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Electron localization in a, two-dimensional system with random magnetic flux
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Using a finite-size scaling method, we calculate the localization properties of a disordered two-
dimensional electron system in the presence of a random magnetic field. Below a critical energy E
all states are localized and the localization length ( diverges when the Fermi energy approaches the
critical energy, i.e. , ((E) oc ~E —E

~

. We find that E, shifts with the strength of the disorder and
the amplitude of the random magnetic field while the critical exponent (v —4.5) remains unchanged,
indicating universality in this system. Implications on the experiment in the half-filling fractional
quantum Hall system are also discussed.

The fractional quantum Hall (FQH) system is an ideal
candidate to study localization properties in strongly cor-
related electron systems. In a noninteracting picture, ac-
cording to the scaling theory of localization, all electrons
in a two-dimensional (2D) system are localized in the ab-
sence of a magnetic field. When the two-dimensional elec-
tron system is subject to a strong perpendicular magnetic
field, the energy spectrum becomes a series of impurity
broadened Landau levels. Extended states appear at the
center of each Landau band, while states at other ener-
gies are localized. This gives rise to the integer quantum
Hall effect. Finite-size scaling techniques ' have been
used extensively to study the integer quantum Hall lo-
calization transition with the important finding that the
critical transition at the center of each Landau band is
universal in the sense that it is independent of the dis-
order strength and range and also of the Landau level
index. In the FQH regime, electron-electron interaction
plays an important role, however, recent experiments
and theories indicate that the critical properties of the
plateau transition might also be in the same universality
class.

Recently, Halperin, Lee, and Read" and Kalmeyer and
Zhang developed an effective Chem-Simons field theory
to understand electroiuc properties of the FQH systems.
In their theory the quasiparticles are weakly interacting
composite fermions, which can be constructed by at-
taching an even number of flux quanta to electrons under
a Chem-Simons transformation. In this simple picture,
the &actional quantum Hall effect can be mapped into
the integer quantum Hall effect for the composite fermion
system subject to an effective magnetic Geld. At the fill-
ing factor vy ——2, although the effective magnetic field.
B* vanishes, composite fermions are subject to the ran-
dom fIuctuations of the gauge Geld, induced by the ordi-
nary impurities. ' Thus it is important to study the lo-
calization properties of noninteracting charged particles
in a random background magnetic field to understand the
half-filling FQH system. The problem of charged parti-
cles moving in a random magnetic field is also relevant to
the theoretical studies of high-T models where the gauge

field fluctuations play an important role.
According to the conventional scaling theory of local-

ization, the random flux system belongs to the unitary
ensemble, which is described by a nonlinear o model with
unitary symmetry. Since there is no net magnetic field,
the topological term of the uniform magnetic field case
is absent. Perturbative renormalization-group calcula-
tions show that all states are localized. However, it has
been argued recently by Zhang and Arovas that, al-
though the constant topological term is absent, there is a
term describing the long-ranged interaction between the
topological densities, and they conjectured that this new
term could lead to a phase transition f'rom localized to
extended states. There have been a number of conflicting
numerical investigations on the localization properties of
the 2D random magnetic field system. The conclusions
in these studies range from all states localized ' to ex-
tended states around band center. ' In Ref. 16 the au-
thors found evidence for a mobility edge, but the system
was neither large enough to see good scaling nor close
enough to the critical regime to obtain a conclusive crit-
ical exponent.

In this paper we systematically investigate the localiza-
tion properties of a disordered two-dimensional electron
system in the presence of a random magnetic Geld. The
localization length is calculated using a transfer matrix
technique and finite-size scaling analysis. An important
strength of our calculation is using system widths (up to
128) that are substantially (by a factor 4) larger than
those ' ' existing in the literature. We Gnd the fol-
lowing results: (i) A mobility edge E, is observed and
the localization length ( diverges when the Fermi en-
ergy approaches the critical energy; (ii) the critical en-
ergy E, shifts with increasing disorder strength; (iii) E,
shifts with changing randomness in the magnetic field;
(iv) the critical exponent (v 4.5) remains unchanged
while varying the disorder strength and the randomness
of the magnetic field, indicating universality in the metal-
insulator transition; and (v) the mobility edge survives
in the presence of a weak but nonzero average random
magnetic Geld.
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We model our two-dimensional system in a very long
strip geometry with a finite width (M) square lattice
with nearest-neighbor hopping. The disorder potential
is modeled by the on-site white-noise potential V; (i
denotes the column index, m denotes the chain index)
ranging from —W/2 to W/2. A random magnetic field is
introduced by varying the flux in each lattice plaquette
uniformly between —P /2 and P, /2 (in this case the av-
erage field is zero; we also discuss the situation of weak
but nonzero average random magnetic field in the later
part of this paper). The Hamiltonian of this system can
be written as

i m=1

) t;,,„~im) (jn~ + t, ,„~jn) (im~,
|,im; jn)

where (im; jn) indicates nearest neighbors on the lattice.
The amplitude of the hopping term is chosen as the unit
of energy. A specific gauge is chosen so that the intercol-
umn hopping does not carry a complex phase factor (i.e. ,t;,;+i ———1). The only effect of random magnetic
Beld shows up on the phase factor of the intracolumn
(interchain) hopping term. If the random flux in a pla-
quette cornered by (im), (i + 1, m), (i + 1, m + 1), and
(i, m+ 1) is P;, then

10-
(u) 8'=0 0, $.„=1.0

0

where f(x) oc 1/x in thermodynamic limit M ~ oo while
approaching a constant ( 1) at the mobility edge where
the thermodynamic localization length diverges. Numer-
ically we shift the data in Fig. 1(a) onto a smooth func-
tion with a least-squares fit. Note that we have to select
data for a large enough sample in the scaling analysis so
as to avoid severe finite-size effect. In our calculation,
we choose the data for sample width greater than 16 (in-
clusive). The thermodynamic localization length is given
by the amount of shifts on a log-log plot. A sample of
the scaling function and corresponding thermodynamic
localization length is shown in Fig. 1(b). Because of the
symmetry in the problem, we only study the branch with
negative energy E ( 0.

We Brst study the case with random magnetic Beld
characterized by fluctuation amplitude P, = 1.0. We
Bnd that if the Fermi energy is below E, = —3.0, the
finite-size localization length is well converged and al-
ways smaller than the sample width, indicating that all
states are localized below —3.0. On the contrary, for the
electronic states with energy higher than —3.0 the in-
verse of the Lyapunov exponent is always larger than the
sample width, which is the feature of extended states.

ti+1,m;i+i)m+1 = exp
&im, m+1 4o

(2)
1.0 = x

0 x+
)K

where Po ——hc/e is the magnetic flux quantum. For a
specific energy E, a transfer matrix T, can be easily set
up by mapping the wave-function amplitudes at column
i —1 and i to those at column i + 1, i.e.,

0. 1 =

0.01

&@')
(3)

&M(E) r M )
M q((E) ) ' (4)

where H; is the Hamiltonian for the ith column and I
is a M x M unit matrix. Using a standard iteration
algorithm, we can calculate the Lyapunov exponents for
the transfer matrix T, . The localization length A~(E) for
energy E at Bnite width M is then given by the inverse of
the smallest Lyapunov exponent. In our numerical calcu-
lation, we choose the sample length to be over 10 so that
the self-averaging effect automatically takes care of the
ensemble statistical fluctuations. A sample of our calcu-
lated Bnite width localization length for various energies
is shown in Fig. 1(a).

We use the standard one-parameter finite-size scal-
ing analysis to obtain the thermodynamic localization
length (. According to the one-parameter scaling theory,
the renormalized finite-size localization length A~/M
can be expressed in terms of a universal function of M/(,
1.e.)
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FIG. 1. (a) Renormalized finite-size localization length
(AM/M) for difFerent sample width M in a random magnetic
field (P = 1.0) without on-site disorder (W = 0). (b) Scaling
function and localization length in the thermodynamic limit
(inset) with u = 4.52 + 0.08 and E, = —3.00. Here differ-
ent symbols represent different energies: V', —2.1; o, —2.7; x,
—3.15; +, —3.19; *, —3.23; Q, —3.29; A, —3.36; 0, —3.45.
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We also find that the thermodynamic localization length
( diverges while approaching E, = —3.0, indicating the
existence of a mobility edge around —3.0. Our best Bt
analysis indeed gives a critical energy E = —3.00 with a
critical exponent v = 4.52 appearing in ( = iE —E,

i

for E ( E, [the critical exponent is given by the slope
of the straight line in the inset log-log plot of Fig. 1(b)].
Note that in the extended state regime above E, we
could not obtain a second branch (for states above the
mobility edge) in the scaling function &om our finite-size
data. This is consistent with the scenario that the ex-
tended state regime is a line of critical points due to
the two-dimensional nature of the system where local-
ization is "marginal. " Our conclusion for the existence
of a mobility edge in this problem is based on the fol-
lowing two facts: (i) The finite-size scaling evidence for
the mobility edge is as strong as in the integer quantum
Hall problem where the existence of the extended states
is well established, and (ii) in the 2D Anderson Hamil-
tonian with random on-site energies where all states are
known to be localized, all energy states can be fit into one
scaling curve, whereas in our random flux model only
states with E ( E, can be fit into the scaling curve [see
Fig. 1(b)]. Here we should comment on the two recent
numerical studies ' where all states are found to be lo-
calized. Although the raw data in Ref. 13, obtained with
sample sizes smaller than ours, seem to be consistent with
ours, the authors came to a diferent conclusion based on
the absence of the second branch. Reference 14 uses the
network model where the basic assumption is that the
impurity potential is smooth enough such that its cor-
relation length is much larger than the cyclotron radius
(eh/cB) i, where B is the root-mean-square value of
the field. However, in our model the impurity correla-
tion length is roughly one lattice constant, which is of
the same order as the cyclotron radius. Thus, in some
sense our calculations are for finite short-range disorder
and those of Ref. 14 are for long-range disorder.

We expect that the mobility edge should shift to lower
energy if the magnetic field is less random so that ex-
tended states are more favorable. This is exactly what
we observe in our calculation. ln Fig. 2(a) we show
the typical scaling function and the localization length
for a random magnetic field with P„= 0.9. ln Table I
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we present the critical exponents and critical energies for
di8'erent randomness in the magnetic Beld. We find that
the critical energy increases almost linearly with the ran-
dom flux amplitude, which is proportional to the energy
fluctuation created by the random magnetic Beld.

We now discuss the situation with both a random mag-
netic field and an on-site disorder potential. We consider
two types of disorder potential. (i) First is the inde-
pendent model, where the distribution of disorder poten-
tial is completely independent of the random magnetic
Beld. This model is relevant for the case with random
distributed nonmagnetic impurities in the sample. (ii)
Second is the correlated model in which the strength of
disorder is associated with the local random magnetic
field (numerically we select each on-site disorder so that it
is proportional to the random flux in the neighboring pla-
quette). This model is relevant for the case with random
distributed magnetic impurities, for example, disorder-
pinned random flux lines in the sample.

In the independent Inodel, since nonmagnetic ran-
dora disorder potential tends to localize all the electronic
states, we expect that the mobility edge in a random
magnetic Beld should shift to higher energy with increas-
ing strength of the disorder potential because the local-

TABLE I. The critical exponent (v) and critical energy
(E,) for different representations of the random magnetic field

(P„) and on-site disorder (W). The last row is for the cor-
related disorder model while the other data are for the inde-
pendent disorder model.
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FIG. 2. Scaling functions and thermodynamic localization
length (inset) in random magnetic fields (b) with or (a) with-
out on-site disorder. The corresponding critical exponents
and critical energies are (a) v = 4.98 6 0.10,E, = —3.13 and
(b) u = 4.86 + 0.02, E, = —2.73.
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FIG. 3. Thermodynamic localization length in the presence
of a weak but nonzero average random magnetic 6eld.

ized states are more favorable in this situation. In Fig.
2(b) we show the typical scaling function and localization
length for a strongly disordered sample with TV = 2.0 in
a random magnetic field with P, = 1.0. As presented in
Table I, the critical energy moves to higher energy as the
disorder strength W increases for a fixed random mag-
netic field (P = 1.0), just as we expect. Presented in the
last row of Table I are the data for a correlated disorder
model —the behavior of the mobility edge is quite similar
to that for the independent disorder model.

It is interesting to notice that even though the mobil-
ity edge is shifting for various random magnetic fields
and disorder strength and correlation, the critical ex-
ponent for the metal-insulator transition is more or less
unchanged, which indicates universality for this critical
transition. Our calculated exponent (v = 4.5) is quite
diferent &om the value obtained in Ref. 16. However,
our system size is larger (4 times larger) than the system
studied in Ref. 16, our scaling is better, and our data are
closer to the critical regime; thus our calculated exponent
should better represent the true critical exponent.

In Fig. 3 we present the localization length for a two-
dimensional system subject to a random magnetic Beld
when the average field is weak but nonzero (i.e. , (P) g 0).
Clearly there exists a mobility edge at E = —3.0 for

(P) = 0.01. It is consistent with the argument that in
the vicinity of (B*) = 0, the composite fermion system
behaves as a Fermi liquid.

As mentioned earlier, there is currently considerable
disagreement in the literature about the nature of two-
dimensional one-electron eigenstates in a random Bux en-
vironment. An earlier Bnite-size scaling analysis con-
cluded that all states are localized, but the localization
lengths are exponentially large near the band center. Our
largest system widths (=128) are four times larger than
those (=32) used in Ref. 13 and our results are consis-
tent with the existence of mobility edges separating lo-
calized and delocalized states with a localization expo-
nent v = 4.5. We mention that our calculated critical
exponent v 4.5 is the best one can do with the cur-
rently available computer sizes. Our demonstration of
the existence of a mobility edge should, however, be quite
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FIG. 4. Conductance for Gnite-size samples at different en-
ergies (diferent symbols). Inset: conductance for sample size
M =64.

We thank J. K. Jain, T. Kawamura, and T. R. Kirk-
patrick for helpful discussions. This work is supported
by the U.S. National Science Foundation.

robust. We emphasize that no finite-size scaling anal-
ysis can distinguish between extended states and states
with extremely large (orders of magnitude larger than
the system length) localization lengths. is'i We contend
tha. t experiments in real samples cannot distinguish be-
tween these two scenarios either, i.e. , the situation with
extremely large localization lengths would behave very
much like a weakly dirty metal. In this context, it is par-
ticularly significant that our finite-size scaling analysis
(which presumably enables one to estimate the localiza-
tion length in the thermodynamic limit &om finite-size
localization length data) clearly indicates the existence
of a mobility edge E whose position depends on the
strength of randomness. Our finite-size scaling data for
the 2D random Aux problem looks very similar to the
integer quantum Hall scaling results ' rather than the
2D zero-field situation, which is known not to have a
mobility edge. The important point to realize is that
the finite-size scaling evidence in favor of a delocaliza-
tion transition presented in this paper is as strong as it is
in the corresponding quantum Hall plateau transitions,
where the existence of extended states is not in doubt.
We have also calculated the conductance g as a function
of the system width for various (Fermi) energies (shown
in Fig. 4) using a direct transfer matrix I andauer for-
mula type approach, finding results completely consistent
vrith the existence of mobility edge (i.e., an insulator for
E & E, and a metal for E & E,). In particular, on the
extended side, the conductance is insensitive to the sam-
ple width, consistent with the scenario that this regime
is a line of critical points. Our e8'orts to construct a beta
function P(g) have not, however, yielded unambiguous
results because of inherent Huctuations in the calculated
conductance. Systems much larger than those used here

(M )) 128), vrhich are not accessible vrith the currently
available computers, will be needed to obtain an unam-
biguous P(g); in that sense, we have a disagreement here
with the conclusion of Ref. 13.
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