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The two-dimensional Wigner crystals are studied with the variational quantum Monte Carlo
method. The close relationship between the ground-state wave function and the collective excitations
in the system is illustrated, and used to guide the construction of the ground-state wave function of
the strongly correlated solid. Exchange, correlation, and magnetic-field efFects all give rise to distinct
physical phenomena. In the absence of any external magnetic field, interesting spin orderings are
observed in the ground state of the electron crystal in various two-dimensional lattices. In particular,
two-dimensional bipartite lattices are shown not to lead necessarily to an antiferromagnetic ground
state. In the quantum Hall efFect regime, a strong magnetic field introduces energy and length
scales. The magnetic field quenches the kinetic energy and poses constraints on how the electrons
may correlate with each other. Care is taken to ensure the appropriate translational properties of
the wave function when the system is in a uniform magnetic field. We have examined the exchange,
intra-Landau-level correlation as well as Landau-level mixing efFects with various variational wave
functions. We also determine their dependences on the experimental parameters such as the carrier
efFective mass at a modulation-doped semiconductor heterojunction. Our results, when combined
with some recent calculations for the energy of the fractional quantum Hall liquid including Landau-
level mixing, show quantitatively that in going from n doping to p doping in GaAs/Al Gai As
heterojunction systems, the crossover filling factor from the fractional quantum Hall liquid to the
Wigner crystal changes from filling factor v 1/5 to v 1/3. This lends strong support to the
claim that the observed reentrant insulating phases around v = 1/5 for n-doped and around v = 1/3
for p-doped high-mobility samples are primarily caused by electron-electron interaction efFects. We
discuss the possible implications of our theoretical results for some recent experiments carried out
in the quantum Hall regime in search of the electron solid.

I. INTRODUCTION

In this paper, we present a comprehensive study of the
various aspects, mostly related to the ground-state ener-
gies, of the properties of the two-dimensional (2D) elec-
tron Wigner crystal (WC). Numerical calculations are
carried out with the variational quantum Monte Carlo
(VMC) method. This approach, pioneered by McMil-
lan for He systems, has been used extensively to study
many fermion systems. The purpose of the present
work is twofold. One is to examine how to construct
a good variational ground-state wave function for the
electron solid by exploring the intimate relation between
the ground-state wave function and the collective excita-
tion properties. This construction is followed both in the
presence and in the absence of a strong perpendicular
magnetic Geld. The second goal is to study the &ac-
tional quantum Hall liquid —Wigner crystal transition by
calculating accurately the energies of the Wigner crys-
tal. In doing so, we also obtain a quantitative under-

standing of the sizes of various interaction effects such
as exchange, intra-Landau-level correlation, and inter-
Landau-level correlation. We make contact with some
recent experiments by comparing the present WC energy
to the quantum Hall liquid energy. By using different
wave functions in the Monte Carlo calculations, we study
various aspects of the physical properties of the electron
solid. We Gnd that exchange, correlation, and magnetic-
Geld effects all give rise to some interesting physical phe-
nomena. Some of our results have been reported in a
short paper.

In addition to the intrinsic theoretical interest of the
properties of a Wigner crystal, our work has been di-
rectly motivated by the recent experimental activities
looking for signatures of the electron solid in the integer
quantum Hall efFect (IQHE) and the &actional quantum
Hall efFect (FQHE) regime. 2s Exchange-correlation ef-
fects in these 2D electron systems in a strong magnetic
Geld are different in essential ways &om those in zero
Geld. Most importantly, correlation-induced fluctuations
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are allowed, at &actional Blling factors, to occur within
the same Landau level at no cost to the kinetic energy.
These nearly ideal 2D systems exhibit a very rich variety
of quantum phases and phase transitions. 2 ' Further-
more, the phases and the phase transitions can be con-
trolled and studied experimentally, by changing the car-
rier density, the carrier effective mass, the field strength,
and in some cases, the number of 2D layers involved. At
present, we are only beginning to assess the quantitative
aspects of this interesting phase diagram. ' In the
rest of this Introduction, we make some general remarks
on the problem of Wigner crystallization, discuss some
recent experimental work that stimulated our investiga-
tion, and summarize our main results.

A. General remarks

It has long been expected theoretically that at T = 0,
an interacting electron system in a uniform positive back-
ground (a jellium model), will undergo a transformation
&om a liquid to a solid. phase as its density is lowered. i
The Hamiltonian of the model jellium system is simply
(in atomic units and in the absence of external fields):

where interaction with a neutralizing background is im-
plied. The idea of the Wigner crystallization is quite
intuitive. The system is characterized by the density pa-
rameter r, (defined in two dimensions by its density n
measured in atomic units through 7rr, = 1/n). Roughly
speaking, the kinetic energy of the system scales as 1/r,
and the Coulomb interaction energy scales as 1/r, . In
a normal metal, r, is on the order of 1 and the kinetic
energy is more important. The system is therefore char-
acterized by the Fermi liquid theory with a well-deBned
Fermi surface. However, if one were able to make r, ar-
bitrarily large, there ought to be a crossover to a regime
where the interaction becomes dominant. The resultant
state is then one in which electrons are localized in a
close-packed lattice so that the average distance between
them is maximized. In the total absence of the kinetic
energy, the ground-state conBguration of the electrons
will correspond to the global minimum of the interac-
tion potential. Properties of such an electron solid in
general will not be obtainable &om perturbative consid-
erations around the liquid. state: before and after the so-
lidification, both the collective excitations and the single-
particle excitations are qualitatively difFerent. For exam-
ple, in the solid phase, there will be a gap of the order
of e /r, to single-particle excitations, and there will be
resistance to shear. Neither occurs in the liquid phase.

Despite its theoretical certainty, direct experimental
observation of the Wigner crystallization has been difE-
cult. Only partial realization of Wigner's proposal has
been achieved in a system of two-dimensional electrons
trapped on the surface of liquid He. In this experi-
ment, the areal densities of the 2D electrons, ranging
&om 10 to 10 cm, are so low that the Fermi energy
is always more than an order of magnitude smaller than
the temperature at which these experiments are carried

out. Therefore, the system is essentially a classical one-
component plasma. Nonetheless, when the interaction
energy dominates over the kinetic energy, which is simply

kT in this classical regime, one could still observe the
Wigner crystallization. In a three-dimensional system
(n-doped Hg Cdi Te), by measuring the magnetoresis-
tance and the Hall resistance, it has been suggested that
magnetically induced three-dimensional Wigner crystal-
lization may have been realized.

By far, the most intense experimental work in the pur-
suit of Wigner crystals has been carried out in quantum
Hall devices. ' This regime is also more interesting
since the competing liquid phase is a strongly correlated
quantum Hall liquid that exhibits unusual transport
properties. ' Modulation doped GaAs/Al Gai As
heterojunctions and silicon inversion layer devices pro-
vide an almost ideal experimental realization of a two-
dimensional jellium system. Compared with electrons on
helium, the lower carrier e8'ective mass, higher density,
and lower temperatures place the system in the quan-
tum regime. Mobilities of GaAs/Al Gai As samples
can be as high as 10 crn2/(Vs), corresponding to an
effective mean-&ee path almost of macroscopic length
( 0.05 mm). For hole-doped samples, mobilities are
somewhat lower, 10 —10 cm /(Vs). In silicon
metal-oxide-semiconductor Beld effect transistors, mobil-
ities are still lower, around 104 —10 cm2/(Vs), making
them less ideal. It has long been suggested that the ap-
plication of a strong perpendicular magnetic field, which
quenches the kinetic energy and conBnes the electrons to
the size of the magnetic length l~ = ghc/eB, will fa-
cilitate the electron crystallization. A search along this
direction culminated in the observation of an unexpected
collective liquid state, i.e., the &actional quantum Hall
liquid, characterized by vanishing longitudinal resistance
and &actionally quantized Hall resistance.

The phase diagram of a two-dimensional electron sys-
texn in a strong magnetic field is made much more in-
tricate by the presence of such quantum Hall states. It
is, however, still expected that ultimately Wigner crys-
tallization would occur in a strong enough B Beld, or a
small enough Landau-level filling factor v =

& . In
the last several years, many claims have been made, sug-
gesting the possible observation of the Wigner crystal in
both the modulation doped GaAs/Al Gai As and the
silicon inversion layer systems. ' We defer a more
detailed discussion of the current experimental situation
to the next subsection.

Theoretical estimates of the crystallization density of a
jellium system &ee of external magnetic fields have varied
widely in the past. The most reliable results are those
given by the Green's function Monte Carlo method. . '

The Monte Carlo studies have for the most part focused
on the body-centered-cubic lattice in 3D and the hexag-
onal lattice in two dimensions.

In cases where a strong magnetic field is involved, the
competing liquid phase is the FICHE. Quantitative esti-
mates for the WC transition Ailing factor in the quantum
Hall regime can be obtained by comparing the energies
of the Wigner crystal to those of the quantum Hall liq-
uid. Various approaches have been used for this purpose.
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On the liquid side, exact diagonalization of small clus-
ters with typically less than ten particles has provided
much insight into the nature of the incompressible FQHE
states. But extrapolations to the thermodynamic limit
for quantities like the ground-state energy have so far
proven inaccessible with this approach. Therefore, the
most reliable energies for the FQHE states are obtained
variationally with Laughlin s trial wave function, which is
considered very accurate. Price, Platzman, and He have
recently reported variational calculations of the FQHE
liquid energies with a Landau-level mixing Jastrow factor
on a sphere. Variational Monte Carlo calculations with
planar (modified) periodic boundary condition geometry
have also been carried out. Both calculations give identi-
cal energies when the same trial wave functions are used.

On the Wigner crystal side, strictly variational ap-
proaches have been largely limited to the Hartree-Fock
approximation, which ignores the crucial correlation
efFects. Perturbative phonon treatments beyond the
harmonic level for the electron solid have been reported,
but it remains unclear how fast the higher-order phonon
contributions converge in the regime of density and mag-
netic field of experimental interest. One exception that
combines the virtues of the two approaches is the work
by Lam and Girvin, where they optimized the variational
parameters in the trial wave function with a truncated
harmonic Hamiltonian, and then evaluated the expecta-
tion value of the original Hamiltonian with such a trial
wave function. It captures most of the intra-Landau-
level correlation, but does not treat the exchange effects,
or the inter-Landau-level correlations. In addition, it has
been noted that all the odd terms in the expansion of
the Hamiltonian in the phonon coordinates are not in-
cluded in the total energy, due to the form of the har-
monic trial wave function. The size of the third-order
term has been estimated.

If one compares the Wigner solid energy &om Lam
and Girvin in Ref. 38 with that of the FQHE liquid by
Levesque, Weis, and MacDonald, in Ref. 34, the solid
is favored for v ( 1/6. 5. However, the energy of the
liquid at an arbitrary filling factor will be higher than
that from interpolating between the odd-denominator
filling factors. This gives rise to the possibility of a
reentrant WC-FQHE-WC transition as v changes from
v ) 1/5 to v = 1/5 to v ( 1/5 as the magnetic field in-
creases. Such reentrant phase transitions around v = 1/5
have indeed been observed by a variety of techniques
and groups, and have been mostly attributed to this
mechanism 13—19)21—23

As we will discuss in the next subsection, some re-
cent experiments have now taken us to a regime where
Landau-level mixing cannot be realistically ignored. 2

In our work, we have treated exchange, intra-Landau-
level correlation, and Landau-level mixing all on equal
footing. It is hoped that through our work one may de-
velop a quantitative feeling for the relative size of these
effects under various experimental conditions.

B. Summary of the recent experiments

Here, we give a brief overview of some recent experi-
mental activities that are designed to detect the WC in

the FQHE regime. is i~ 2i 2s Since the experiments are
still evolving rapidly, our summary is necessarily incom-
plete and we apologize for any unintentional omissions.

With the very first observation of the &actional quan-
tum Hall effect at v = 1/3, experimentalists also encoun-
tered an insulating phase that set in at a smaller filling
factor. As sample quahty improves, this "critical" fill-
ing factor has been pushed toward smaller values contin-
uously. It is, therefore, clear that these early observed in-
sulating phases are due to disorder-induced localization,
and not due to the interaction-induced Wigner crystal-
lization intrinsic to a disorder-&ee 2D electron gas.

In the past several years, however, evidence has
emerged that there are at least two insulating phases
around the &actional quantum Hall state v
I/5. is is'i '2 Furthermore, with regard to the elec-
tron doping concentration and sample quality, these reen-
trant insulating phases are much more robust than the
earlier insulating phases; and they become more pro-
nounced when impurity effects are made weaker and/or
when interaction effects are made stronger. In the best
samples currently available (as judged by the transport
gap of the FQHE state at v = 1/5 and by the sample
mobility), the insulating phases before and after v = 1/5
still persist. The one at v = 0.21 even grows in strength
with sample quality, as seen &om the size of the insulat-
ing gap deduced from transport measurements. This has
led to the conclusion that these insulating phases are not
due to disorder. Since disorder is not strong enough
to destroy the FQHE state at v = 1/5, it is unlikely to
localize all the electrons at v ) 1/5. Recall that the mag-
netoroton gap is very small for the v = 1/5 FQHE state,
and thus it is very susceptible to disorder.

Various experimental techniques have been used
to study the insulating phases around v = 1/5.
These include the traditional magnetotransport,
radio- &equency absorption, surface acoustic wave
absorption, is nonlinear (ac and dc) transport, i4 i~ is 2i

noise generation, ' magneto-optics, etc. The list is
not exhaustive and is still growing. While they have
revealed many interesting properties of the insulating
phases, they have also brought about some controversies.

The traditional magnetotransport establishes the exis-
tence of the insulating phases. Unfortunately, it does
not tell us directly what gives rise to the insulat-
ing behavior. The clear stability of the 2/9 and 1/5
FQHE states suggests that interaction is more important
than disorder. Radio-&equency absorption, which at-
tempts to measure the dispersion of the lower-hybrid
magnetophonon, has been fit to the characteristic q /

dispersion, but later was fit to a q
/2 mode. The lat-

ter dispersion is more likely in the presence of disorder.
However, it has been argued that the data can still be fit
with a linear-in-q dispersion. This uncertainty leaves
doubt as to the reliability of the interpretation of the
experimental results. At least, the range of q that was
covered by the experiment is not wide enough to establish
unequivocally the dispersion. The surface acoustic wave
absorption data, while giving the important &equency
dependence of the collective mode, make clear that in
the q-range studied, the collective modes are very broad
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and unable to relate them rigorously to the existence of
a Wigner crystal.

Nonlinear transport measurements have provided yet
another way to study the solid. ' ' 2 A collective slid-
ing motion would be a signature of a Wigner crystal with
reasonable coherence, similar to a charge-density wave
system. 42 But, at present, results from various groups dif-
fer in important details. For example, the sliding thresh-
old measured in two experiments using samples with sim-
ilar mobility differed by a factor of 500. The differ-
ential conductivity above the sliding threshold became
field independent in some, but remained field dependent
in others. A recent theoretical work has sought to unify
some of the experimental results, where a detailed com-
parison and analysis of the nonlinear transport exper-
iments can be found. The possible ac-dc interference
effects in the sliding state have also been explored both
experimentally and theoretically. Clear Shapiro steps
or an inductive anomaly at a well-defined ac &equency
would constitute strong evidence for the crystalline order
in the insulating phases.

More direct spectroscopic tools have also been brought
to bear on the FQHE/WC problem. Magneto-optical
measurements have revealed several interesting aspects
of the system. ' First of all, spectroscopic features,
rather similar to those at v = 1/3 and 2/5, were ob-
served at v = 1/7 and 1/9. ~s The FQHE states at these
two filling factors have so far not been de6nitively es-
tablished in the more traditional DC transport measure-
ments that can probe the system on a longer length scale
and a lower temperature/energy scale. A possible ex-
planation of this discrepancy was proposed based on the
temperature-driven phase transitions between the WC
and the FQHE. There have so far been no reports of
any FQHE-like feature at v = 1/ll with the magneto-
optical technique. Second, a second luminescence line has
been observed that only appears below certain tempera-
tures and filling factors. It has been associated with the
formation of a solid phase. More recent time-resolved lu-
minescence studies seem to confirm this interpretation.
Reports have been made that even the local hexago-
nal order in the insulating phase can be established.
This Gnding is not too surprising, and while interesting,
does not address the issue of long-range order in the sys-
tem. Recently, it has become possible to directly observe
the collective excitations of the two-dimensional electron
gas in a strong magnetic field using the inelastic light
scattering method. Possible extension of this technique
to studies of the magnetophonon dispersion in the WC
would be very interesting.

All of the earlier experiments used n-doped samples.
However, some recent experimental work used p-type
doping in the GaAs/Al Gaq As samples. 2 The change
in the carrier effective mass brings another dimension
to the problem. ' Electron solidification ought to be fa-
vored by a heavier mass at comparable doping densities.
It is indeed observed that the insulating phases set in
in these p-type samples around v = 1/3, compared to
v = 1/5 in n-doped samples. The reentrance behavior
of the insulating phases is otherwise very similar to that
around v = 1/5 in n-doped samples. A stringent consis-

tency check, although not a rigorous proof, of the claims
that these insulating phases are Wigner crystals, is to
calculate theoretically the solidi6cation 6lling factor for
the n- and p-doped samples, and to compare with what is
observed experimentally. For this purpose, Landau-level
mixing must be taken into account, since the experimen-
tal parameters are in a regime where e /el~ is a factor
of 10 larger than ~, and since it is precisely the differ-
ent amount of Landau-level mixing that gives rise to the
different transition filing factors.

Overall, there has so far accumulated a large body
of suggestive evidence of the existence of this quantum
solid. Most of the existing experimental data are con-
sistent with, but none have definitively established, the
formation of a Wigner crystal in these systems. It is clear
that a better theoretical understanding of the properties
of the electron solid under these various experimental
probes will be helpful in interpreting in a more uni6ed
and consistent way the existing experimental results.

We also note that an alternative explanation for the
insulating phases at GaAs/Al Gaq As heterojunctions
discussed here was given by Kivelson, Lee, and Zhang,
emphasizing the role of disorder. A generic phase dia-
gram was constructed in terms of the Landau-level filing
factor and the strength of disorder. While appealing
and possibly relevant to experiments done on samples
with much more disorder, there are diKculties with this
theory when applied to experiments carried out on the
best quality samples. As we already mentioned, the in-
sulating phases become stronger as disorder potential is
weakened in these samples, which is diKcult to under-
stand within the &amework of this theory. There are
also some recent experimental results that are in appar-
ent contradiction with the predicted phase diagram.

C. Summary of our main results

Our work can be separated into two parts: B = 0 and
B g 0. We summarize them in what follows.

In the case of no external magnetic 6eld, we have stud-
ied the variational energies of electrons localized on vari-
ous lattices, including the square lattice, the honeycomb
lattice, and the hexagonal lattice. In investigating the
lattice dependence of the ground-state spin ordering, we
have also studied the rectangular lattice. The hexago-
nal lattice is found to have the lowest energy, in agree-
ment with classical Ewald energy considerations. We
also 6nd that the square lattice favors slightly the fer-
romagnetic (FM) state, whereas the honeycomb lattice
favors the antiferromagnetic (AFM) state. This is de-
spite the fact that both are bipartite lattices. The en-
ergies of different spin states on a hexagonal lattice are
very close, and beyond the resolution of the present vari-
ational Monte Carlo calculations. The physics of the
electron solid appears very rich even in the absence of
an external magnetic Geld. We propose that the many-
electron ring-exchange mechanism is responsible for the
calculated behavior. We will also discuss the ring-
exchange processes in the presence of a strong magnetic
field, which have been invoked as an alternative picture
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for the quantum Hall liquid.
In the IQHE and the FQHE regime, we find that ex-

change effects are unimportant in the regime of density
and magnetic Geld near the Wigner crystallization point
in these systems. In n-doped samples, intra-Landau-level
correlations are the most important, and are well repre-
sented by the magnetophonon wave function proposed
by Lam and Girvin. For p-doped samples, however,
Landau-level mixing is the single most important mech-
anism for lowering the energy of the WC, in comparison
with exchange and intra-Landau-level correlation. How-
ever, even when e2/el~ is 10 times Ru, intra-Landau-
level correlations still make a very large contribution
to the total energy. Combining our WC energies with
those of the FQHE liquid with Landau-level mixing, we
Gnd that the solidificat;ion in p-doped samples will occur
around v = 1/3. ' This is in nice agreement with the
recent experiments performed on p-doped samples. Ef-
fects of finite temperatures and of disorder, and Wigner
crystallization at integer filling factors will also be dis-
cussed.

D. Outline of the paper

The balance of the paper is as follows. In Sec. II,
we focus on the spin ordering in the ground state of
Wigner crystal in various 2D lattices with no magnetic
field. We interpret the results with a picture of multi-
electron exchange interaction. We then comment on the
ring-exchange processes in the presence of a strong mag-
netic field, and examine some overall characters of our
trial wave functions. We begin our investigation in the
FQHE regime in Sec. III, where we give the details of
the present VMC calculation in a strong magnetic field.
Our choice for the form of the variational wave func-
t;ion is motivated. Results, comparison to previous work,
and possible implications for the current experiments are
given in Sec. IV. We conclude in Sec. V. Those who are
only interested in cases with a strong magnetic field may
go to Secs. II C, III, and IV directly.

II. 2D WIGNER CRY'STALS IN THE ABSENCE
OF A MAGNETIC FIELD: SPIN ORDERING

underlying lattice. We have considered the square (SQ)
lattice, the honeycoinb (HC) lattice, and the hexagonal
(HX) lattice, in the absence of any external magnetic
field. We focus on the first two crystal structures, be-
cause they appear to behave very differently despite the
fact; that both are bipartite. Within our variational wave
functions, the FM state is favored on the square lattice
by a much smaller margin than one by which the AFM
state is favored on the honeycomb lattice. In addition,
the rectangular lattice is studied as a model that can
continuously vary &om a square lattice to a collection of
interacting chains in two dimensions. We Gnd a transi-
tion &om an FM ground state to an AFM ground state as
the aspect ratio deviates &om one. These results demon-
strate the importance of many-particle exchange effects
for fermions interacting with a 1/r potential in two di-
mensions. They also show that the relative importance
of the exchange processes involving a different number of
electrons depends strongly on the lattice geometry.

The notion of many-particle exchanges was previously
invoked ' in attempts to understand the magnetic
properties of three-dimensional solid He. It is now well
known ' ' ' that these many-particle exchanges dom-
inate the magnetic properties of solid He in both t;wo
and three dimensions. That these ring exchanges may
also affect the magnetic properties of the electron Wigner
crystal was suggested by Herring in the 1960s. Vari-
ational and Green's function Monte Carlo calculations
were carried out previously, but only for the 2D hexago-
nal lattice. Two spin orderings were considered. One is
the FM state and the other one has electrons of opposit;e
spins aligned on alternating chains in the hexagonal lat-
tice. The latter is not a true AFM state since the hexag-
onal lattice is not bipartite. They were found to have
the same energy within the statistical noise in the calcu-
lation. The ground state of the spin-& nearest-neighbor
Heisenberg antiferromagnet on a hexagonal lattice has
been a subject of a tremendous amount of work. To
clarify the spin ordering of a 2D hexagonal WC is a much
more demanding task still. A semiclassical WKB esti-
mate of the various ring-exchange &equencies suggests
that the three-particle exchange may be more important
than both the two- and four-particle exchanges.

The trial wave function used in the present VMC cal-
culations is of the Jastrow-Slater-type:

In this section, we focus on the spin ordering of elec-
trons interacting with the long-range 1/r Couloinb po-
tential on various two-dimensional lattices with the vari-
ational quantum Monte Carlo method. Some comments
are made for the ring-exchange processes involving a
strong magnetic Geld. A general analysis of our trial wave
function and its possible generalization to other cases are
also given.

A. Results from VMC: Possible role
of many-electron exchange

The spin ordering of electrons on several two-
dimensional lattices is found to depend strongly on the

1
g = exp ——) u(r, —r, ) DtDg.2.

iWj
(2)

Here, Dg and Dg are, respectively, the Slater determi-
nants for spin-up and spin-down electrons on the lattice.
The single-particle orbitals P(r) in the Slater determi-
nants are taken to be in most cases isotropic Gaussians

R 2 2
localized about the lattice sites R, , P; = e
except for the rectangular lattice (see below). The width
r~ is a variational parameter to be optimized. Additional
variational degrees of &eedom in the one-particle orbitals
are introduced in further investigating the AFM state on
the square lattice. The two-particle correlation factor in
Eq. (2) is taken to be of the form:



5868 XUEJUN ZHU AND STEVEN G. LOUIE 52

u(p)= Il —e
A

It has a long-range tail of ~. This, in the absence of the
Gaussian single-particle orbitals in the Slater determi-
nants, yields a longitudinal phonon dispersion oc q / for
small q, which is a result of the Coulomb interaction in
two dimensions. In the limit of r -+ 0, ~& ———+ (&~)sI'2

and u = A/~E. With properly chosen A and I', the
short-range cusp condition can be satisfied. We have
determined these two parameters in our trial wave func-
tion variationally. The optimal values are always very
close to those given by the cusp conditions and the long-
wavelength longitudinal phonon considerations. Calcula-
tions are done using the Metropolis algorithm with peri-
odic boundary conditions in two. dimensions.

Our results for the hexagonal structure are the same as
those of existing VMC calculations reported previously,
where a somewhat different Jastrow factor was used. 5 In
Table I, we show a comparison between the present VMC
calculation and a previous VMC calculation for a simu-
lation cell containing 56 electrons. Finite size effects have
been examined using different size simulation cells. To
the significant digits given in Table I, they are negligible.
For reference, results from a fixed-node Green's function
Monte Carlo calculation are also shown. As mentioned
above, because of the &ustration effects, the energy dif-
ferences between different spin orderings of the WC on
the hexagonal lattice are too small to be studied with
the present method. From now on, in discussing the spin
structures, we will restrict ourselves to the SQ lattice and
the HC lattice.

The energies here are dominated by the classical Ewald
energy. For the three lattices studied here, they are, re-
spectively (in atomic units), EE ~s = —1.10610/r, for
the HX lattice, EE ~s = —1.10024/r, for the SQ lat-
tice, and EE ~s = —1.06841/r, for the HC lattice. At
a given density, the HC lattice has the smallest nearest-
neighbor distance, since it is the least close-packed among
the three, hence it has the highest classical energy. We
find that quantum effects tend to reduce the energy dif-
ferences, but they are not large enough to reverse the
ordering. In Table II, we show, for these three lattices,
the VMC energies calculated at r, = 30, 50, 70, and 100,
all with complete spin polarization. Again, finite size
effects are negligible compared to the significant digits
given.

TABLE II. Energy/electron (in 10 atomic units) for elec-
trons in hexagonal (HX), square (SQ), and honeycomb (HC)
lattices. Results are for the spin-polarized state. Sizes of the
simulation cells are slightly different for each lattice and in
every case the resulting 6nite size effects are smaller than the
statistical noise (see Table III).

r. = 30 r. = 50 r. = 70
-31.83(1) -19.82(1) -14.38(l)
-31.72(1) -19.71(1) -14.34(1)
-31.52(1) -19.60(1) -14.25(1)

r, =100
-10.23(1)
-10.19(1)
-10.13(1)

HX
SQ
HC

0

-0.02

We now focus on the difFerent spin orderings in the
SQ and HC lattices. In the present work, the FM state
is formed with all the single-particle orbitals having the
same spin. Thus, the total wave function contains only
one Slater determinant. The AFM state on these bi-
partite lattices is constructed by occupying the single-
particle orbitals on one sublattice with spin-up elec-
trons and the other with spin-down electrons. The spin-
dependent cusp conditions are satisfied with a spin-
dependent Jastrow factor. In Figs. 1 and 2, we show the
energy differences between the FM state and the AFM
state on the SQ lattice and the HC lattice for several
r, . As we can see, the FM state is slightly lower in en-
ergy than the AFM on the square lattice. But on the
honeycomb lattice the AFM is lower in energy by a sub-
stantial margin for r, & 100. Table III illust'rates that
the finite size efFects at N 50 are already negligible.
Results reported in the figures are calculated with the
largest simulation cells shown in Table III.

In general, it is more difBcult to construct a good trial
wave function for a more disordered state. In the present
case, one might suspect that the FM state is slightly fa-
vored over the AFM state in the variational calculations.

TABLE I. Energy /electron (in 10 atomic units) of the
signer crystal in a 2D hexagonal lattice from the present
VMC calculation in comparison with previous work. Results
are for a simulation cell of 56 electrons.

VMC present
VMC

GFMC

Reference 5.

r, =30
-31.83(1)
-31.82(1)

-31.89(1)

r, =50
-19.82(1)
-19.79(1)

-19.81(1)

r, =100
-10.23(1)
-10.24(1)

-10.24(1)

-0.06 I I I I I I I I I I I I I I I I I

20 40 60 80 100

FIG. 1. EFM —E~FM (in 10 atomic units) for electrons
in a square lattice. The line is a spline 6t to guide the eye.
The FM state has a lower energy.
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(2) We have also tried one-particle orbitals similar to
the above, but with some weight on the hollow sites in the
lattice rather than on the neighboring lattice sites. The
motivation was to lower the kinetic energy at minimal
cost to the interaction energy.

In both of these cases, the AFM state energy on the
SQ lattice was not lowered to within our statistical ac-
curacy. Despite these efforts, we cannot be absolutely
certain that the FM state is lower in energy than the
AFM state on the SQ lattice. In fact, we do not know
if the ground state of a WC on a SQ lattice would be
magnetically ordered at all. The closeness of these two
states on a SQ lattice leaves open the possibility that the
ground state on a square lattice may have a more sub-
tle magnetic ordering than what we are able to examine
in the present variational calculations. It is safe to con-
clude, however, that our calculations illustrate clearly the
qualitative difference between the bipartite square and
honeycomb lattices in their ground-state spin ordering.

FIG. 2. EFM —EApM (in 10 atomic units) for electrons
in a honeycomb lattice. The line is a spline fit to guide the
eye. The AFM state has a lower energy.

Of course, this will not change our conclusion regarding
the HC lattice, where the more disordered phase (AFM
state) already has a lower energy. For the SQ lattice,
we have made the following two attempts to lower the
energy of the AFM state.

(1) Instead of having Gaussians localized on a single
lattice site in the one-particle orbitals, we have used

i=nn

TABLE III. Finite size elfects (energy/electron in 10
atomic units) for electrons in the honeycomb (HC) lattice
and the square (SQ) lattice at r, = 30.

N =32 N =50
Honeycomb

N =?2

FM
AFM

-31.50(1)
-31.67(1)
N =36

-31.51(1)
-31.67(1)
N =48

Square

-31.51(1)
-31.67(1)
N =64

FM
AFM

-31.71(1)
-31.67(1)

-31.72(1)
-31.67(1)

-31.72(1)
-31.67(1)

with proper normalization factors. Here, C is a varia-
tional parameter and P, „„indicates summing over the
nearest-neighbor sites. This form of P(r ) distributes some
weight of the one-particle orbital onto its neighboring
sites. Noting that the nearest neighbors have the oppo-
site spin, we expect that the sublattice magnetization of
the 2D antiferromagnet could be adjusted by changing
C.

B. Discussions and further tests

For fermions on a lat tice, it has been argued by
Herring4 and by Thouless that, in general, ferromag-
netism is favored by ring-exchange processes involving an
odd number of particles [(2n+ 1) exchange], whereas an-
tiferromagnetism is favored by ring-exchange processes
involving an even number of particles (2n exchange). A
heuristic argument may go as follows. Take the example
of an arbitrary (2n + 1) ring exchange. A ring exchange
of (2n+ 1) particles is an even permutation. Thus, the
total wave function must keep the same sign upon this
ring exchange. To minimize the energy, one would like
to keep the number of nodes in the spatial part of the
wave function minimal. Thus, a wave function in which
the spatial part is totally symmetric will be favored. We
then must make the spin part of the wave function to-
tally symmetric as well. Consequently, the FM state,
where all spins are aligned, will be favored by such ex-
changes. Similarly one concludes that AFM is favored
by 2n exchanges. Following this line of reasoning, our
results suggest that two-particle exchanges are more im-
portant on the HC lattice, while three-particle exchanges
are relatively more important on the SQ lattice. The
competition between them determines the ground-state
spin ordering.

Compared with the interaction potential in solid He,
the I/r Coulomb interaction is much softer for small r.
This results in lesser steric constraint in exchanges in-
volving fewer particles. One might, therefore, speculate
that exchange &equencies as a function of n will decay
faster for electrons on 2D lattices than for solid He.
These plausibility arguments could be checked by either
the semiclassical WKB approach or by using the path-
integral Monte Carlo approach, which has been applied
to study the ring-exchange frequencies in body-centered-
cubic solid He.

Although the variational Monte Carlo method was
the erst to be used in studying numerically the four-
particle exchange &equency in solid He, it has later been
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shown to be quantitatively unreliable. ' This is largely
due to the fact that in the case of solid He the exchange
energies are only 10 of the typical phonon energies.
Thus, an excellent variational wave function for the total
energy might be inadequate for estimating the exchange
frequencies. In the present case however, the energy dif-
ferences between the AFM and the FM spin orderings
at r, = 30 are about 1% for SQ and 5% for HC of the
total zero-point-motion energy. In fact for HC lattice,
EFM —EAFM at this r, approaches the total energy dif-
ference between the SQ lattice and the HC lattice. We,
therefore, believe that the qualitative difference in the
ground. -state spin ordering between these two bipartite
lattices is not an artifact of the variational method.

The energy splitting between the FM state and the
AFM state is found to be very sensitive to the Gaussian
width r~ in the one-particle orbital. In Fig. 3, we show
this sensitivity for the HC lattice. While the sharp drop
on the small r~ side may be attributed to the exponential
decrease of the exchange overlap integral, the somewhat
slower drop on the large r~ side could be due to the
difFerent r~ dependences of the two-particle and three-
particle ring-exchange processes. The energy splitting
peaks at an r~ smaller than one, which optimizes the
energies.

Further support for the importance of the multiparti-
cle ring exchanges for electrons on a 2D lattice is given by
studying the rectangular lattice as it varies &om a square
lattice to a set of weakly interacting chains. Here, we
have used anisotropic Gaussians in accordance with the
aspect ratios. The sizes of the Gaussians along different
directions are kept proportional to the two side lengths
of the rectangle. In the essentially one-dimensional limit
of a set of weakly interacting chains, a two-particle ex-

I I I I
f

I I I I
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I
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1.1 1.2 1.3 1.4
Aspect Ratio a/b

FIG. 4. RFM RAFM (in 10 atomic units) as a function
of aspect ratio a/b for the rectangular lattice at r, = 30.
Gaussians in the one-particle orbitals are anisotropic (see text
for details).

change is expected to dominate. This is because multi-
particle exchanges will involve tunneling over longer dis-
tances with the same or higher potential barriers than
the two-particle exchange in this limiting case. Conse-
quently the AFM state should have a lower energy if the
aspect ratio is large enough. In Fig. 4, we show the en-

ergy difference between the FM state and the AFM state
on a rectangular lattice as a function of its aspect ratio
for r, = 30. Indeed, we see a transition in the region
of a/b = 1.15 to a/tI = 1.20. All of these observations
from our calculations are consistent with the multielec-
tron ring-exchange picture. We, thus, believe that the
ring-exchange processes play an important role in deter-
mining the ground-state spin structure for electrons on
these 2D lattices.
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0.1
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FIG. 3. EFM EAFM (in 10 atomic units) as a function of
r~, the width of the Gaussians in the one-particle orbitals, for
electrons in the honeycomb lattice at r, = 30. The parameters
A and I" in the Jastrow factor are not altered with r~.

C. Many-particle exchanges in the Wigner crystal
in a strong magnetic Beld

It is of interest to ask how the presence of a strong mag-
netic Beld may affect the many-particle exchange pro-
cesses. In two dimensions, at the mean-field-theory level,
at suitable magnetic filling factors, the physical magnetic
Geld may be gauged away. One is then left with com-
posite particles, which carry flux quanta moving in an
efFective zero magnetic Beld. Since statistics of the par-
ticles may be altered in such formal transformations of
the Hamiltonian, and since the exchange interaction is
intimately related to the statistics, it is expected that
the many-particle exchange effects may be dramatically
afFected by a magnetic Beld.

This issue has been taken up in a series of papers
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by several authors in which they argued at filling fac-
tors such as v = 1/3, 2n and (2n + 1) exchanges will
add coherently and yield a condensation of the large
ring-exchange processes. This notion as it was 6rst
proposed, while appealing physically, cannot survive
the large magnetic-6eld limit on a lattice. In the resultant
localized crystal phase, the exchange interactions can be
made arbitrarily small. Our numerical calculations also
show clearly that exchange processes are unimportant
compared to the correlation efFects in a magnetically in-
duced Wigner crystal. Within our numerical resolution,
the total energy changes smoothly with the applied mag-
netic Geld, or with the magnetic filling factor v, showing
no downward cusps necessary for the experimentally ob-
served incompressibility at odd-denominator filing fac-
tors.

This problem of invoking the lattice is circumvented
later by Baskaran and Lee, Baskaran, and Kivelson
who showed that the crystal phase is not necessary for
such a condensation to occur, although it is convenient
for the sake of visualization. There is also a formal
mapping between the density matrix &om the Laughlin
wave function and that &om the condensed ring-exchange
processes.

Thouless and Li have raised another criticism, regard-
ing the sign of the ring exchanges at filling factors that are
the inverse of odd integers. We repeat their argument
for spin-polarized systems with the following diagram
(Fig. 5). The up arrows (the down arrows) indicate that
the energy goes up (down) when such exchanges are in-
cluded. One might then conclude that the ring-exchange
processes at odd-denominator filing factors would in fact
make them energetically less favored compared to its im-
mediate neighboring filing factors. Therefore, the energy
will show an upward cusp at odd-denominator 61ling fac-
tors, instead of the downward cusp as implied by the
observation of the FQHE. io 2s

We think that this argument is in fact not valid in the
FQHE regime, because it rests on the assumption that
the energy always goes up as the number of nodes in the
spatial part of the wave function increases. We argue
below that existing calculations explicitly show that this
is not the case for the very system of interest here.

We make use of a recent work by Xie, He, and Das
Sarma where they considered two systems of identical
interacting particles on a sphere. The only difFerence
between the two is that one is bosonic and the other
fermionic. In the absence of a magnetic Geld, the Bose
system will, in general, have a lower energy. But in the
presence of magnetic Geld, the urge to lower the interac-
tion energy and the possibility of doing so without costing
kinetic energy make it under certain circumstances favor-
able to have nodes in the many-body wave function. This
is indeed what was found &om the exact diagonalization
of the few particle system:ss At filling factors v = 1/2,
the bosonic system has a lower energy, but at v = 1/3
the fermionic system has a lower energy for Coulomb in-
teractions. The qualitative trend appears to continue for
all the filing factors examined. As the magnetic Geld
decreases or as the filling factor increases to well above
1, eventually the Bose system will have a lower energy.

NUMBER OF
LANDAU PARTICLES

LEVEL IN THE RING-
FILLING FACTOR EXCHANGE

EFFECTS OF THE RING-
EXCHANGE ON ENERGY FOR

FERMION BOSON

(B =0)

2N

2N+ 1

1V=-
2P

P: INTEGER 2N+ 1

V=
2P+ 1

P: INTEGER

2N

2N+ 1

FIG. 5. Schematic illustration of Thouless and Li's (Ref.
50) argument for the sign of the ring exchanges in a strong
magnetic field. The underlying assumption is that the to-
tal energy increases with the number of nodes in the spatial
part of the wave function. It is argued, in the text, that this
assumption does not hold in the FQHE regime.

D. Qualitative features of the trial wave function

D~D~ ——exp —) (r"; —R,) /rG
( N

Using

1
Pgg'

i~2

where

we can rewrite our original wave function, Eq. (2), as

@T(ri +2 ". rN) = exp ——):u(V)[pqp q~jP'-

R=e

which defines K.
Under the assumption that the deviations of v'; &om B;

are small, we may expand p~ to first order in (; = r; —B;,

In order to gain a more physical understanding about
what kind of correlations are included in our trial wave
function, it is instructive to transform our wave function
in terms of the phonon coordinates. This transformation
cannot be carried out in the most general case, similar
to earlier work on the liquid phase. s We therefore ig-
nore exchange, i.e., approximate the Slater determinants
DtDg with
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and obtain for K,

K = ——) („- . [ku(k) k + 2I/r~j . ( g,

where I is the unit matrix and the phonon coordinates

(~ are defined as

respect to u(k). s As an illustration of the general prin-
ciple, we have also applied this idea to the problem of
bcc solid hydrogen in the Mott insulating regime and de-
rived an optimal electron-electron correlation factor. In
this case, we And

2u(k) = —1 + 1 + (vg + 2k . s k/k4),

where

This form is simply a product of N-noninteracting sim-

ple harmonic oscillators. The kernal ku(k)k + 2I/r& can
be diagonalized, yielding

cup = 2/r~+ u(k)k'

and

ldz' 2/r~ ql

2 (12)

where coL, is the eigen&equency of the longitudinal mode
&om the diagonalization of the tensor, and uz is the
transverse mode frequency. In D dimensions, there are
D —1 degenerate transverse modes &om this simple anal-
ysis.

The physics of this line of reasoning is quite clear. The
isotropic Gaussians are by themselves N uncoupled D-
dimensional isotropic harmonic ocsillators, giving a finite
&equency to both the transverse and the longitudinal
modes. The correlation factor u(r) in its present form is
only a function of interparticle distance thus, it only af-
fects the density fluctuations in the long-wavelength limit
where our phonon expansion is valid. This is precisely
why u(r) only enters the frequency of the longitudinal
mode that couples to density fluctuations.

It is known, for Coulomb interacting systems, that
long-wavelength density fluctuations have a finite fre-
quency in three dimensions, while in two dimensions it
disperses as ~q. These statements regarding the lon-
gitudinal fluctuations are true for both the solid and
the liquid phases. They may be used to determine the
asymptotic behavior of the optimal u(r) used in the vari-
ational calculations. We note that the ~q dispersion for
the longitudinal phonon in two dimensions is violated in
the long-wavelength limit by our variational wave func-
tion. Similarly, the linear-in-q dispersion of the trans-
verse phonon is also violated. This observation suggests
that, while our wave functions Inay be very accurate for
ground-state energies, it cannot be used directly for cal-
culating phonon frequencies in the small q limit. We
remark that similar violations of the long-wavelength
phonon dispersions in electron Wigner crystals with no
external magnetic fields, and in helium solids also appear
in nearly all of the previous variational Monte Carlo cal-
culations.

Not only does this transformation provide some insight
into our trial wave function, it can also be used construc-
tively to find an optimal u(k) in certain cases. In the
liquid phase, the approximation equivalent to the one we
made above for the solid is the random-phase approxima-
tion for the total energy, which is then minimized with

e2 3(R, —Rp) (R, —Rp) —I(R, —Rp) 2

, (14)

and the Fourier transform of the Coulomb interaction in
three dimensions is

vg = 4~e'/k'.

2u(k) = —1+ gl+ 4mvi, /52k2.

The problem is reduced to that of a jellium and the above
result agrees with earlier work for this quantity.

III. ENERGY OF A SIGNER CRYSTAL
IN FICHE REGIME: METHOD

In the rest of this paper, we focus on cases where
a large magnetic Geld is involved. EfFects of exchange,
intra-Landau-level correlation, and Landau-level mixing
on the total energy, and their dependence on the carrier
mass and magnetic-field strength are examined on equal
footing. In Sec. IIIA, we briefly review the problem. In
Secs. IIIB and IIIC, we describe the Hamiltonian and
the variational wave functions used, and the technical
details in their evaluation along the Monte Carlo walks.
In Sec. III D, we assess the quality of the trial wave func-
tion. In this section, we focus more on the qualitative
aspects of our calculations. Numerical results and dis-
cussions are presented in Sec. IV.

A. Brief overview

There have been many studies on B-field induced
Wigner crystals in two dimensions. Most of these were
carried out within the Hartree-Fock approximation.
An alternative approach has been to expand the Hamil-
tonian in terms of phonon coordinates and to seek to per-
turbatively improve the results. ' The former is varia-
tional but contains no information regarding the crucial
correlation efFects. The latter is no longer variational and
existing calculations show that the rate of convergence
is unsatisfactory. With a few exceptions, ' ' only the

Here, Bo is the position of an arbitrary proton in the bcc
lattice and Bz are the positions of all the protons. In the
absence of the proton lattice structure, which amounts
to simply setting s=O as one can verify in the course of
derivation, we have



52 VARIATIONAL QUANTUM MONTE CARLO STUDY OF TWO-. . . 5873

lowest-Landau-level states were considered.
The present approach has the advantage of being vari-

ational. In addition, by varying the trial wave functions
used, we are able to obtain a quantitative understand-
ing of the roles played by exchange, intra-Landau-level
correlation, and Landau-level mixing in a Wigner crys-
tal. Special attention is paid to the interplay between
these effects and the experimental parameters: the car-
rier density, carrier mass, and the strength of the mag-
netic field. From our calculations, we find that the ef-
fects of Landau-level mixing are indeed large enough to
account for the observed difference in v between the
electron and the hole GaAs/Al Gaq As systems. For
GaAs, the relevant materials parameters are r = 13,
electron effective mass m,* = 0.067m, and heavy-hole
effective mass m& ——0.35m, . Experimentally for the
present heterostructure, the heavy-hole effective mass is
less certain. For the present heterojunction system in
the strong magnetic-field limit, we only need to consider
the heavy-hole band for p-doped samples. We now de-
scribe details of the present VMC calculations involving
a strong magnetic field.

u = x+iy,
v =x —zy.

The kinetic-energy operator is now

O a~ uv,

The local kinetic energy

EI, ), = —) Lv; + eA(r;)]'@,

is transformed into the following form:

(1Sa)

(1sb)

(20)

B. Present VMC calculations: The Hamiltonian

The exact Hamiltonian for 2D electrons of effective
mass m* in a magnetic field is given by

2m'El, ), = —4(J„„+D„„)
—4(J„J„+J„.D„+D„J„)

1
z (u D„—v D„)
B

1 'lLV

+—(u J„—v. J„)+ (21)

).[p;+eA(r;)]' e' ). 1
2m' 2g A p.

z u

Here, A is the vector potential, A = ( yB/2, xB/2—) in

symmetric gauge with B in the +z direction. e is the
dielectric constant of the host material (—' = m* = 1 in
effective atomic units). The Zeeman term is left out of
Eq. (17), since we assume total spin polarization.

In choosing a particular gauge for the vector poten-
tial A in the Hamiltonian, we must also choose an ori-
gin, which breaks the continuous translational invari-
ance. As a result of the generalized periodic boundary
conditions, all the rational fields can be studied directly
in our numerical work. Properties of the WC at irrational
fields can only be obtained to the extent continuity holds
for the particular physical quantity. In Sec. IV F, we pro-
vide numerical evidence that there is no cusp in the WC
total energy as a function of filling factor.

A finite simulation cell with modified periodic bound-
ary conditions is used, and only the hexagonal lattice
is considered in view of the results presented in Sec. II.
With the kinetic energy quenched by the magnetic field,
it is expected that the hexagonal structure would be
made even more stable (compared to the B = 0 case)
than the other 2D lattices.

The evaluation of the I/r interaction energy at each
step of the Monte Carlo walk is not affected by the mag-
netic field. It is done with the usual Ewald sum method
in two dimensions at each step of the Monte Carlo walk.
To evaluate the kinetic energy, let us first define

and

t9ln J
'tl

l9tL
) (23a)

BlnJ
|9v

(23b)

O~ln J
tlV g g ) (23c)

OlnD
tl

0th
) (23d)

OlnD
V

Ov
(23e)

B~lnDD„„= + D„D.
OtcOv

1 BD
D BuOv

(23f)

The magnetic length l~ is ghc/eB as before We have.

where the many-body wave function is written as

4 (&11 uzi "~I rlv) J(rli r21 ~ "I rN) D(rli &21 ~ "I &N)1

(22)
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suppressed the electron index i in all the terms on the
right-hand side of Eq. (21). Each of them is collected
along the walk and used to construct the local kinetic
energy at a given configuration. The above transfor-
mation is not necessary —one can, in fact, just as easily
evaluate the local kinetic energy in derivative terms with
respect to x and y, although it does make the distinc-
tion between lowest-Landau-level states and the higher
Landau-level states more apparent. This is because the
lowest-Landau-level wave functions can be written as a
product of a Gaussian with an analytic function of u.
In other words, a many-body wave function restricted
to the lowest-Landau-level states will not contain any v
dependence in its Jastrow factor J, that is, J„=J„„=0.

Given a trial wave function, we sample the total energy
with the Metropolis scheme. The fairly strong localiza-
tion of the electron wave function makes it possible for us
to totally eliminate the finite size effects. (The fact that
we are dealing with a 2D system also reduces the total
number of particles needed for convergent results com-
pared with a 3D system of the same linear size. ) Most
of our numerical calculations are carried out for a simu-
lation cell with 100 spin-aligned electrons. Calculations
with different size simulation cells show that the result-
ing finite size effects are smaller than the statistical noise
in our results. We will give more details regarding finite
size convergence. No finite size scaling is needed to ex-
trapolate the energy to the thermodynamic limit. The
numerical aspects of the calculation are, therefore, well
under control.

consists of two parts: One is the same as that in the
absence of the magnetic field, which is shown to be quite
accurate in that case; the second part, arising &om the
zero-point motion of the magnetophonons, is peculiar to
cases involving a strong magnetic field. The latter is
found to be more important in terms of its effects on
energy. Of course, such a separation is not entirely strict.

Our derivation for the magnetophonon correlated wave
function is slightly different &om Lam and Girvin's
work. They adopted the lowest-Landau-level approxi-
mation at the outset and sought to optimize the harmonic
Hamiltonian within the lowest-Landau-level sub-Hilbert
space. We have chosen to solve the harmonic Hamilto-
nian exactly without making the lowest-Landau-level ap-
proximation. We can then obtain the Lam-Girvin lowest-
Landau-level magnetophonon wave function by taking
the large magnetic-Geld limit. Clearly these two proce-
dures are equivalent in the strong-field limit, although
our scheme is somewhat more Qexible as it may be used
to include some of the Landau-level mixing effects. Our
derivation closely parallels that of Chui and co-workers,
although they have focused more on the eigenvalues than
on the wave functions.

After we take the large field limit, our wave function is
the same as that given by Lam and Girvin. Using their
notation, the wave function @, , restricted to the lowest
Landau-level is

(25)

C. Many-body wave function

Denoting the simulation cell by vectors L x I„, we
may write the single-particle orbital that is localized
about the lattice site Rz and satisfies the generalized pe-
riodic boundary conditions as

with A~ = 1. P s are the single-particle orbitals in

Eq. (24) without the T's (; is the . displacement of the
ith electron from the lattice site Ri, written in complex
coordinates. The B;z's, appearing in the Jastrow factor,
couple the motion of the ith electron with that of the jth
electron. Its Fourier transform B(k) is

1 P p
P~(r) = —) exp —

2 (r R~ —T)—
g2~ l~ 4/~~

with

,,s„- ~i(k) —~T(k)
(u~o(k) y ~TO(k)

(26)

+ 2 rxR~+rxT+R~ x T
B

(24) (D —Dw„) /2

Q(D —D„„) /4+ D „D„
(27a)

Here T = n~L + n„L„with arbitrary integers n and
n„. P is a variational parameter that determines the
localization of the wave function. Changing P does not
affect the phase factors appearing in P(r). [For P = 1,
P(r) lies entirely within the lowest Landau level. ]

One may form either a Slater determinant or a simple
product of these single-particle orbitals. When multi-
plied by a purely periodic Jastrow factor, both of the
resultant many-body wave functions satisfy the general-
ized periodic boundary condition in a vector potential.
Without the Jastrow factor, none contains correlation
but the former does contain exchange. Therefore, we can
obtain a rigorous upper bound for the size of exchange
energy using these wave functions.

We now motivate the Jastrow factor that we use. It

D y

Q(D —D„„)~/4+ D „D„
(27b)

All quantities in Eqs. (26) and (27) are those of a hexag-
onal WC in zero fields: D and D» are the diagonal
elements, D &

——D» the off-diagonal elements, of the

dynamical matrix at k; and ~T and uL are the trans-
verse and longitudinal phonon &equencies. 2 We empha-
size that this wave function is for distinguishable particles
correlated within the lowest Landau level.

In our variational calculations, we have allowed the
coeKcient of the overall exponent in Eq. (25), Az, to
vary &om 1. This is found to have only small effects on
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u(r) = (28)

where r is the distance between the two electrons. When
we adopt this correlation factor, electrons are not at-
tached to specific lattice sites or to a particular simula-
tion cell. We can therefore combine this correlation fac-
tor with the Slater determinant formed by one-particle
orbitals in Eq. (24). The resultant wave function is one
in which all electrons are identical regardless of the B's
and T's that they happen to lie close to at any particular
moment. This allows us to assess the effects of exchange
quantitatively. The correlation factor in Eq. (28) inixes
even and odd terms in the sense of phonon expansion
of the Hamiltonian, and allows one to adjust the cusp
condition. In all the calculations reported. below, we have
used A/(3I'" ~ ) = l/3. We have tested the cusp condi-
tion with other values and found A/(3I" ~ ) = l/3 to
be near the optimal in all cases. We give the details in
the next section. We note that the Jastrow factor in
Eq. (28) also modifies the intra-Landau-level correlation.

the total energies for A„1+ 0.2. The optimal A„ is
found to be very close to I (see discussions below).

One comment is in order here. When we adopt the
supercell geometry, the k's in B(k) are those compatible
with the periodic boundary conditions. This is because
the Fourier transform of (, in difFerent simulation cells
only has components at these selected k's. Let us con-
sider an arbitrary electron, say, electron 1 at rq localized
around a lattice site Bi. Its motion is correlated with
that of electron r~ localized around B2, in the form of
(iB(Ri, R2)$2. Due to the periodic boundary conditions,
it is also correlated with all the images of rq in a repetitive
fashion. Physically, this correlation must take the form
of QB(Ri, R2+ T)(2, not (iB(Ri, R2) [(2+complex(T)].
This procedure is precisely the same as that in Lam and
Girvin's work when they adopt the special k-point sam-
pling scheme to evaluate the energy and the wave func-
tion. Therefore, the magnetophonon correlation factor
is not periodic in r;, but rather in (,. A technical point
related to this physical requirement is that each electron
must now be associated with a particular T, in addition
to an B, if we wish to use this magnetophonon correla-
tion factor. In the magnetophonon picture, all electrons
are distinguishable, including those at different B's or at
different T's. For two electrons within the same T, we

always evaluate the ('s from the fixed R's even though at
a given step of the Monte Carlo walk, rq may be closer
to R2 than to B~. The same is true for two electrons
with the same label 1 but that lie in different T's. This
situation is entirely analogous to the evaluation of the to-
tal phonon zero-point-motion energy in a semiconductor,
where all ions are distinguishable, but move in unison
&om one supercell to another.

The above correlation factor by construction does not
mix in higher Landau levels. We have also used a
Landau-level mixing correlation factor that has the same
form as that in the absence of the magnetic field. For
ease of reading and discussion, we rewrite it here:

This can be seen by projecting the wave function with
Eq. (28) onto the lowest-Landau-level subspace.

The evaluation of —in the Jastrow factor is done with
the usual Ewald sum method, now in two dimensions. Its
various derivatives, needed in the kinetic energy calcula-
tion, are treated in the same way.

The magnetophonon correlation factor is expected to
be quite good for long-range correlation effects. We
also expect the —term to be reasonable for short- and
intermediate-range correlations. It is near optimal in the
absence of the magnetic field, as can be seen &om com-
parison with Green's-function Monte Carlo calculations
(see Table I). The combined result of these two corre-
lation factors interpolates smoothly between the strong-
Geld and the weak-Geld limits. It is, thus, expected to
yield an excellent correlated wave function for a Wigner
crystal in a strong magnetic field.

D. Quality of the variational wave function:
Comparison to ffxed-phase quantum

Monte Carlo results

After our work was published, another theoretical
work appeared9 in which an extension of the Gxed-node
Monte Carlo method to systems without time-reversal
symmetry was applied to the 2D electron system in a
strong magnetic field. We now compare our variational
Monte Carlo results to their work. The "fixed-phase"
method is, in principle, able to find the lowest possible en-
ergy for a given choice of the phase of the wave function.
It should be noted that the phase of the wave function
must be fixed for every point in the entire configuration
space.

Two useful conclusions emerge &om the comparison
between the present variational Monte Carlo results and
the fixed-phase diffusion Monte Carlo results.

(i) By intentionally restricting the variational freedom
in our trial wave function so that its phase is the same
as that used in Ref. 9, the variational method is able to
reproduce the diffusion Monte Carlo energy to within the
accuracy of the published results.

(ii) As a result, the source of the relatively poor qual-
ity of the choice of the phase for the Wigner crystal wave
function used in Ref. 9 becomes apparent: It is due to the
fact that the magnetophonon correlations are not sufB-
ciently included by the choice of the phase. The energy
of the Wigner crystals given by the fixed-phase diffusion
Monte Carlo in Ref. 9 can be lowered by choosing a phase
including the magnetophonon correlations. However, in
view of (i), it is expected that the present variational
Monte Carlo results for the WC including the magne-
tophonon correlation effects are sufBcient for calculating
the FICHE-WC phase boundary.

We now give the numerical details of the comparison.
The phase of the WC wave function used in Ref. 9 will
be the same as that used in this work if we set A~ = 0,
that is, if we turn off the magnetophonon correlations
intentionally. We do so, and then optimize the energy
with respect to P in the one-particle orbitals and A in the
I/~r part of the two-particle correlation factor, which
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does not change the phase of the wave function. We
obtain for r, = 20 an energy of —0.0504 (in a.u. ) at v =
1/3 and —0.0518 at v = 1/5. These are to be compared
with an energy of —0.0505(1) at v = 1/3 and an energy
of —0.0518(1) at v = 1/5 from the fixed-phase diffusion
Monte Carlo reported in Ref. 9 for r, = 20.s4 (See Table
IX below for our best energies at these filling factors for
r, = 20.)

IV. ENERGY OF A WIGNER CRYSTAL
rN THE FICHE a.EC1MZ:

RESULTS AND DISCUSSIONS

In this section, we present the detailed calculated re-
sults and discuss their possible experimental implica-
tions. There are two experimentally relevant parame-
ters that determine the energies of the phases involved
here: the filling factor v (related to the carrier density
and the magnetic field as v = 2I&/r, when t~ and r,
are in atomic units) and the electron density parameter
r, (determined by the density, dielectric screening of the
host media, and the carrier eff'ective mass). They in turn
determine the two relevant energy scales of the problem:
the Landau-level spacing Lu~ and the electron-electron
interaction E, = e /sd, where md = 1/n. Their ratio,

function, in addition to the magnetophonon correlations
contained in Eq. (26). Both mechanisms are found to be
important for obtaining an optimal variational energy.

In Sec. IVA, we compare the present VMC results
with previous lowest-Landau-level-only calculations. The
energy &om a single Slater determinant with P g 1 is
given in Sec. IVB for r, = 20, and compared to avail-
able Hartree-Fock calculations also with Landau-level
mixing. In Sec. IVC, we show that the finite size ef-
fects are negligible and quantify the effect of exchange in
the present system. In Secs. IV D, IV E, and IV F, we ex-
amine in some detail the effects of the various variational
parameters in our trial wave function on the energy. In
order to give a more general picture for the important
effects in a Wigner crystal, we compare in Sec. IVG the
WC energies using several different wave functions for
r, = 20 and v = 1/3 and v = 1/5. Our calculations
are brought into contact with the recent experiments in
Sec. IV H where we compare the energy of a Wigner crys-
tal to that of the FQHE liquid and derive a qualitative
phase diagram. Finally, effects of finite temperatures and
of disorder are discussed in Sec. IVI.

A. Comparison to previous work within
the lowest-Landau-level approximation

= vr, /2,
C'

(29)

provides a measure of the amount of Landau-level mix-
ing. For typical 2D electron systems, r, 2 in atomic
units. But for the p-doped systems, it is r, 25, if
m* ~ 0.6m~; and r, ~ 13, if m* ~ 0.3m, . For the
case of p-type doping, we, therefore, expect Landau-level
mixing to play an important role in determining the en-
ergies.

There are two mechanisms by which the WC may lower
its interaction energy by admitting higher-Landau-level
components in its wave function: as an inhomogeneous
system, both its mean-Geld Hartree energy and the dy-
namic correlation energy can be lowered. The former
may be done by allowing a charge distribution more local-
ized than that given by the lowest-Landau-level orbitals,
and the latter by having a nonanalytic correlation term
in the Jastrow factor. We iiave, therefore, allowed P in
Eq. (24) to increase and included the Landau-level mix-
ing Jastrow factor in Eq. (28) in our final variational wave

We first compare our results within the lowest-Landau-
level approximation to those obtained previously using
different methods. We have constructed the "Hartree, "
exchange-only, and correlation-only trial wave functions
and evaluated the respective energies. The Hartree re-
sults correspond to those using a trial wave function that
is simply a product of the one-particle orbitals in Eq. (24)
with P = 1, with no Jastrow factors. These can be cal-
culated exactly by the Ewald summation technique, and
this fact is used as an independent check of the present
VMC method. To include the exchange interaction, we
use a Slater determinant trial wave function composed of
the same one-particle orbitals as in the Hartree case. By
"correlation only, " we mean the wave function given by
Eq. (25) and Eq. (26).

The results from these calculations are given in Ta-
ble IV for r, = 2.0. The (interaction) energies at other
r, 's may be obtained by simply scaling by 1/r„since
we have imposed the lowest-Landau-level approximation.
The size of "bare" exchange energy may be estimated

TABLE IV. Energies (in effective atomic units) of the hexagonal Wigner crystal from various
lowest Landau-level only calculations at r, = 2.0. A constant kinetic energy —Ru is subtracted.

1/2
1/3
1/4
1/5
1/?

Hartree

-0.4222
-0.4722
-0.4960
-0.5090
-0.5226

Exchange only
Present Refs. 35 and 38

-0.4435(3) -0.4438
-0.4762 (8) -0.4758
-0.4966(5) -0.4957
-0.5091(1) -0.5090
-0.5225(1) -0.5220

only
Ref. 38
-0.4396
-0.4836
-0.5034
-0.5151
-0.5264

Correlation
Present

-0.4397(13)
-0.4834(9)
-0.5040(3)
-0.5155 (3)
-0.5272(1)

Laughlin
Ref. 34

-0.5023

-0.5180
-0.5256
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by comparing the Hartree and exchange-only results. In
principle, an estimate of the size of exchange, "screened"
by the magnetophonon correlations, may be found by ex-
plicitly antisyinmetrizing the wave function of Eq. (25).
However, the resultant many-body wave function is a
sum of exponentially large number of terms, and can-
not be used directly in an importance sampling calcula-
tion. Fortunately, the upper bound for exchange, set by
the "bare" exchange interaction, is already very small for
v ( 3. Landau-level mixing decreases the exchange over-
lap still further, and provides additional screening. (We
shall come back to this point later. ) The kinetic energies
for all these wave functions are explicitly evaluated and
confirmed to be exactly 2 her at every step of the Monte
Carlo walks.

We note that our Hartree-Fock (exchange-only) cal-
culation does not allow as much variational freedom as
the previous ones which consider a charge-density-wave
state with the order parameters p(G) being independent
at difFerent G's. But as can be seen &om Table IV, this
difference is not important for total energies. Our en-
ergies &om the correlation-only calculation are also the
same as those obtained by Lam and Girvin using a
special k-point sampling method. The remaining differ-
ences are within the quoted fitting errors. If we take
the &actional quantum Hall liquid energies &om Refs.
28 and 34 that were obtained also within the lowest
Landau-level approximation, Wigner crystallization oc-
curs at v, 1/6.5.

B. Present results: Single Slater determinant
with Landau-level mixing

TABLE V. Wigner crystal energy (in atomic units per elec-
tron) for a single Slater determinant with one-particle orbitals
given in Eq. (18), for r, = 20. The optimal variational pa-
rameter P at which these calculations are done is also given.

~~c
0.0050
0.0075
0.0125
0.0175

Total energy
-0.0437(l)
-0.0424(1)
-0.0301(1)
-0.0350(1)

Filling factor v
1/2
1/3
1/5
1/7

A calculation for the Wigner crystal that is both
strictly variational and includes Landau-level mix-
ing is done by MacDonald within the Hartree-Fock
approximation. In order to compare with this calcula-
tion, we have calculated the Wigner crystal energy with a
single Slater determinant. We simply seek the best one-
particle orbital [optimizing P in Eq. (24)] in our VMC
calculations.

We give the results for r, = 20 in Table V at v =
1/2, v = 1/3, v = 1/5, and v = 1/7. The optimal P
here also serves as a useful guide for later calculations
involving correlations. The independent parameters in
MacDonald's calculations were chosen to be the filling
factor v and the energy ratio (e /el~)/Ru, rather than

v and r, as in this work. At v = 1/2 and r, = 20,
the ratio (ez/el~)/Ru, is 10, where he also reported his
result. Converting his energy into the present atomic unit
(at r, = 20 and v = 1/2, e /el~ = 0.1 a.u. , and ku
0.01 a.u.), we find that his total energy (including the

2 Ru, ) is —0.043 ll (his original result for the total energy
was given without including the 2kuc, and as a result
is —0.048 11), and his total electron-electron interaction
energy is —0.05022. Prom the present calculations, we
obtain —0.0437(1) and —0.0504(l), respectively. There
is, of course, no variational principle for the interaction
energy alone, and we do not assign a great significance
to its value; however, we can infer &om these numbers
that the amount of excess kinetic energy due to Landau-
level mixing &om these two approaches is quite close.
At r, = 20, it is probably insufIicient to use only five
lowest Landau levels as was done in Ref. 36. It appears
that our single Slater determinant wave function is quite
good in comparison with the self-consistent Hartree-Fock
calculations.

If one ignores exchange, we then have a simple product
of one-particle orbitals. The interaction energy for this
"Hartree" state can be evaluated rapidly and accurately
with the Ewald summation as we have done in the lowest-
Landau-level-only cases. The kinetic energy for this state
can also be obtained straightforwardly by projecting the
one-particle orbitals [for example, take the one centered
at (0, 0)] onto the ~m)th Landau level, which yields the
following coeKcient:

2P t'I —P')
1+P' l, l+P'& (30)

C. Finite size effects and the size of exchange

The combination of the Ewald summation technique
and the use of the image charges essentially eliminated
the 6nite size dependence of the WC energy using mod-
est size simulation cells. In Table VII, we give the finite
size efFects of the present VMC energies. The results
given are for r, = 20, v = 1/3, calculated with P = 1.12
in the one-particle orbitals, magnotophonon correlation
strength A„= 1.0 (i.e., the original Lam-Girvin corre-

TABLE VI. Overlap of P(P) in Eq. (18) with the nth Lan-
dau level (LL): (nth LL~Q(P)) with P = 1.3. This gives a mea-
sure of the amount of Landau-level mixing in the ground-state
wave function corresponding to a signer crystal at r, = 20
and v = 1/3 (see text).

n= 0
0.9666

n=1
-0.2480

n=2
0.0636

n=3
-0.0163

One can easily verify that go ~c i

= 1. The projection
also gives a rough measure of the size of I andau-level
mixing in cases involving correlations, although in the
latter case projections cannot be easily carried out. For
illustration, we tabulated the values of c for P = 1.3 in
Table VI.
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Simulation cell size
6x6
8x6
8x8
10 x 8
10 x 10
12 x 10

Energy /electron
-0.04322 (1)
-0.04322(1)
-0.04322(1)
-0.04322(1)
-0.04322 (1)
-0.04321(1)

TABLE VII. Finite size eKects and statistical noise in this
work have been reduced to a level that is unimportant for
the energy differences of interest. We show a typical example
for v = 1/3, r, = 20, calculated with A = 10.0, A„= 1.0,
A/(3E ~ ) = 1/3, P = 1.12. See text for these parameters in
the wave function. The total energies here are in atomic units
and include the term ~ her~ = 0.0075 a.u.

D. Optimal cusp condition and the magnetophonon
correlation

A
3F3q.

= (31)

We have also varied the cusp conditions given by
A/3F /2 and the strength of the magnetophonon cor-
relation factor Az. The cusp condition derived from the
equation of motion of two particles in a strong magnetic
field is different from that without the magnetic field.
We have considered the short (relative) distance behav-
ior of two electrons in a strong magnetic field. We find
that for an eigenstate with relative angular momentum
m, the cusp condition associated with the divergence of
the Coulomb interaction is

lation factor), A = 10.0 in the ~ correlation factor,
A/3Fs/2 = 1/3, for cells of size 6 x 6, 6 x 8, 8 x 8, 8 x 10,
10 x 10, and 10 x 12.

As we mentioned above, a comparison of the Hartree
and Hartree-Fock energies in 'Table IV provides a rough
estimate of the size of the bare exchange. It is clear
that for v ( 1/5, we may safely ignore the exchange
contribution to the total energy. We now discuss the
size of the exchange contribution at v = 1/3 near the
calculated FICHE liquid —WC transition in more detail.

Both intra- and inter-Landau-level correlations can
screen the exchange interaction. The latter favors smaller
one-particle wave functions for a lower direct energy.
This reduces the one-particle wave function overlap dras-
tically. We estimate the size of the exchange interaction
in the WC in the following way. We form two wave
functions. One is a totally antisymmetric wave func-
tion formed with the product of the correlation factor in
Eq. (28) with a Slater determinant of one-particle orbitals
from Eq. (24); the other one has the same correlation
factor, but now has only one term of the Slater determi-
nant. We shall refer to the former loosely as "screened
HF," and the latter as "screened Hartree. " Results are
given in Table VIII for r, = 20 and v = 1/3, where
for comparison the unscreened ("bare" ) lowest-Landau-
level-only results are listed again. The "screened" results
are calculated with P = 1.2 and A = 10. The ener-
gies from the "screened" wave functions are the same to
within the statistical noise. The magnetophonon corre-
lation will further screen the exchange interaction. We
thus conclude that exchange in the Wigner crystal phase
is not important for its energy.

-0.05032 I I I
i

l I I
i

I I I

-0.05034 I

1-, = 20
v = I/O

-0.05036

However, we have checked that changing the cusp con-
dition at a Axed A from the value of A/3Fs/2 = 1/3 by
to up 50%%up at v = 1/3, 1/5 and r, = 20 does not affect
the energy. This presumably results from the strong lo-
calization of the single-particle orbitals involved. As a
result, the particles are not too close to each other, and
the short range cusp conditions are not important. For
example, at v = 1/5 and r, = 20, for P = 1.04, A„= 1,
and A = 10, with A/3Fs/2 = 1/3, the total energy (with

~ Re, ) is —0.03962(1) a.u. , and with A/3Fs/2 = 1/5. 5, it
is —0.03961(l) a.u.

In Fig. 6, we show the total energy as a function of the
strength of the magnetophonon correlation factor A„ for
r, = 20 and v = 1/3. Here, we have set A = 0. The
energy changes relatively little and the optimum occurs
for A~ = 1. This is not surprising since A~ = 1 is the
desired value for asymptotically small v. Calculations

TABLE VIII. An estimate for the size of exchange contri-
bution to the total energy: comparison of screened Hartree
with screened Hartree-Pock (HF) for r, = 20 at v = 1/3. For
comparison, the unscreened results from Table IV are also
shown here. Total energies (not including —fur ) are given in
atomic units.

Bare Hartree Bare HF Screened Hartree Screened HF
-0.04722 -0.04762(9) -0.05035(1) -0.05035(1)

-0.05038

0.8
I I I I I I I I

1.2

FIG. 6. Total energy (in eff'ective atomic unit) as a function
of A„, the strength of the magnetophonon correlation, for
v = 1/3 at r = 20. The line is a spline fit. A constant —~,
is subtracted.
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are also done for other filling factors and the conclusion
remains.

-0.048 I I I
i

I I I
(

I I I

E. EfFects of P on signer crystal energy

We find that for the r, and v values relevant to the
recent experiments carried out on p-doped samples,
squeezing the one-particle wave function is the single
most important mechanism for lowering the energy of
a WC. To focus on its effects on the total energy, we
can set A„= 1 and A = 0 and calculate the total energy
as a function of P. This was done in Figs. 1(a) and 1(b)
of Ref. 6, where we showed the total energy as a function
of P at v = 1/3 for r, = 2 and r, = 20, respectively.
When P is optimized, the density at the lattice sites in-
creases by hp(0)/p(0) = 70'%%uo and the energy is lowered
by bE/(E —zkuc) = —4.4% at r, = 20. The changes
are, respectively, 10%%up and —0.8'%%up at r, = 2. Figure 7
and Fig. 8 show how the kinetic energy and the poten-
tial energy change with P for r, = 20 and v = 1/3. At
the optimal P = 1.3, the kinetic energy has risen only by

0.001 a.u. , while the potential energy gain is 0.0034
a.u. compared to P = 1. For P greater than 1.3, a
more rapid rise in kinetic energy than the drop in po-
tential energy makes it less favorable, although even at
P = 1.6, the total energy is still lower than that at P = 1.
For comparison, we also give the energy at r, = 20 and
v = 1/5 as a function of P in Fig. 9. The optimal P is
around 1.1 and the energy gain is much smaller than that
at v = 1/3.

We now come back to the case of r, = 20 and v = 1/3.
A 4'%%up lowering in energy obtained by changing P alone is
extremely important for determining the phase boundary
between the FQHE liquid and the WC. To see this, we

-0.05

. -0.051

V
gj

Q~ -0.052

-0.053 I I I I I I I I I I I

1.2 1.4 1.6

note that the interaction energy of the lowest-Landau-
level Lam-Girvin wave function is only 12% higher than
the absolute minimum set by the Ewald energy. At r, =
20, this difFerence is reduced by one-third, by allowing the
Landau levels to mix through the one-particle orbitals.
In comparison to the size of the correlation and' Landau-
level mixing efFects, the exchange contributions to the
total energies are indeed negligible.

FIG. 8. Interaction energy (in atomic units) per electron
vs P for u = 1/3 at r, = 20 in the efFective atomic unit. The
line is a spline Qt.

0.012

I I I
I

I I I I I I
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v = 1/3
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I I I
I
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v= 1/5

0.011
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U
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-0.0515 q
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-0.052

0.008
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FIG. 7. Kinetic energy (in atomic units) per electron vs P
for v = 1/3 at r, = 20 in the efFective atomic unit. The line
is a spline fit.

FIG. 9. R' ' ' ——Acro (per electron) vs P for u = 1/5 at
r, = 20. Energy is in the effective atomic unit. Statistical
noise is given by the size of the data points. The line is a
spline 6t.
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P. Effects of A and the continuity of E(v) -0.039 I I I I I I I
I

I

In Fig. 10, we show the total energy of the WC as a
function of A, the coeKcient of the I/~r term in the
Jastrow factor. The results are calculated for the case of
r, = 20, v = 1/3 with A„= 1 and P = 1.17.

We have examined the continuity of the WC energy
as a function of filling factor v using the VMC method.
We first calculated the WC energies for two filling factors
on both sides of v = 1/3. Within the present WC wave
function and the numerical accuracy, there is no cusplike
feature occurring at v = 1/3. We also studied the WC en-
ergy at v = 9/20, 1/2, and 11/20. Again, we find no sign
of any discontinuity at v = 1/2 within the Wigner crys-
tal wave functions. We therefore conclude that the solid
energy curve is continuous for all filling factors, show-
ing no features at either even- or odd-denominator filling
factors.

O

wc-1
-0.04

wC-2

r, = 20

v = 1/3

-0.041

-0.042

-0.043

WC-3

WC-4

FQHE-1

FQHE~l

-0.044 I I I I I I

C. Energies of a Wigner crystal:
Comparison of different wave functions

In Fig. 11 and Fig. 12, we show, for r, = 20, v = 1/3,
and r, = 20, v = 1/5, the VMC energies for a Wigner
crystal using the various different wave functions dis-
cussed. These two figures show quite clearly which com-
ponents of the electron correlations are important and
how they vary with filling factor. For comparison, the
energies of the corresponding Laughlin liquid with and
without Landau level mixing &om Refs. 7 and 34 are
also given. For v = 1/3, the largest energy gain occurs
when we allow the Gaussian size to decrease while keep-
ing the magnetophonon correlation. Further including

FIG. 11. WC solid and the FQHE liquid energies at
v = 1/3 and r, = 20 in the efFective atomic unit calculated
from difFerent wave functions. (The liquid remains the ground
state at r, = 20.) WC1: Hartree-Fock results with no Lan-
dau-level mixing. WC2: Magnetophonon correlated results
with no Landau-level mixing. WC3: Lowest possible energy
without introducing the Landau-level mixing Jastrow factor,
but allows Landau-level mixing by changing P. WC4: Lowest
energy for the WC with all variational parameters optimized.
FQHE-1: FQHE liquid energy from the Laughlin wave func-
tion with no Landau-level mixing (Ref. 34). FQHE-2: FQHE
liquid energy with Landau-level mixing from B.ef. 7.
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FIG. 10. E ' ——Kuc (per electron) vs A for v = 1/3 and
r, = 20 calculated with A„= 1 and P = 1.17. Energies are
in the effective atomic unit. Statistical noise is given by the
size of the data points. The line is a spline 6t.

FIG. 12. FQHE liquid and WC solid energies at v = ]./5 at
r, = 20 in the effective atomic unit calculated from different
wave functions. (The solid has a lower energy at r, = 20.)
The notations for the data points are identical to those in
Fig. 11.
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the —correlation factor given by Eq. (28) introduces a
relatively small lowering of the energy. We point out that
the optimal single-particle orbital Gaussian size is larger
when the I/~r correlation factor is included in the wave
function. With all the correlation effects taken into ac-
count, our solid energy still lies above that of the liquid
(with Landau-level mixing effects) at r, = 20. Crystal-
lization does not occur until a larger r, at v = 1/3.

At v = 1/5, the largest contribution now comes Rom
intra-Landau-level correlation effects, but still Landau-
level mixing correlations are comparable in size. Without
Landau-level mixing effects, the solid energy lies above
that of the liquid. But with Landau-level mixing effects,
the solid becomes lower in energy by an amount that is
signi6cant on the scale of energy differences in the present
context. We therefore conclude that for v = 1/5 at r, =
20, the solid is lower in energy than the FQHE liquid. At
even smaller 61ling factors, the intra-Landau-level effects
are by far the most important effect, and we find that the
Wigner crystal is more stable in energy (see, however,
Ref. 25).

H. VVigner crystal versus FQHE liquid:
Ground-state energies and the general phase

diagram

In obtaining our 6nal results for the energy of a Wigner
crystal, we have optimized both P and A. at a given r,
and v. Optimization of Az is inconsequential for the to-
tal energy. Results for r, = 20 are plotted in Fig. 13 as
solid lines. The energies &om the magnetophonon cor-
related wave function with no Landau-level mixing are
shown as empty squares. The energies &om the corre-
lated wave function with Landau-level mixing are shown
as filled squares. They are obtained by varying P in the
one-particle orbitals and A in the I/~r Jastrow factor
while keeping A„= 1 in the magnetophonon correlation
factor. The energies of the incompressible FQHE liquid
are shown as dotted lines. Both the lowest-Landau-level
results 4 based on I aughlin's variational wave function,
and the recent results with Landau-level mixing are plot-
ted. For the liquid state, the actual calculated energies
at v = 1/3, 1/5, and 1/7 are plotted as hexagons in
Fig. 13. The lines passing through them are a spline fit
to the data. They do not show the cusps that must occur
at filling factors where the FQHE states exist. On the
other hand, the energy of the solid is considered to be
valid for all filling factors due to its continuity discussed
in Sec. IVF.

In general, it is expected that Landau-level mixing ef-
fects will be smaller in the liquid phase. As discussed
in the beginning of this section, in the solid phase, both
the Hartree and correlation energies can be lowered by
allowing Landau-level mixing. The former mechanism
is found to be more important for lowering the energy
in WC, but it is entirely lest in the uniform liquid phase
whose Hartree energy will not be altered by Landau-level
mixing. This expectation is con6rmed by the work of
Price, Platzman, and He. 7 They find that the lowering
in the liquid energy is indeed substantially smaller than

-0.048

-0.052

-0.054
1/2 1/3 1/4 1/5

Filling Factor v
1/6 1/7 1/8

FIG. 13. B' ' ——Ru~ of the WC at r, = 20 compared
with those of the FQHE liquid. Energies are in e8'ective
atomic unit. Heavy line connecting the empty squares is
the WC energy with no Landau-level mixing, but with mag-
netophonon correlations. Heavy line connecting the 6lled
squares is the WC energy with all correlation effects consid-
ered obtained in this work. The dotted line connecting the
empty hexagons is the Laughlin state with no Landau-level
mixing from Ref. 10 The dotted line connecting the filled
hexagons is the Laughlin state with Landau-level mixing from
Ref. 16.

that in the solid: for r, = 20 at v = 1/3, lowering in
energy &om Landau-level mixing for the FQHE liquid
state is only 1/4 of that we find for the WC solid (see
Fig. 11 and Fig. 13). As a result, for r, = 20, the FQHE
state with Landau-level mixing is only slightly more sta-
ble than the WC state at v = 1/3 for a pure system with
no disorder. At v = 1/5, the WC becomes lower in en-
ergy. In Table IX, we list the optimized energies for the
Wigner crystal and the FQHE liquid for r, = 20 at sev-
eral filling factors. For r, = 2, the WC state is higher in
energy at v = 1/5 but remains lower in energy at v = 1/7
than the FQHE state.

Based on these theoretical results, we present a quali-
tative phase diagram for the 2D electron gas in a strong
magnetic Beld. In Fig. 14, the x axis is the Landau-level
6lling factor and the y axis is r, measured in effective
atomic units, which may be changed by the carrier effec-

Filling factor v
1/3
1/5

1/9

Wigner crystal
-0.05073(1)
-0.05212(1)
-0.05291(1)
-0.05341(1)

FQHE liquid
-0.05090(1)
-0.05203(1)
-0.05265 (1)
-0.05306(l)

TABLE IX. Ground-state energies at r, = 20 for the
Wigner solid vs the FQHE liquid from Ref. 7 in atomic units.
We have taken out the term ~~ . For its value at respective
filling factors, see Table V.
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SCHEMATlC PHASE DlAGRAM AT T = 0
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FIG. 14. Schematic phase diagram of a 2D electron/hole
system at T = 0 and free of disorder. The 2: axis is filling fac-
tor and the y axis is the effective r, . Several possible reentrant
phase transitions around the principles FICHE states are illus-
trated. We have assumed that at v = 1/7, the ground state
is the signer crystal.

tive mass at a given doping concentration. At a small
enough filling factor or low enough density, the system
crystallizes. At intermediate experimental parameters,
a number of reentrant phase transitions at v = 1/5,
v = 1/3, v = 1, etc. , are expected as one scans the mag-
netic field. But at a given 6lling factor, we only expect
one phase transition as r, is varied. The picture is only
meant to be illustrative; details such as the strength of
various phases (peak heights in the figure) should not be
taken literally. The details of the phase diagram will be
affected by temperature and disorder, both of which to
lowest order favor the Wigner crystal phase. We discuss
qualitatively these two issues in the next subsection.

I. EfFects of disorder and Snite temperatures

Our calculations are carried out for a perfect 2D elec-
tron gas with no disorder and at zero temperature. Real
systems do not satisfy either condition. Due to the re-
duced dimensionality, both are expected to have impor-
tant effects on the phase diagram of the system.

The presence of disorder breaks the Wigner crystal into
domains of a finite linear size g . The superscript on
( is intended to indicate that most of the static distor-
tions in a WC are transverse. The Wigner crystal can
lower its energy by locally adjusting its density to accom-
modate for the local disorder potential. The quantum
Hall liquid, on the other hand, is rigid to disturbances
on energy scales smaller than the gap in its collective
excitations. Therefore, to first order, the presence of dis-
order favors the Wigner crystal formation. The margin
by which the Wigner crystal is favored due to disorder
has been estimated, ~'ss using ( deduced from nonlinear
transport threshold field experiments. ' 2»' Such a
procedure, while suggestive, is not very accurate. Quan-
titatively, the disorder affects the energy differences be-

tween the solid and the liquid, but the qualitative pic-
ture presented above is found not to be altered by
such estimates. The precise pinning mechanism of the
Wigner crystal by disorder in the actual experimental
GaAs/Al Gai As heterojunction systems is at present
not clear, and it remains a subject of considerable amount
of experimental and theoretical interest. ~

The effects of 6nite temperatures on either the Wigner
crystal or the quantum Hall liquid are a difIicult issue.
On the &actional quantum Hall liquid side, while it is
often thought that there is only a gradual decay of the
peculiar FICHE order with rising temperature, 7i some re-
cent experiments point to the possibility of a finite tem-
perature transition that is in fact rather abrupt. There
is currently no theoretical model that can account for this
observation. On the Wigner crystal side, a classical solid
in two dimensions is expected to melt by the Kosterlitz-
Thouless mechanism as the temperature increases. A
two-step melting path has been suggested. The present
system has significant quantum mechanical fIuctuation
effects and it is unclear if the classical 2D melting theory
is applicable in the vicinity of a quantum phase transition
to the FICHE state.

However, at temperatures well below the afore-
mentioned phase transition temperatures, the collective
excitations in both the solid and the liquid may be ap-
proximated as independent bosons. Only the lower
branch needs to be considered, i.e., the magnetoroton
for the FICHE liquid and the (largely transverse) inagne-
tophonon for the Wigner crystal. In this regime, one can
then evaluate, and compare, the &ee energies of these
two phases, and determine a 6nite temperature phase
diagram. ' While some interesting effects have been
predicted, it remains unclear if these effects lie outside
the regime of validity of the low-temperature assump-
tion. The presence of the disorder pinning gap in the
solid phase may also affect the entropy of the Wigner
crystal. Further theoretical efforts are needed in these
directions.

Finally, we note that there have been recent claims
that Wigner crystallization occurs for 2D electron gas at
doped Si/Si02 interfaces at low or zero external magnetic
fields. The reentrant insulating phases set in around
v = 1 (and v = 2) in these systems. We have carried out
calculations to determine the Wigner crystal/quantum
Hall liquid phase boundary at v = 1 and found that
the resultant density is much lower than the experimen-
tal doping concentration reported in these works. The
band structure of Si around the conduction band min-
imum is more complicated than that of GaAs. It is
doubtful if the present model of a one-component fermion
system is capable of describing the Si/Si02 system. The-
oretically, it has been suggested that multicomponent
systems are more susceptible to Wigner crystal or charge-
density-wave instabilities since they may arrange their
density profiles to be mutually beneficial energetically,
but this simple picture may not be correct when inter-
layer interaction induced frustration of the triangular lat-
tice is important. A variational Monte Carlo calculation
has recently been carried out for the related phenomenon
of Wigner crystallization in a wider quantum well, but
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within the lowest subband approximation;~~ generaliza-
tions of this approach to double layer systems would be
interesting. While it is possible that such mechanisms are
indeed responsible for the insulating phases observed, the
much lower mobility of the Si samples, as compared to
the GaAs samples, also brings to mind the possible role
of disorder in the insulating phase.

insulating phases in the &actional quantum Hall effect
regime, our results strongly suggest that the main driving
force of the phase transitions is electron-electron interac-
tion in the best current saxnples. More work is needed to
further understand the effects of finite temperatures and
of disorder. This will probably require a better under-
standing of both the neutral and charged excitations of
this interesting electron solid.

V. SUMMARY'

In summary, we have studied variationally the ground-
state energies of two-dimensional electron Wigner crys-
tals, both with and without an external magnetic field.
We identify the important quantum Quctuations present
in an optimal ground-state wave function. We take into
account both the short-range and long-range correlation
effects in the WC and provide a rigorous upper bound for
the WC energy. Landau-level mixing effects are shown
to be significant in the range of carrier density, effective
mass, and strength of the magnetic field of experimental
interest. In the context of the experimentally observed
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