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Temperature-dependent tunneling spectra of Bi2Sr2Cacu20s single crystals
with well-defined &i2Sr2Cuo6 epitaxial layers
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The temperature dependence of the tunneling conductance G( V, T) along the c axis of Bi&Sr2CaCu208
single crystals has been investigated using epitaxial junctions of the type Au/Bi2Sr2Cu06 thin-film

layer/Bi2Sr2CaCu208 single crystal. A linear background conductance is observed, which appears to
originate from a normal density-of-. states e8'ect. The background can be adequately described by a sim-

ple first-order relation using only one fitting parameter. The shape of the superconducting gap agrees
well with a convolution of this linear background and a BCS-like density of states that includes Andreev
re6ection. The fits yield values for the ratio 25{T =11 K)/k& T, (84 K)=5.4—6.0 and a very small life-

time width I (T=11 K) &0.1 meV. The data suggest that the zero-bias conductance is intrinsically low
or zero, suggesting an s-like character for the superconducting pairing function along the c axis in

Bi2Sr2CaCu208.

I. INTRODUCTION

Electron tunneling is the most direct method for study
of the density of states (DOS) near the Fermi surface. '

Historically, tunneling measurements have provided de-
tailed information concerning the superconductivity
mechanism and experimental evidence for the BCS mod-
el. Considerable efforts have been expended on tunnel-
ing investigations of the high-T, superconductors
(HTSC's). For cubic Ba, K Bi03, a BCS-like DOS
with 2b, lk~T, =3.8 —3.9 has been obtained. In the
case of the cuprate HTSC materials, however, the nature
of the gap has been quite controversial as reported in an
exhaustive discussion of the current status by Kirtley.
Typically, the spectra contain various anomalies such as
a high zero-bias conductance, a zero-bias conductance
peak (ZBCP), a linear (V-shaped) background, a broad
gap, and large conductance peaks at the gap edge. These
features deviate substantially from those of BCS super-
conductors, and they are important with respect to the
superconductivity mechanism of HTSC's. Especially, the
structure inside the gap relates to the symmetry of the
electron pairing wave function. These spectral shapes,
however, may not directly reflect the superconducting
DOS because of the following two difficulties.

First, the tunneling spectra of HTSC's often exhibit a
conductance background which increases linearly with
the voltage and which depends strongly on the tempera-
ture. ' This background complicates evaluation of the
true superconducting gap shape. For HTSC's, it is
difficult to obtain the normal-state background spectrum
at T & T, because the superconducting gap cannot be
eliminated by available magnetic fields. Accordingly, the
background should be derived from a systematic analysis
of its temperature dependence above T, . Furthermore,
the proper way to deconvolute the superconducting DOS
from the background has not yet been established be-
cause the origin of the background conductance is un-
clear. This deconvolution should be consistent with a

systematic fitting of the gap structure, including the tem-
perature dependence.

Second, the tunneling studies reported thus far have
produced widely scattered results, indicating a range of
DOS functions. This seems to be mainly due to the fact
that the interface with HTSC's easily degrades during the
fabrication process of the insulating junction layer. '

Since HTSC's typically have extremely short coherence
lengths, this means that the tunneling spectra reflect the
DOS of the degraded region near the junction interface.
Thus a sharp interface with superconducting properties
that remain intact up to the interface is of the utmost im-
portance for reliable measurements.

Tunneling measurements on the Bi2Sr2CaCu208 com-
pound have been reported in the literature using break
junctions, ' ' point contacts, ' "" ' scanning tunnel-
ing microscopy' ' ' (STM), and planar tunnel junc-
tions on films and single crystals. Most data were
obtained with the point-contact and break-junction tech-
niques. With these methods, however, it is difficult to
perform well-characterized tunneling spectroscopy be-
cause the nature of the interface and tunneling barrier
generally is unknown. Furthermore, these techniques
lack the stability to perform quantitative temperature-
dependent tunneling measurements. In STM, electron
tunneling occurs through a well-defined vacuum barrier.
This technique too, however, cannot be used at different
temperatures. Planar junctions provide the only
geometry that is stable enough for quantitative studies of
the temperature dependence of the tunneling spectra. In
spite of these advantages, satisfactory data, especially
along the c-axis direction, have been lacking. This is be-
cause planar junctions prepared by conventional
methods, in many cases, present problems in the form of
pin holes or degradation of the superconductivity near
the interface. These difficulties, however, can be over-
come by using epitaxial tunneling junctions fabricated by
laser-molecular-beam epitaxy, which has enabled us to
obtain reproducible and reliable tunneling spectra.
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We have fabricated reliable tunneling junctions of
Au/BizSr2Cu06 (2201) thin-film layer/Bi2Sr2CaCu208
(2212) single crystals. The crystal growth of the 2201 film
on the 2212 single crystal is expected to be pseudoho-
moepitaxial because the lattice constants along the in-
plane a and b axes of both compounds are equal. For this
reason, this combination of materials is suitable for the
fabrication of a well-defined and damage-free interface
along the c-axis direction. Using this junction, we have
reported BCS-like tunneling spectra which contain sharp
gap edges, low zero-bias conductance, and symmetry
with respect to the bias polarity. ' These spectra can be
fitted using a lifetime smearing model and background
curves approximated by a polynomial at each tempera-
ture. However, the temperature dependence of the con-
ductance curve has not been well understood because the
lack of an obvious function describing the normal-state
(background) conductance in the fitting procedure severe-
ly complicated the analysis of the temperature-dependent
tunneling spectra.

In this paper, we have obtained reproducible and reli-
able tunneling spectra over a wide temperature range,
which enabled us to systematically analyze the tempera-
ture dependence of both the background conductance
and the gap structure. We found that the origin of the
linear background conductance stems from the normal-
state electrical properties of the superconductor material.
The gap structure is accurately fitted within the BCS
framework including Andreev reAection.

The detailed composition of the tunneling junction
Au/2201 barrier/2212 single crystal is shown in Fig. 1.
The superconducting 2212 single crystal was grown by a
traveling-solvent Boating-zone method. The cleaved
surface of this crystal is as large as 5 X 10 mm, consisting
of a single grain whose topmost atomic layer is BiO based
on high-resolution transmission electron microscopy.
The 2201 epitaxial layer with a thickness of 20—30 nm
was grown on this 2212 crystal by the laser-molecular-
beam epitaxy method. The reAection high-energy
electron-di6'raction (RHEED) patterns remained streaky

Au
2201 Barrier

iLW1
— ~CaF2

(lcm)

Single Crystal

FIG. 1. Schematic composition of the Au/Bi2Sr2Cu06 film
layer/Bi&SrzCaCu208 single-crystal junction. The tunneling re-
gion is the crossed area of 0.15 X0.2 mm .

all during the growth of the 2201 film. In addition, the
RHEED intensity oscillated with a period corresponding
to 1.2 nm thickness of the 2201 half unit cell. These ob-
servations suggest that the 2201 film grows as a Hat layer
in a layer-by-layer growth mode and that the thickness of
the 2201 barrier layer can be controlled by counting the
number of RHEED oscillations. In this manner, we have
obtained sharp and well-defined 2201/2212 interfaces.
Details of the 2201 film growth on 2212 single crystals
have already been reported.

In spite of the good structural stability of the 2212 sin-
gle crystal under the film growth conditions, we have
found that the superconducting properties degrade owing
to an oxygen deficiency incurred during the 2201 film
growth. Full recovery of the superconducting properties
can be induced by annealing the sample in an Oz atmo-
sphere without destruction of the junction structure. The
resistivity-temperature curve of a 2212 single crystal after
annealing in O2 at 650 C for 3 h shows good metallic
behavior in the normal state and yields the superconduc-
tive transition T,o at 84 K.

The CaF2 insulating buffer layer and the Au electrode
were deposited by conventional evaporation. In order to
avoid Au diffusion, the Au electrode is deposited after an
anneal of the 2201/2212 junction. The tunneling region
has an area of 0.15 mm X0.2 mm as shown in Fig. 1. The
junction resistance is typically several times 10 0 at room
temperature, corresponding to a resistivity of 10 Q cm,
which is consistent with values obtained for 2201 films on
SrTi03 substrates.

The tunneling conductance was measured by a conven-
tional four-terminal technique. The conductance curves
were recorded on x-y charts at a series of temperatures
and were later digitized on a 1-mV mesh for fitting with
the calculated curves.

III. DATA AND ANALYSIS

The observed tunneling conductance G,b, ( V, T), where
V is the bias voltage and T is the temperature, was mea-
sured for more than 20 junctions. In these junctions, the
superconducting gap structure was observed for 60% of
the samples. The spectra for various samples can be
classified into two groups depending on the value of
zero-bias conductance. Spectra indicating a zero-bias
conductance larger than 20% of G», (V=100 mV, T) at
low temperature typically show various anomalies in the
gap structure, such as a double gap, a zero-bias conduc-
tance peak, and a broad conductance overshoot at the
gap edge. These anomalies are not reproducible. On the
other hand, spectra containing a small zero-bias conduc-
tance of less than 20% of G,b, ( V=100 mV, T) typically
show a reliable single-gap feature with a sharp overshoot
at the gap edge. Representative data for this group are
summarized in Fig. 2. The zero-bias conductances of
samples A, B, and C are 16%, 10%, and 13%, respective-
ly. Since all junctions in Fig. 2 show the distinct V-
shaped backgrounds, it is dificult to determine the pre-
cise quasiparticle DOS. To determine the real DOS, the
measured tunneling spectra should be systematically
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deconvoluted into two components, namely, a normal-
state background and a quasiparticle DOS at all tempera-
tures. This deconvolution has been performed in three
steps. First, we have determined a fitting function for the
background conductance Gz( V, T) above T, . Second, the
background conductance below the T, is inferred by ex-
trapolation using this function. Finally, the measured

I

tunneling spectra G,b, ( V, T) is compared with a calculat-
ed curve 6,»( V, T) based on a theory for the effective
DOS convoluting the superconducting gap with the
voltage- and temperature-dependent background.

The calculated tunneling conductance 6„& across a
normal-metal —insulator —superconductor (N-I-S) junc-
tion is given by

6,»(V, T) =f ~M~ N&(E)N2(E)[ df (E— eV)—/d(eV)]dE,

where N&(E) is the effective DOS of the superconductor,
N2(E) is the DOS of the normal metal, M is the tunneling
matrix element, and f is the Fermi function,
f = [1+exp(eV/kz T)] '. Equation (1) can be
simplified by assuming that M is independent of the volt-
age and Nz(E) is constant near the Fermi level. Since the
tunneling conductance of high-T, superconductors shows
a temperature-dependent background curve, it is con-
venient to normalize the tunneling conductance at
V=100 mV for comparison between the experimental
and theoretical conductance curves. The normalized
theoretical conductance can be written

I

6„,( V, T)= A IMI'N2

X f N, (E)[ df (E——eV)/d(eV)]dE,

where A is a coefficient and N, (E) is the effective DOS,
which is a distribution function convoluting the super-
conducting gap with the background curve. The integral
of N, (E) is normalized to unity at V=100 mV. A~M~ Nz
corresponds to G,b, ( V= 100 mV, T).

The normalized conductance curves
G,b, ( V, T)/G, b, ( V=100 mV, T) for the junctions A, B,
and C just above T, are presented in Fig. 3. The curves
show a linear voltage dependence above 30 mV and a
round bottom at zero bias. In every junction, the ob-
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FIG. 2. Tunneling conductance G(V, T=11 K) of three
Au/Bi2Sr2Cu06/Bi2Sr2CaCu2O8 junctions: (a) junction A, (b)
junction B, and (c) junction C. The spectra are normalized to
unity at V=100 mV, and for each junction, the zero-bias con-
ductances are lower than 20% of G,b, ( V=100 mV, T=11 K).
All spectra show a symmetric and single-gap feature with sharp
overshoots at the gap edges superimposed on a V-shaped back-
ground.
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FIG. 3. 6( V, T=90 K) Ats to data at just above T, : (a) sam-

ple A, (b) sample B, and (c) sample C. Solid curves are the ob-
served conductances G,b, (V, T=90 K) normalized to unity at
V=100 mV. The dashed curves 6&( V, T=90 K) were calculat-
ed from Eq. (3) using the linear background function of Eq. (4)

for samples A, 8, and C, respectively.
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where

N (E, T)=N (T)+m(T)~E~ . (4)

No( T) is the zero-bias value, and m ( T) is the slope of the
linear voltage dependence. Since the Ni, (E, T) is normal-
ized to unity at V= 100 mV, the slope m can be expressed
as a function of No according to

m(T)=10[1—No(T)] .

Therefore the slope and zero-bias conductance of
Gi ( V, T) are uniquely determined by only one parameter
No( T). Furthermore, the curvature around zero bias can
be well fitted by thermal broadening of the kink in the
function Ni, (E, T) at zero bias without additional param-
eters.

Figure 4 shows the temperature dependence of ob-
served conductance curves 6»s( V, T) (solid line) above

T, in each case normalized to unity at V= 100 mV. With
decreasing temperature, the slope increases and the cur-
vature around zero bias becomes sharper. The fitting
curve Gi ( V, T) (dashed line) obtained from Eq. (3) agrees
with 6,„,( V, T) over the entire temperature interval 300

served conductance curves 6», ( V, T) can be fitted with a
V-shaped background curve Gi, ( V, T) calculated from

Eq. (2) using a V-shaped background function Ni, .

6 i(V, T)=6»(V=100 mV, T)

X I Ni (E, T)[ df—(E —eV)ld(eV)]dE,

(3)

3Q.
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K & T & T, via the choice of only one fitting parameter
No(T). This result indicates that the temperature depen-
dence of G,b, ( V, T) and the curvature around zero bias
can be well understood by the V-shaped background
function Nz(E, T), thermally broadened by the Fermi
function. The values of No(T) and m(T) reAect the
zero-bias conductance and the slope of the normalized
linear background, respectively. On the other hand, the
actual Gv( V, T) curve including the conductance ampli-
tude is given by the values of G,b, (V=100 mV, T)NO(T)
and G,b, (V=100 mV, T)m(T). Figure 5(a) shows the
plots of in[6 b, ( V=100 mV, T)NO(T)] and
in[6,„,(V=100 mV, T)m (T)] as a function of tempera-
ture for sample A. We have found the empirical relation
that in[6,b, ( V=100 mV, T)NO(T)] and ln[G, b, ( V=100
mV, T)m (T)] obtained from fits using Eq. (3) both show a
linear dependence on the temperature. These linear
dependences indicate that the actual zero-bias conduc-
tance 6 b ( V= 100 mV T)N p( T) increases exponentially
with T according to the relation G,b, ( V = 100
mV, T)NO( T)=exp(0. 68+ 6. 1 X 10 T). On the other
hand, the actual slope G,b, ( V= 100 mV, T)m ( T) de-
creases exponentially with increasing T as G,b, (V=100
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FIG. 4. Fits to the G,b, ( V, T) data for junction A in the range
90—300 K. The solid curves are the observed conductances
G,b, ( V, T) normalized to unity at V =100 mV. The scale of the
normalized conductance applies to the T=90 K curve; the oth-
er curves have been shifted for clarity. The dashed curves
Gv(V, T) were calculated from Eq. (3) using the linear back-
ground function of Eq. (4) at each temperature.

FICz. 5. (a) Temperature dependence of G,b, ( V= 100
mV T)Xp( T) (open circles) and G,b, ( V= 100 mV, T)m ( T) (open
squares) obtained from the fits for sample A shown in Fig. 4, us-

ing the background function of Eq. (4). The solid line is
6,»( V= 100 mV, T)Xp(T) =exp(0. 68+6. 1 X 10 'T) and the
dashed line is G,b, ( V= 100 mV, T)m ( T)=exp(4. 5 —1.1

X10 T). The parameters a, b were determined by a least-
mean-squares method. (b) Temperature dependence of
Np( T) /m ( T) as derived from fits using the background function
of Eq. (4): open circles, open triangles, and open squares for
junctions A, 8, and C, respectively. The solid line is

Xp( T) /m ( T)=exp( —3.8+7.2 X 10 T) for junction C.
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mV, T)m ( T) =exp(4. 5 —1.1 X 10 T). These empirical
relations are satisfied in the temperature range from T, to
300 K. However, these plots cannot be used directly for
extrapolation to below T, because G,„,(V=100 mV, T)
may be affected by the tail of the superconducting gap
structure. This problem may be circumvented by using
the ratio of G,»(V=100 mV, T)No(T) to G,»(V=100
mV, T)m ( T) in the extrapolation. In this ratio, the
G,»( V=100 mV, T) term is canceled out, while a new ex-
ponential relation is obtained. A plot of
In[NO( T)/m ( T) ] as a function of T is shown in Fig. 5(b).
This plot also indicates a linear dependence on tempera-
ture which can be used for extrapolation below T, . This
linear relation is

E
CO
C0

1.0—

In[No(T)/m (T)]=in[No(T)/[10(1 —No( T))]J

=a+bT, (6)
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FIG. 6. Temperature dependence of 1V&(T) calculated from
Eq. (7) with the parameters a = —3.8, b =7.2X10 ' for junc-
tion A (solid line) and a = —3.8, b =8.7X 10,b=3.8 for junc-
tion C (dashed line), as obtained from the fits using Eq. (6) and
shown in Fig. 5(b).

where a = —3.8 and b =7.2X10 for junction A (solid
line) and a = —3.8 and b =8.7X10 for junction C
(dashed line). A similar relation could not be derived for
junction B because no data were obtained above T, .
However, since the spectrum of junction B at 90 K agrees
well with that of junction A, we assume that the line for
junction A is also applicable for junction B. From Eq.
(6), No( T) can be solved as

No( T) = 10exp(a +bT) /[1+ 10exp(a +bT) ] . (7)

Figure 6 shows No(T) for junction A (solid line) and C
(dashed line) calculated from Eq. (7). The predicted
background curve below T, is determined by the Xo
value obtained from this relation. We will discuss below
whether or not this extrapolation is physically plausible.

In Fig. 7, the solid line indicates the observed conduc-
tance curve G,»( V, T) below T, and the dashed line indi-
cates the V-shaped background curves Gi ( V, T) calculat-
ed from Eq. (3) using the No value extrapolated from Eq.
(7). These curves are normalized to unity at V=100 mV.
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FIG. 7. Temperature-dependent tunneling conductance
G,&,(V, T) below T, for sample A (solid line) and predicted
background conductance G&( V, T) (dashed line) as obtained by
the extrapolation shown in Fig. 6, using Eq. (7). The scale of the
normalized conductance applies to the T= 11 K curve; the oth-
er curves have been shifted for clarity. With decreasing temper-
ature, the predicted V-shaped background becomes deeper and
the kink at zero bias becomes sharper. The observed zero-bias
conductance G,t„(V=O mV, T) is equal to or larger than the ex-
trapolated Gv( V=O mV, T) for all temperatures.

It is seen that the Gv(V, T) curve fits the G», (V, T)
curves well for all temperatures in the voltage region out-
side gap. This result suggests that this extrapolation may
be interpreted as the normal-state conductance at large
bias voltage. However, this interpretation leads to the
difticulty that simple BCS theory and the lifetime smear-
ing model of Dynes cannot be directly applied to the
fitting of the observed gap structure. This is because the
observed conductance around zero bias is larger than the
predicted normal-state conductance. Consequently, the
conservation of the DOS outside and inside the gap edge
is not maintained as a result of the excess current ob-
served in the gap region. Figure 8 shows a plot of the
normalized zero-bias conductance G,&, ( V=O
mV, T)/G, »( V= 100 mV, T) as a function of T. The solid
line indicates the temperature dependence of the normal-
ized zero-bias conductance Gi, ( V=0 mV, T)/G&( V= 100
mV, T) for the predicted V-shaped background. Since the
excess currents appear just below T„ it appears that this
excess current is related to the superconductivity. This
anomaly can be interpreted by Andreev reflection in-
duced by the semiconductive Bi2Sr2Cu06 layer. In the
case of X-S junctions, the outward superconducting DOS
including Andreev reAection can be written in a simple
form

N~„d„,„(E,A, Z)

=2(1+Z2)[1+A (E,b„Z)—8(E,b„Z)], (8)
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FIG. 8. Temperature dependence of the normalized zero-bias
conductance G,&, ( V =0 mV, T)/6, &, ( V= 100 mV, T) for junc-
tion A showing a remarkable discontinuity at T, . The solid
curve was obtained from Eq. (3) using the parameters derived
from the fits to the background conductance above T, for junc-
tion A. The dashed curve was derived from marginal-Fermi-
liquid theory (Ref. 47). N, (E, T)=N ~(E, T) N„( T)+—N„( T)N, (E), (9)

high barrier (Z & 10), N~„d„,„agrees with the simple BCS
density-of-states function.

For fitting to the data, we have tested three procedures
for the convolution of the gap structure and background
for junction A at T=11 K. These procedures reAect
different origins for the V-shaped background. The actu-
al background curve is obtained from the extrapolation
shown in Fig. 7, using Eq. (7), which gives No =0.188 at
T=11 K. In the first model, it is assumed that the linear
background is not related to electron tunneling from the
superconductor. The total conductance then is given by
the sum of the linear background and the superconduct-
ing gap structure. These two components are regarded as
independent processes without any relation to each other.
Assuming that the predicted linear background includes
the normal-state conductance N„(T), which is indepen-
dent of the bias voltage, the eff'ective DOS N, (E) can be
written as

where A (E,b„Z) is the probability of Andreev reffection
and B (E,b„Z) is the probability of normal reffection.
A (E,b. ,Z) and B (E,b„Z) have the following functional
forms:

A (E,b„Z)=6 /[E +(b, E)(1+Z ) —],
B(E,b, ,Z)=l —A(E, b, Z) for E &b,

A (E,b„Z)=u ov o/y

B (E,h, Z) = [(uo —vo) Z (1+Z )]/y for E & b. ,

with

y2 —[u2+Z2( 2 2)]2

v2 —1 [1+[(E2 g2)/E2]1/2]

where 6 is the gap energy. For convenience, a dimen-
sionless barrier strength Z =H/hvar has been introduced
in Eq. (8), where H is the barrier height and v~ the Fermi
velocity. The elegance of this expression is that junctions
with different barrier transparencies can be treated in a
similar fashion by the barrier strength expressed through
this dimensionless parameter Z. In the case of Z=O,
which corresponds to a clean X-S interface, the conduc-
tance inside the gap is calculated a factor of 2 higher than
in the normal state. Qn the other hand, in the case of a

where N, (E) is the superconducting DOS normalized to
unity at lEl = ae. The components of the linear voltage
dependence and the superconducting gap structure corre-
spond to Nv(E, T) N„(T) an—d N„(T)N, (E), respective-
ly. The contribution of each component to the total con-
ductance is determined by the value of N„(0). This value
lies in the range 0&N„(T)&No(T). Figure 9(a) shows
6„&(V, T= 11 K) calculated from Eq. (2) using the
effective DOS N, (E) given by Eq. (9), which is compared
to the 6,&, ( V, T= 1 1 K) data for junction A. The dot-
dashed curve represents the inferred linear background
corresponding to the component Nz(E, T) N„(T). Set--

ting N, (E)= 1 gives G„&(V,T)=G&(V, T), which indi-
cates the normal-state conductance curve including the
linear background (dotted line). The dashed curve indi-
cates the total conductance calculated using the BCS
DOS with Andreev reAection, where
N, (E)=N~„d„,„(E,6=22.5 meV, Z=0.53) and
%„=1Vo=O.188. The zero-bias conductance and curva-
ture around zero bias of 6,&, ( V, T) can be fitted through
a choice of the parameters 5 and Z. However, the con-
ductance peaks of 6„&(V, T) at the gap edge are smaller
than those of 6,~, ( V, T) despite using the maximum
value of the normal-state DOS N„(0)=No. Consequent-
ly, this model does not provide a good fit of the observed
data 6,~, ( V, T).

Second, we have tested a fitting model based on inelas-
tic scattering. In this model, the contribution of the
linear background to total conductance vanishes inside
the gap because the scattering process involves quasipar-
ticle electron tunneling from the superconductor.
Therefore the effective DOS N, (E, T) is given by

N~(E, T) N~(&, T)+N~(b, T—)N, (E) for E & l~l ~

N, (E, T)= ~

Nq(A, T)N, (E) for E & Al . (10)
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The observed data 6», ( V, T) of junction A and the cal-
culated conductance G„i(V, T) are compared in Fig. 9(b).
The dot-dashed curve indicates the inelastic conductance,
corresponding to the component Nv(E, T) N—i (b„T) in

Eq. (10). The dotted curve represents the normal-state
conductance including the linear background
G„i( V, T) =Gi, ( V, T), obtained by setting N, (E)=1. The

(a)
1.0—

dashed curve indicates the total conductance calculated
by using the BCS function with Andreev reQection, where
N, (E)=N~„z„,„(E,b, =22.5 meV, Z= 0.80) and
N„=NO=0. 188. The fit has been evaluated at the zero-
bias conductance and the peak-top position of the gap
edge. The zero-bias conductance agrees well with the ob-
served data 6,»( V, T) through the choice of the barrier
strength Z. However, the curvature of the bottom of the
gap and the conductance peak at the gap edge cannot be
fitted to 6,»(V, T). Therefore this model also does not
provide an adequate description of the observed data.

Finally, we have tested a model in which the linear
background reQects the DOS of the bulk of the supercon-
ducting material. In this model, the total conductance is
given as the product of the normal-state DOS and the su-
perconducting DOS. The total conductance is often cal-
culated by using the relation 6 ( V T)=Gi ( V T)6, ( V T),
where 6, ( V, T) is the conductance calculated from N, (E)
convoluted with dfId (e V—). However this gives
correct conductance values only for T(& T, . To discuss
the temperature dependence of the gap structure, the to-
tal conductance should be calculated using the integral of
Eq. (2) and the effective DOS given by

N, (E, T)=Ni(E, T)N, (E) .

0 I

-100 -50
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0
v(mv)
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FIG. 9. (a) Fits to the 6,&, ( V, T) data for junction A at 11 K
using Eq. (9), assuming that the total conductance is obtained by
the sum of the linear background and the superconducting
DOS. The solid curve is the observed data 6,&, ( V, T=11 K).
The dashed line is total conductance calculated from the BCS
function including Andreev reflection, where

N, (E)=NAndre (E, 6=22.5 meV, Z=0.53) and
N„( T) =No( T = 11 K) =0.188. The dotted curve is the
normal-state conductance including the linear background, as
shown in Fig. 7, when N, (E)= 1. The dot-dashed curve
represents the linear background component. (b) Fits to the
6,&, ( V, T) data for junction A at 11 K using Eq. (10), assuming
the inelastic scattering modejL. The sohd curve is the observed
data 6,&,( V, T= 11 K). The dashed curve is the inelastic tunnel-

ing conductance calculated from the BCS function including
Andreev reflection, where N, (E)=N&„d„„(E, 6=22.5 meV,
Z=0.8) and No(T=11 K)=0.188. The dotted curve is the
normal-state conductance including inelastic scattering, as
shown in Fig. 7, when N, (E)= 1. The dot-dashed curve
represents the component of the inferred inelastic scattering. (c)
Fits to the 6,&, ( V, T) data for junction A at 11 K using Eq. (11),
assuming a density-of-states e6'ect. The solid curve is the ob-
served data 6 &,(V, T=11 K). The dashed curve is total con-
ductance calculated from the BCS function including Andreev
reflection, where N, (E)=NA„d„,„(E, 5=22.5 meV, Z=0.64)
and %0( T = 11 K) =0.188. The dotted curve is the normal-state
conductance when N, (E)= 1.

Figure 9(c) compares the calculated conductance
G„i( V, T) with the observed data G», ( V, T) at T= 11 K.
Setting N, (E)= 1 yields the normal-state conductance
(dotted line). The dashed curve represents the total con-
ductance calculated from the BCS gap function including
the Andreev reflection, N, (E)=N~„d„,„(E,b, =22.5 meV,
Z=0.64), which reproduces completely the zero-bias con-
ductance and curvature inside the gap. This result indi-
cates that this model may be suitable for the fitting.

Using this fitting procedure, we have extended the cal-
culation of the gap structure to higher temperatures
below T, . The observed gap structure 6», ( V, T) can be
fitted by 6„~(V, T) calculated from N~„d„,„(E,b, Z) at
low temperatures. However, at higher temperatures, the
G,»( V, T) curve is broader than that of G„i( V, T). The
quasiparticle relaxation time near T, becomes so short
that the lifetime broadening cannot be neglected. Ac-
cordingly, the temperature-dependent fitting curves were
calculated by the outward DOS including lifetime smear-
ing given by

N „L„r„(E,g, z, l )=R [Ne„„„„„(E+iI,E,Z)] . (12)

Figure 10 shows the 6», ( V, T) of sample A and
G„i(V,T) below T, calculated from Eq. (12). The zero-
bias conductance and the curvature around zero bias can
be reproduced completely by choosing the fitting parame-
ters b,(T), I (T), and Z(T). However, the conductance
peaks of 6„,( V, T) at the gap edge are smaller than those
of 6,&, ( V, T) for all temperatures.

At low temperature, the gap values 25=45, 43, and 41
meV were obtained from these fits for functions A, B, and
C, respectively. These values correspond to a ratio of
26/kT=5. 2—6.0 which is larger than that for conven-
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FIG. 12. Temperature dependence of the lifetime broadening
I ( T) derived from the its in Fig. 10 for junction A. The data at
11 and 40 K represent upper limits for the I value. The solid
line is a guide to the eye. The dashed curve indicates a ( T/T, )

dependence.

FICx. 10. Fits to the G,b, ( V, T) data of junction A below T, .
The solid curves are observed conductances G,b, ( V, T) normal-
ized to unity at V =100 mV. The scale of the normalized con-
ductance applies to the T= 11 K curve; the other curves have
been shifted for clarity. The dashed curves are G„&(V, T) calcu-
lated from Eq. (11), where X,(E)=X„„d„„(E,A, Z, I ) at each
temperature. The shape of the gap structure around zero bias is
well reproduced by the calculation. However, the calculated
conductance peak at the gap edge is lower than that of observed
data.

cordingly, the exact values of 1" below 40 K cannot be
determined from the conductance curves and the 11- and
40-K data included in Fig. 12 are estimated upper limit
values of l . The I ( T) value increases dramatically upon
approaching T, . For comparison to our data, the
(T!T,) dependence is represented by dashed line and
discussed below.

IV. DISCUSSION

tional BCS superconductors. However, in Fig. 11, it is
seen that the temperature dependence of b,(T) for junc-
tion A agrees well with the BCS curve (solid line) scaled
to bulk T, =84 K. Figure 12 shows the temperature
dependence of the fitted value of I (T) for junction A.
The G», ( V, T) data for T(40 K can be fitted accurately
without lifetime smearing because the lifetime broaden-
ing is much smaller than the thermal broadening. Ac-

CD

0.6—

0.4—

0.2—

0 I I I

0 O.2 0.4 0.6 O.e ~.O

FIG. 11. Temperature dependence of the gap energy A(T)
from the Ats in Fig. 10 for junction A. The solid curve
represents BCS theory scaled to T= 84 K, which is the T, of the
bulk Bi,Sr,CaCu&O, single crystal.

A. Linear background

We found that the background conductance in the tun-
neling spectra along the c axis can be described by a
linear function including thermal smearing. A linear
background has been reported for different kinds of junc-
tions, especially for c-axis tunneling. ' The origin of
this background has been attributed to several mecha-
nisms, such as a charging effect, voltage-dependent tun-
neling penetration probabilities, a density-of-states effect,
and inelastic scattering. The first of these possibilities,
the charging effect, predicts linear backgrounds for a dis-
tribution of effective capacitors in the tunneling re-
gion. ' However, this effect could occur in junctions in
which it appears unlikely that isolated metallic regions
are included in the epitaxial barrier region. Furthermore,
in this model, the observed conductance overshoots do
not necessarily arise at the superconducting gap edge,
contrary to what has been observed in the present investi-
gation. A second mechanism involves voltage-dependent
tunneling penetration probabilities. ' However, it is
difficult to reproduce the sharpness of the experimentally
observed discontinuities in the slope of the conductance
curves at zero-bias voltage using this model. A third pos-
sible mechanism would involve inelastic tunnel-
ing. ' In this case, it has been proposed that the su-
perconductive DOS may be derived by simple subtraction
of the inferred inelastic conductance from the total con-
ductance. However, as already examined in this paper
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[see Fig. 9(b)], this deconvolution process is not suitable.
The fourth mechanism evokes a density-of-states
effect. The observed conductance curve is well fitted
by the product of the BCS function including Andreev
reflection and the extrapolated linear background as
shown in Fig. 9(c). This result suggests that this linear
background rejects the normal-state DOS in the bulk of
the high-T, superconducting material.

This DOS effect was interpreted in terms of
resonating-valence-band (RVB) model. In this picture,
the tunneling carriers excite both charge and spin degrees
of freedom in the high-T, superconductor. A conduc-
tance which varies linearly with the voltage can be under-
stood by integration over one of these degrees of freedom.
In gauge-field theory, however, it is pointed out that the
linear bias dependence would occur only for added
holes, which is in disagreement with the observation of
linear conductances for both positive and negative bias as
shown in Fig. 2. Furthermore, the RVB model predicts a
deviation of the superconducting DOS from BCS
theory. However, our results suggest that the super-
conducting DOS is well fitted by BCS theory, which has
been the basis for the fits in Figs. 9(c) and 10. Alterna-
tively, a DOS effect on the linear conductance may be at-
tributed to anisotropic metal characteristics using
marginal-Fermi-liquid (MFL) phenomenology, which
also leads to a linear background conductance for c-axis
tunneling. In this model, there is no modification of the
superconducting DOS from the BCS predictions in accor-
dance with the fit in Fig. 9(c). Moreover, as shown in
Fig. 8, the temperature dependence of the conductance
ratio G,»( V=0 mV, T)/G, b, ( V=100 mV, T) (solid curve)
is qualitatively similar to the theoretical result in the
MFL model (dashed curve). Accordingly, the MFL
model appears to provide an adequate description of the
linear conductance. The MFL model leads to an s-wave
pairing state, which is consistent with the s-wave-like
character of the superconducting gap structure, as dis-
cussed below.

The temperature dependence of the V-shaped back-
ground above T, can be described by a simple empirical
expression as given in Eq. (4). The question of whether
this temperature dependence can be extrapolated to tem-
peratures below T, is important for the deconvolution of
the G», ( V, T) data to derive the intrinsic superconduct-
ing DOS. Our results indicate that the V-shaped back-
ground function Ni, (No, E) can indeed be extrapolated to
lower temperatures, as shown by the fits of Fig. 9(c). By
contrast, a conductance minimum at V=O, which only
occurs at temperatures just above T„has been reported
for planer junctions along c axis using a native barrier.
This conductance minimum has been interpreted in terms
of localization along the c axis. In our data, however, the
gap feature opens up just at T, and does not indicate a lo-
calization effect.

B. Andreev re8ection

The data always show an excess current in the gap re-
gion as shown in Fig. 7. In the fitting procedure, we have
assumed that this excess current is caused by Andreev

a)

Au layer Normal layer

ZZQLla Barrier layer

2212 superconductor — Superconducting layertunneling-

b)

Au layer

..2201.lav.cr....

Electrode

Normal layer

2212 rconductor = Su Perconduc t in g layersupercon uctor

FIG. 13. Schematic of two possible tunneling geometries for
the Au/Bi2Sr~CuO6/Bi2Sr2CaCu208 junction. (a) Model assum-

ing that the electron tunneling occurs from the AU layer to the
Bi~Sr2CaCu&O, single crystal via the 2201 barrier layer. (b)
Model assuming that the electron tunneling occurs from the
Bi2Sr2CuO6 layer to the Bi2Sr2CaCu208 single crystal.

reflection, because the conductance varies in the same
way as the conductance overshoot at the gap edge. Fur-
thermore, the conductance maximum is less than 2 times
the inferred normal-state conductance and the excess
current vanishes precisely at T, in the temperature-
dependent spectra. This behavior is similar to that re-
cently reported for Ag-YBa2Cu307 &. The assumed
role of Andreev reflection is further supported by the fact
that the observed excess current exhibits a quite different
behavior than the zero-bias conductance peak (ZBCP).
The observed conductance maximum has a broader
structure than that of the ZBCP induced by quasiparticle
tunneling, phase diffusion, or supercurrent. ' ' ' ' ' On
the other hand, the ZBCP induced by Appelbaum-Kondo
model for electron magnetic interaction shows a broad
peak centered at V=O similar to Andreev reflections.
However, this case can be easily distinguished from An-
dreev reflection, because the excess current induced by
the Appelbaum-Kondo effect persists above T, .

In the Au/Bizsr2CuO6/Bi2Sr2CaCu2Os system, the
Bi2Sr2CuO6 layer is a semiconductor and the barrier
height of this junction is lower than those of conventional
planar junctions using barrier materials such as MgO or
CaF2. Accordingly, the semiconductive layer of
Bi2Sr2CuO6 may be responsible for the excess current
generated by Andreev reflection. If electron tunneling
occurs from the Au layer to the Bi2Sr2CaCu208 single
crystal, the Bi2Sr2CuO6 layer plays the role of a low bar-
rier as shown in Fig. 13(a). This idea seems to be unreal-
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istic because the junction resistance of 10 0 crn is much
larger than that in N-S point-contact experiments on con-
ventional superconductors. ' However, since Andreev
reQection has often been reported for S-I-X junctions us-
ing high-T, superconductors, this model cannot be
entirely ruled out. A second idea is that the electron tun-
neling occurs between the Bi2Sr2CuO6 layer and the
Bi2Sr2CaCu208 single crystal. In this case, the barrier ex-
ists at the interface between these layers and the role of
the Bi2Sr2Cu06 layer is that of a normal metal in X-S
junctions as shown in Fig. 13(b). To identify the real bar-
rier, further experiments on junctions using various
thicknesses of BI2Sr2Cu06 layers will be required.

It has often been reported in the literature that there is
a violation of conservation of the DOS inside and outside
the gap in the tunneling conductance data for HTSC's.
We suspect that this anomaly can be attributed to the
role of Andreev rejections because, in many cases, a de-
graded layer of the superconductor may be present at the
interface of the tunnel junction, which could play the role
of a normal-metal layer in low barrier X-S junctions. On
the other hand, it has been pointed out that the tunneling
spectra obtained by STM can also be interpreted in the
framework of Andreev rejections. Since the barrier
thickness in this case is much smaller than that of tradi-
tional planer junctions, STM junctions may be regarded
as X-S junctions. In fact, the action of STM is based on
the existence of an excess current which changes with the
distance between the tip and surface of the superconduc-
tor. ' Our experiments provide typical and systematic
data in the presence of low barrier heights as mentioned
above.

C. h(T) and I (T)

At low temperature, gap values of 25=43 —45 meV are
obtained from the fits to the present experiments. These
values correspond to 2b, /kT =5.4—6.0, which is smaller
than most of the previously reported data, 24/k~ T, —8.
In many cases, previous tunneling measurements have
yielded the maximum value of the anisotropic order pa-
rameter because of mixing of the tunneling current along
both the c axis and ab plane as a result of an imperfect in-
terface. The value of 2b, /k~T, =5.7 obtained in this
work for an epitaxial tunneling junction may reAect the
c-axis component of the anisotropic order parameter. In
fact, this value is consistent with reported estimates for
the gap anisotropy along ab and c, which are in the range

8 16,60,61

Figure 10 shows the temperature dependence of the
tunneling conductance. With increasing temperature, the
gap structure becomes narrower and finally disappears at
T=85 K. The temperature dependence of b.(T) agrees
well with the BCS curve as shown in Fig. 11. The zero
gap temperature T, (tunneling) estimated from the BCS
curve is 85+2 K, which is equal to T, =84 K derived
from the resistivity measurements. This agreement sug-
gests that virtually no degradation of the superconduc-
tivity has taken place at the junction interface and that
the measurements should reAect the true DOS. This

behavior is quite di6'erent from that in reports where
A(T) remains finite at T, owing to fiuctuations.

In our earlier paper we reported a sharp gap structure
for the epitaxial tunneling junction and a small broaden-
ing I =2 meV at 10 K obtained with the lifetime smear-
ing model. This value is substantially smaller than that
reported previously with values for I in the range of
10—20 meV. ' ' ' ' ' We suspect that such large
broadening is not intrinsic for the superconductivity
mechanism, but should be attributed to imperfections of
the interface. In the present experiments and analysis, we
found that the lifetime broadening is even smaller than
that of our earlier report as shown in Fig. 12. Below 40
K, the lifetime broadening can be neglected because it is
much smaller than thermal broadening. At these temper-
atures, the value of I cannot be determined accurately
from the fits. Only an upper limit of I -0.1 meV can be
estimated. This implies that the quasiparticle recombina-
tion time exceeds 10 ps, which is about 10 times larger
than times estimated from high-energy excitation mea-
surements of the transient reAectivity using a fem-
tosecond pulsed laser. If we assume that the recom-
bination is due to electron-phonon coupling, then it fol-
lows that the 2212 superconductor has a very strong
electron-phonon coupling. The quasiparticle lifetime is
the same or one order of magnitude shorter than that of
the electron-phonon coupling in the alloy Pbo 98io, .

As the temperature approaches T„ the lifetime
broadening increases dramatically as shown in Fig. 12.
I (T) rises more rapidly than the T dependence of the
pair-breaking rate (indicated by the dotted line), suggest-
ed as being intrinsic for the in-plane cuprate supercon-
ductors. ' For tunneling in the c direction, the I (T)
dependence near T, appears to be similar to that predict-
ed by phenomenological marginal-Fermi-liquid theory, in
good agreement with a previous report.

D. Ground-state DQS

At low temperature, the data indicate a zero-bias con-
ductance G,&,(V=O mV, T)/G(V=100 mV, T)=0.15—
0.2, which is lower than that reported previously for pla-
nar junctions. Whether the gapless feature is intrin-
sic or not has been a matter of argument because the ra-
tio of N, (0)/N„(0) is dependent on the choice of the nor-
malization. This uncertainty, however, has been removed
in our analysis using the extrapolation of the normal-
state conductance. On the other hand, for c-axis tunnel-
ing it has been suggested that the condition G(0)=0
occurs only under a particular condition, namely, when
the BiO surface is locally nonmetallic or a gap function
node appears at the BiO surface. Additionally, in
wide-area junctions it cannot be ruled out that a nonzero
G ( V=0 mV) )0 arises from defective nonsuperconduct-
ing areas, as has been suggested previously, or results
from an imperfect barrier. In our junction, however, the
BiO surface layer of the 2212 single crystal may be con-
sidered part of the 2201 layer, which acts either as a bar-
rier layer or a normal-metal layer in a X-S-type junction
as discussed above (Fig. 13). In this system, the excess
current inside the gap and the zero-bias conductance can
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be explained in terms of an Andreev reQection, as dis-
cussed above, without background subtraction as used in
previous reports. Furthermore, Fig. 10 shows that the
shape of gap minimum in G,b, (V) at low temperatures
can be fitted by the BCS function including Andreev
reAection without lifetime smearing and/or a distribution
of gap values. This indicates that the zero-bias conduc-
tance is intrinsically quite low or zero. The present re-
sults suggest that the order parameter has essentially an
s-like symmetry along the c axis, consistent with recent
STM tunneling' ' ' and Josephson junction data, but
in conflict with photoemission spectroscopy, far-
infrared spectroscopy, nuclear-magnetic-resonance, '
and London-penetration-depth " data, which suggest
d-wave symmetry. However, since the conductance peak
at the gap edge is somewhat broader than that of the BCS
curve as shown in Fig. 10, it is possible that a small an-
isotropy in the order parameter does exist possibly due to
an extended s-wave or mixing with d-wave pairing for the
superconductivity.

a simple first-order relation with only one fitting parame-
ter. Using this relation, the normal-state background
conductance below T, is obtained by extrapolation from
the temperature dependence above T, . The shape of the
superconducting gap structure agrees well with a convo-
lution of this linear background and a BCS density of
states modified by Andreev reAection over the entire in-
terval from low temperatures to just below T, . This fit
yields values for the ratio 2b ( T= 11 K)/k~ T, (84
K)=5.4—6.0 and a very small lifetime broadening
I (T=ll K)(0.1 meV. Both the normal-state back-
ground and the superconductive gap structure are con-
sistent with marginal-Fermi-liquid theory without any
modification of the BCS density of states. The tempera-
ture dependence of the fitted value b is consistent with
BCS theory. The fits provide a systematic result in which
the zero-bias conductance appears intrinsically low or
zero, suggesting an s-like character for the electron pair-
ing along the c axis in this system.
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