larger for large a, the RM rate is
larger for small a, and the rates are equal for 2a
2.35/(Dmzv ) ~ = 40 nm for In Gaj As.

If the electron is allowed to tunnel in the z direction,
the result for the DP scattering expressed in Eq. (19)

3
is modified by replacing the bracketed quantity with ~
times the Fourier transform M, (q, ) in the z direction
of the squared wave function. The result for the RM
scattering in Eq. (20) is modified by replacing a, s with

Srn g(u ) Av . We 6nd that the ability of the electrons

to tunnel out of a dot of thickness 2a = 5 nm causes
both the DP and the RM scattering rates to decrease by
approximately two orders of magnitude &om those given
in Eqs. (19) and (20). This decrease can be explained
simply based on the fact that both of these equations
vary as a s (for large q, ), and a, can be regarded as
a measure of the vertical extent of the electron's wave
function. For the present potential offset, allowing the
electron to tunnel out of a 5-nm-thick dot amounts to in-
creasing its vertical extent by approximately a factor 2,
which when raised to the negative sixth power accounts
for the roughly two orders of magnitude decrease in the
scattering rates. The scattering rates (allowing for elec-
tron tunneling) are plotted in Fig. 2 for constant thick-
ness 2a = 5 nm and varying width 2a. Note that the
lateral size for which the DP rate and the RM rate are
equal remains essentially unchanged from the above esti-
mate, which was made based on the assumption that the
electrons do not tunnel.

For the parallelepiped, we find that the wave vectors
of the phonon modes that participate in the scattering
are predominantly oriented along the z axis (as noted in
Ref. 2 for the case of DP scattering). Hence the integrand
for the scattering rate I' is peaked sharply near k = +i

2
30

1 I I

35 40 45
parallelepiped width 2a (nm)

50

FIG. 2. Same as Fig. 1, but for T = 300 K and a dot
shaped like a parallelepiped whose two widths are equal and
whose thickness 2a, is 5 nm (Ref. 14). The effects of wave-

function penetration into the barrier are taken into account
as discussed in the text.

IV. SUMMARY

In the present work we have shown that an interac-
tion between electrons and acoustic phonons, which we
call the ripple mechanism, is present in all semiconductor
nanostructure systems in addition to the usual deforma-

and the integral can be calculated straightforwardly as in
the case for the cubical dot. The validity of the present
results for the parallelepiped require that a )) a and
that a is much greater than the phonon wavelength, but
not necessarily that a greatly exceeds the phonon wave-
length.

We have also studied scattering rates involving higher-
lying electronic states in quantum dot systems. An exam-
ple involves transitions for the rectangular parallelepiped
from a state for which (n, n„,n ) = (n, 2, 1) to a state
for which (n, n„, n, ) = (n, 1, 1). This is a typical pair of
states in the sense that the separation in energy between
these two electronic states is comparable to the average
energy spacing for the system, i.e., to the inverse of the
density of states. In this case we And that both the DP
and the RM scattering rates are independent of n as long
as n is small enough so that; the typical electronic mo-
mentum is essentially vertical (i.e. , in the +z direction).
Thus the relative values of the DP and RM scattering
rates are the same for these transitions as for those given
above for the (121) + (ill) transition.
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tion potential coupling. We have given here a full deriva-
tion for the ripple mechanism valid for all nanostruc-
ture geometries, including quasi-zero-dimensional, one-
dimensional, and two-dimensional systems.

In the present work we have illustrated the role of the
ripple mechanism in electron scattering by calculating
scattering rates for quantum dots of varying shapes and
sizes including both the ripple mechanism and the de-
formation potential interaction. Prom these results, we
have found that for dot sizes less than typically 50 nm
the ripple mechanism gives scattering rates greater than
those of the deformation potential coupling and that as
the dot size becomes smaller the ripple mechanism scat-
tering becomes orders of magnitude larger.

Acoustic-phonon scattering of carriers in quantum dots
has attracted considerable attention recently because,
based on the deformation potential scattering only, it has
been argued that resulting relaxation rates of carriers in
small quantum dots, of the range of sizes studied here,
should be anomalously slow, leading to inefBcient opti-
cal processes. The scattering rates calculated here are
the appropriate inputs for a treatment of relaxation pro-
cesses in such nanostructure systems. A full treatment of
these relaxation rates is beyond the intent of the present
work. Prom the present results, however, it is clear that
an understanding of relaxation in quantum dots will re-
quire a treatment including the ripple mechanism scat-

tering rates obtained here. Further, in light of the great
difFerence for small dots between the ripple mechanism
scattering rates and those &om the deformation poten-
tial alone, it is possible that a treatment including these
rates will give a qualitatively different picture of carrier
relaxation in quantum dots than one based on the defor-
mation potential alone.

The ripple mechanism scattering is expected to play
an important role in the optical and transport proper-
ties of other nanostructures, including quantum wires
and quantum wells. All of these systems have interfaces
and will have contributions to carrier scattering &om the
ripple mechanism. For illustration here we have chosen
to demonstrate this for the case of a quantum dot. Cur-
rently we are studying the eH'ects of the ripple mechanism
in quantum wires and quantum wells, where preliminary
results indicate that this mechanism is not as important
as the deformation potential.

Note added in proof. It has come to our attention that
in recent work Vasko and Mitin have discussed a par-
ticular example of what we call the ripple mechanism
and have calculated the emission of TA phonons by the
intrasubband scattering of electrons in a quantum well.
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