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Transmitted-acoustic-phonon drag between two-dimensional electron gases
in GaAs/Al Ga1 As systems at low temperatures: Monte Carlo study
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We present Monte Carlo simulation of the transmitted-acoustic-phonon (TAP) drag between
barrier-separated two-dimensional (2D) electron gases in the Al Gai As/GaAs systems. Nonequi-
librium acoustic phonons emitted by hot 2D electron gas in the biased GaAs channel travel across
the sample. These phonons are partially absorbed in an unbiased 2D channel where they induce a
drag current. Simulation includes 2D electron —nonequilibrium acoustic-phonon interaction for both
deformation-potential and piezoelectric coupling. Nonequilibrium phonon distribution is calculated
numerically. The TAP drag is simulated at 4.2 and 2.2 K in a multiple quantum well containing
equivalent high-mobility 2D electron gases. Drift velocities around 1000 m/s are found in the drag
channel (2D gas without outer field) when it is driven by the TAP drag from a large number (10—50)
of 2D electron gases subjected to electric field of 1000 V/m. The TAP drag is mainly due to the
deformation-potential coupling. The rate of momentum transfer between the drag channel and drive
channels is ~& 1.5 x 10 s . We also demonstrate the enhancement of the TAP drag in thin
samples due to multiple-phonon reHections from sample surfaces.

I. INTRODUCTION

Two spatially separated gases of free carriers in semi-
conductors can interact in various ways and with var-
ious coupling strengths, depending on their dimension-
ality, charge, mutual distance, semiconductor material
used, etc. Mutual interaction between the gases can
lead to the drag effect: A current flotving in the bi

ased channel (drive current) induces a current (or volt
age in case of opened circuit) in the adjacent parallel
channel without any external bias voltage. Hubner and
Shockley measured mutual drag between two parallel
three-dimensional (3D) electron gases in a silicon crys-
tal. This so-called transmitted acoustic phonon (TAP)
drag was due to the emission of nonequilibrium acous-
tic phonons by the biased electron gas and absorption
of these phonons by the other electron gas. Coulomb
drag between carrier gases of various dimensionalities
has been investigated in GaAs/Al Gai As systems. 2

The drag between two 2D electron gases in the double
quantum well (DQW) was measured for various dis-
tances between the gases at temperatures 1—7 K. For
small distances (17.5 and 22.5 nm) Coulomb interaction
was the dominant drag mechanism. ' For large dis-
tances (50 and 500 nm) the drag was due to the virtual-
acoustic phonon exchange between the gases, ' while
the TAP drag was concluded to be negligible. Neverthe-
less, there is an indirect indication that the TAP drag is
observable also in Al Gai /GaAs systems. Karl et al.
observed the drag of the 2D electron gas, due to acous-
tic phonons emitted from a laser-irradiated Al layer. It
seems natural to think over a similar experiment, where
the source of phonons would be the 2D electron gas driven

by electric field. Qualitative considerations have been
presented by Price, " but a detailed calculation would
be useful to specify proper experimental conditions and
to stimulate further experimental work. We report on
such calculations in our paper. We present Monte Carlo
(MC) simulation of the TAP drag between parallel 2D
electron gases in GaAs/Al Gai As systems at 4.2 and
2.2 K. In perfectly Ohmic conditions, for electric
field in the drive channel (E) less than 1 V/m, the TAP
drag is negligible. We consider F = 1000 V/m and deal
with hot electron transport accompanied by strong emis-
sion of hot acoustic phonons from the drive channel. In-
stead of the DQW, io i2 we consider the multiple quan-
tum well (MQW), in which one 2D electron gas is driven
by the TAP drag from a large number of the drive chan-
nels. The TAP drag is proportional to the number of the
drive channels, which is not the case for the Coulomb and
virtual-phonon drag. Unlike to Ohmic conditions, the
TAP drag in the hot electron regime is mainly due to the
deformation-potential coupling and its dependence on
temperature is negligible in the Bloch-Griineisen regime.
We also demonstrate the enhancement of the TAP drag
in thin samples, due to multiple phonon reHections &om
sample surfaces.

In Sec. II, the simulation of 2D electron-acoustic-
phonon scattering is developed for both deformation-
potential and piezoelectric interactions. Electron inter-
actions with polar-optic phonons, with imperfections of
the host crystal and with other electrons are considered
as well. In Sec. III, we calculate nonequilibrium acoustic-
phonon distribution and the TAP drag in the MQW
structure with infinitely thick substrate, in Sec. IU, we
analyze thin samples. In Sec. U, we discuss limitations
of our model. A summary is given in Sec. UI.
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II. TRANSPORT MODEL AND MC ALGORITHM

In Fig. 1, we show the periodic MQW considered in
our analysis. The widths of the wells (L~) and barri-
ers (L~) are 20 and 200 nm, respectively. The sample
boundaries are located at z = 0 and z = Ls. Each
well is occupied by the electron gas of sheet density
n, = 1.5 x 10 cm . Assuming that the GaAs layer zz
is contacted separately from the GaAs layers z2, ..., z~
we consider parallel electric field E only in quantum
wells z2, ..., ziv~, which serve as drive channels. Quan-
tum well zq is without electric Beld and serves as a drag
channel. Electrons are assumed to occupy only the low-
est energy subband, described by sine envelope function
in the Hat band approximation. Occupation of higher
subbands and real-space electron transfer in the drive
channels can be neglected (see Sec. V). In the individ-
ual quantum well, the 2D motion of N electrons (typi-
cally N = 10 000 —60 000) is simulated using ensemble
MC simulation. Besides electron interaction with bulk
polar-optic phonons, we include the following scatter-
ing mechanisms.

The e-e scat tering is modeled like two-particle
Coulomb collisions described by the Fermi golden
rule. The interwell e-e scattering which can cause
Coulomb drag between the wells zi and z2 (Refs. 21 and
22) can be neglected for L~ = 200 nm, while the in-
trawell e-e scattering slightly aKects the hot electron drift
velocity. ' Scattering due to the imperfections of the
host crystal (residual impurities, interface roughness, re-
mote donors) cannot be neglected at low temperatures.
We simulate these mechanisms as isotropic and elastic
scattering of the frequency r&

——e/(mph), where m is
the electron e8'ective mass and pp is the electron mobility
limited only by the imperfections. At T ( 1 K, because
the phonon scattering is negligible, py is the same as the
measured p = 3.5 x 10 cm V s . At higher T,
py remains temperature independent as far as the 2D gas
is strongly degenerate (the case of the drag channel)
and 7& ——e/(mph') = 7.5 x 10 s . In "hot electron"
drive channels, this simplified approach becomes rough;
the error is, however, not serious because hot electron
momenta are relaxed mainly by phonon scattering.

To take into account degeneracy, the electron state af-
ter the collision, ko, is accepted if the electron occupa-
tion number f (ko) is less than a number randomly cho-
sen between 0 and 1, otherwise self-scattering occurs. If
the 2D gas is strongly degenerate, it is not sufhcient to
calculate f(ko) in discrete points of the k space,
because f(ko) varies too rapidly in the vicinity of the

Lw, La

Fermi energy states [test simulations of equilibrium dy-
namics show unphysical deviations of f (ko) from the ini-
tial equilibrium Fermi distribution with progressing time,
when 4.2 K( T ( 30 K]. Therefore, we use discrete nu-
merical tabulation of f(ko) only for a hot electron gas
with electron temperature T, & 30 K. For T, ( 30 K,we
take f (ko) as a heated shifted Fermi distribution, because
such an analytical distribution prevents the mentioned
unphysical effect when T ~ T. f(ko) is updated after
each 500 fs and the same time step is used for the 6nite
time discretization.

The 2D electron-acoustic-phonon scattering rate of an
electron in state k is

A+(k) = dg fdq, n(g) + —+-C'(q)
vs qe 2 2

(h k2 h k2
+hv q ~ ~

SQ(q )
i, 2m 2m

~o(q ) = (2/L~) dz e'~*' sin (mz/Liv).

The upper (lower) signs in (1) hold for the emission rate
A+ (absorption rate A ). Interactions with longitudinal
phonons are due to deformation potential, with

C'(q) = D'q', (3)

and piezoelectric coupling, with

C (q) = 4(ehi4/e, ) (3nPp) .

Here, D is the deformation-potential constant, 6~4 is the
piezoelectric tensor component, e, is the static permi-
tivity, and n, P, and p are the directions cosines of the
vector q with respect to the crystal axes. Electron inter-
actions with both transverse phonon modes are due to
the piezoelectric coupling, with

C (q) = 4(ehi4/e, ) n P + P p + p n —(3nPp)

Assuming the orientation of the GaAs layers in the [0 0 1]
direction and the field F = (E, 0, 0) parallel to the direc-
tion [1 0 0], we use n = q jq, P = q&/q, and p = q, /q.
Screening function e(Q) is taken in static screening ap-
proximation as

where p is the density of the crystal, v, is the veloc-
ity of sound, q = (Q, q, ) is the phonon-wave vector, Q
is the in-plane component of q, C (q) is the coupling
strength, n(q) is the phonon distribution function, e(Q)
is the screening function, and

Lw

FIG. 1. Conduction band edge E and geometry of the
simulated MQW.

where H(Q) is the form factor [see, e.g. , Ref. 19, formula
(2.1)] and Q is the electron temperature dependent 2D
screening constant, updated after each 500 fs.

Integrating over q and introducing polar coordinates
Q and P (with P being the angle between k and Q), we
obtain from (1) for k ) mv, jh the expressions
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& (t)=,„,If &qf &4 & (q 4 &)
min

d d P, , k (8)

where

q+, =0, q+ „= 2k(lk „)
t' Q me, )

P+ = arccos
~

—+
q2k hk y

2

+ n(Q, Q, —q,+) + 1 + 1 (10)

1 Q+ p+

A+(k) = dQ dPP+(Q, g, k),
81t h pv g+ p+

(7)

(hkq hq' )~

For k & m~, /h, we find A+(k) = 0, but A (k) is
given by (8), except that Q;„= 2k( a&' — 1). In-
tegration limits in (7) and (8) were obtained from the
inequality 2k cos P ~ Q2 & 0, which ensures the de-
crease (for emission) or the increase (for absorption) of
the electron energy in the scattering event, and &om
(""„~-0+,"~. )' & Q'.

Scattering rates A+(k) can be used together with other
scattering rates in the MC selection of the electron-&ee
Bight time and scattering channel. When the acoustic-
phonon scattering is selected, one needs to select the
in-plane wave vector Q of the phonon involved in the
scattering event and to compute final electron state,
ke ——k ~ Q, after the scattering. In the MC method,
vector Q can be viewed as a pair of random variables
Q, P, distributed in the integration limits of integrals
(7) and (8) according to the (unnormalized) probability
distribution P+(Q, P, k).

In case of phonon emission, Q and P can be generated
by solving the equations

Q 4+(Q')
riA+(k) = dQ' dP P+(Q', P, k),

8Ã pv g+
(12)

~+(~)
r2 dp' P+ (Q, p', k) dP' P+(Q, P', k),

—4+(Q) -w+(e)

where ri, r2 are random numbers between 0 and l. One has first to calculate Q = Q(ri) from (12) and then
P = P(r2, Q) &om (13).

In case of phonon absorption one can generate Q = Q(ri) from the equations

4-(e')
riA (k) = dQ' dP P (Q', Q, k), Q & Q8vr2hpv2 ~- @ (g )

(14)

1 Q „4(Q') Q vr

f ~q' f ayI* (q', o, k)+ f ~q' -f ~as-{ y, q~)),
B min (Q ) /max —jr

Q&Q „, (15)

and then P = P(r2, Q) &om the equations

4 (Q)
dP' P (Q, P', k) = dP' P (Q, P', k), Q & Q' —.-(Q) —y- (g)

(16)

7r

dP' P (Q, Q', k) = dP' P (Q, $', k), Q & Q
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Direct numerical solution of (12)—(17) would be too
difficult especially when P+(Q, g, k) varies during the
simulation [n(q) in P+(Q, P, k) is not known a priori
and has to be determined in the simulationj. To avoid
these problems, we developed a special "self-scattering"
technique. Let us assume that P+ (Q, P, k) is replaced in
(7), (8), (12)—(17) by an artificially constructed analyti-
cal distribution B+(Q, P, k), which obeys the inequality
B+(Q, P, k) & P+(Q, P, k) and yields analytical expres-
sion for Q(ri), P(r2), and A+(k). Assume now that sim-
ulation of acoustic-phonon scattering is performed with
these analytical expressions. This simple simulation is in-
correct, because the free fIight of an electron in state k is
interrupted with the collisional frequency, overestimated
for given Q and P by a factor of B+(Q, P, k)/P (Q, P, k).
A correct simulation can be achieved as follows. After the
electron-&ee fIight was interrupted by acoustic-phonon
scattering and the values of Q(ri) and P(r2) were gener-
ated, it is necessary to test the inequality,

2.4 x 10 cm /Vs. ' As discussed before, the scatter-
ing rate, due to imperfections of the host crystal, wl
is chosen to fit the measured )M = 3.5 x 10 cm /Vs at
T ( 1 K loll

III. NONEQUILIBRIUM PHONONS AND
THE TAP DRAG IN THE MQW STRUCTURE

We put n(q) = no(q) + g(q), where no(q) is the Bose
distribution and g(q) is the nonequilibrium part of n(q).
To calculate g(q) numerically, we divide q space into
a three-dimensional grid with mesh cells Aq, where
Aq = 2.5x 10s cm i. During time steps At, we count (for
each phonon branch separately) the histogram Ni„(q)
the difference between the numbers of emitted and ab-
sorbed phonons in each mesh cell, where q is the cell
center position. The phonon-2D electron collisional inte-
gral can be expressed as

r (
B+ r~, r2, k

(i8)

where r is a random number selected between 0 and
1. If (18) is fulfilled, generated values of Q and P are
accepted and electron is scattered (ko ——k 6 Q), oth-
erwise self-scattering occurs (ko ——k) and electron re-
mains unscattered. Since (18) can be fulfilled with prob-
ability P+/B+, the self-scattering reduces the frequency
of real collisions with given Q and P by a factor of
P (Q, P, k)/B+(Q, P, k). This reduction exactly can-
cels the above discussed overestimation due to the re-
placement of P+ by B+, i.e. , the proposed procedure
simulates phonon scattering described by distribution
P+(Q, P, k). The choice of B+ determines just the fre-
quency of self-scattering events, which has no effect on
Anal results. However, it is not easy to choose a proper
B+(Q, P, k). A constant B+ would not be the correct
choice, because P+(Q, P, k) diverges for P ~ P+{Q) and
inequality B+(Q, P, k) & P+ (Q, P, k) cannot be fulfilled.
Furthermore, it is not possible to derive analytical ex-
pressions for Q(ri) and A+(k) even in the simplest case
[when B+(Q, P, k) is constant]. In Appendixes A and B,
we derive the function B+(Q, P, k), which provides P(r2)
analytically and allows a manageable numerical calcula-
tion of Q(ri) and A+(k).

Our technique incorporates inelastic collisions, as well
as the anisotropy of piezoelectric coupling without cus-
tomary approximations, and nonequilibrium phonon
effects {Secs. III, IV) can also be included. We use
generally adopted parameters of the GaAs material
(the transverse sound velocity is taken from Ref. 28).
The deformation-potential D is typically in the range 7—
13.5 eV. ' To establish a proper D, we applied our
MC technique to the calculation of Ohmic mobility p
at 4.2 K. Using D = 13.5 eV, we found the acoustic-
phonon-limited mobility p, 8 x 10s cm 2/Vs and total
mobility p 2.5 x 10 cm /V s (Fig. 2 in Ref. 29).
The latter value agrees with the measured p(4.2 K)

( )
(2z ) (n.

)
Np, (q)

Aq
(i9)

Derivation of g requires some simplifying assumptions.
At low temperatures in the MQW structures similar to
that in Fig. 1 the phonon mean free path, due to bulk
nonelectronic scatterers (other phonons, impurities, layer
interfaces), lpi„ is about 1 mm. When the substrate
thickness )) l~i, (u)hich u)e assume), those excess phonons
which succeeded in escaping into the substrate, can no
longer return into the region z ( z~~, because they
are thermalized by nonelectronic scatterers in the sub-
strate. Therefore excess phonons can cross the region
z ( zN at most two times when a specular phonon
refection from the surface z = 0 (Ref. 30) is assumed
Since z~~ = 1 —10 pm(& l~b, excess phonons can be

assumed to cross the region z ( zN~, without being scat-
tered by nonelectronic scatterers. Further, two assump-
tions are that G(q) is the same in each drive channel
and negligible in the drag channel. The latter assump-
tion is based on the fact that cold electrons in the drag
channel are scattered by phonons much less frequently
than hot electrons in the drive channels. The former as-
sumption is based on the expectation that hot electrons
in the drive channels contribute to G(q) mainly through
the spontaneous (channel-position independent) phonon
emission. Checking this expectation in the simulation,
we found that the phonon absorption (including the g-
dependent absorption of excess phonons) in an individual
drive channel is one order of magnitude less frequent than
phonon emission for Ni((( as large as 51 (i.e. , an excess
phonon could only be reabsorbed with probability 0.1,
when crossing 50 drive channels). Finally, due to symme-
try of the spontaneous-emission process in square quan-
tum well, u)e assume that G(q, q„, q, ) = G(q, q„, q, ). —
We express g(q) in conditions of steady-state transport.

In the drag channel, the z component of the cur-
rent density of excess phonons with wave vectors q
in volume Aqs can be expressed as (Nv(( —1)(v /
~v, ~)G(q)(bq/2x), where v, = v, (q, /q). A comparison
with the equivalent expression v, g(q)(b, q/2x) gives
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g(rI) = (Niv —1)
G(g)

(20)

Similarly one can find g(rI) in the drive channels. Since
for each channel one finds different g, one should sim-
ulate, electron transport in each channel. For simplic-
ity, we simulated electron transport in one "represen-
tative" drive channel and in the drag channel. In the
drag channel, we used (20), while in the "representative"
drive channel, we tried (20), g(rI) = 0, and also g(rI) de-
rived for channel Niv. Numerical results for G(q) were
close in all three cases, because the main contribution
to the histogram Nh(q) was due to the spontaneous (g-
independent) phonon emission. Thus, we only present
results obtained using (20) in both simulated channels.
Using (20) in the "representative" drive channel, we have

g(q, ) = g( —q ) in all drive channels, which is not the case
(for example, channel N~ can only be irradiated by ex-
cess phonons with positive q, ). We note that the effect of
this inconsistency is small. Each drive channel produces
excess phonons with distribution G(g)/ ~

v, ~. The con-
tribution of these phonons to electron scattering in other
channels is the same for q ) 0, as well as for q, ( 0,
because G(q, q„, q ) = G(q, q„, —g, ). This is not the
case only for too large N~, when G strongly depends on
g.

(20) neglects the effect of thermalizing phonon colli-
sions with nonelectronic scatterers in the region z & z~
This approximation cannot be applied to excess phonons
with very small v„when the transit time 2z~w/

~

v,
~

becomes larger than the lifetime l~h/v„and distribution
(20), therefore, shows unphysical divergency for v, —+ 0.
In fact, this problem is not present in a realistic device
with the finite distance between the contacts supplying
electric field [d, —200 pm (Ref. 10)j. Since z~w && d, &
lph phonons with very small v overcome the distance d
without being scattered by nonelectronic scatterers. In a
rigorous treatment with the effect of finite d taken into
account, g(rI) has to depend on phonon position between
the contacts. We adopt a simpler approach by neglecting
those "small v " phonons for which the position depen-
dence could be important. We expect that the effect of
finite d, is unimportant for z~ / ~

v, ~&& d, /v„but im-
portant for z~ / ~

v, ~) d, /v, . We exclude from the
histogram Ng(rl) all the phonons with v, & v. . . where
v, , is defined by the relation zNw /v, , = 0.2d, /v, .
Assuming d, = 100z~, we have v, = v, /20. Due to
this cutoff, our approach rather underestimates the re-
alistic TAP drag. Another approach (Sec. IV), which
ignores finite d and takes into account finite lifetime
l~h/v„gives about a 20Fo stronger TAP drag. The use
of a reasonable cutoff v, is, however, appropriate for
zN~ && d ( Lph, because the phonons with too small v
escape the region between the contacts without crossing
the drag channel.

In the simulation, we update g(rI) after the steps At =
25 ps, starting with g = 0. After 500 ps the transport in
the drive channels becomes stationary, and g(rI) is then
averaged over all following time steps in order to reduce
noise. g(rI) converges towards a stable solution within the

same time as hot electrons need to reach the steady state.
The initial transient efI'ects in the electron ph-onon system
are artificially accelerated, due to the use of steady sta-te
distribution (20). Realistic phonon transients would be

much longer.
Figure 2 shows the simulated TAP drag for the MQW's

with N~ ——11, 36, and 51. Here, we neglect electron in-
teractions with the imperfections of the host crystal. An
electric field of 1000 V/m is applied to the drive channels
z2, ..., z~, while the drag channel z~ is without elec-
tric field. Within the fluctuations (the biggest ones for
N~ = 51, with only 10 000 particles per channel), the
saturation value of the "drag" velocity (electron velocity
in the drag channel) increases linearly with N~. This is
not the case for Coulomb and virtual-phonon drag, which
tend to diminish with increasing distance between the
drag and drive channels. The momentum transfer
rate ~& between a single-drive channel and drag chan-
nel zq can be estimated from the relation

v2 = p N~ —1

Here, v2 and vi are the "drag" and "drive" veloci-
ties in steady state. Taking p = 8 x 10 cm V s
(see Sec. II), we find rd 1.5 x 10 s for all
three N~. Figure 3 shows nonequilibrium part g(q )
and the Bose part no(q ) of the acoustic-phonon dis-
tribution n(q ) = no (q ) + g (q ) in the drag channel,
with n(q ) normalized to phonon density f dq n(q ).
The q, dependence is shown as well. I et us compare
transverse and longitudinal distributions. For transverse
phonons g(q ) « no(q ). This suggests that piezoelec-
tric interaction with nonequilibrium transverse phonons
gives a small contribution to the TAP drag in Fig. 2.
We checked that the TAP drag is essentially the same,
when only equilibrium transverse phonons are consid-
ered. The main contribution to the TAP drag comes
from longitudinal phonons for which g(q ) is comparable

14
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FIG. 2. Drift velocity vs tiine in the MQW at 4.2 K for
Nw = ll, 36, and 51. Quantum well zi is without elec-
tric field, quantum wells zz, ..., z~~ are with a parallel field
F = 1000 V/m. "Drive" velocity is the velocity in the wells
zz, ..., z~w. "Drag" velocity (extended by 10) is the velocity
in the well zq. The results were obtained taking vl ——0.
The same number of particles was used in the drive and drag
channel: 40 000 for N~ ——11, 22 500 for N~ = 36, and
10 000 for N~ ——51.
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FIG. 4. The same as in Fig. 2 for N~ ——36, but the
result obtained for 7i ——7.5 x 10 s is also shown (60 000
particles per chanel were simulated here).

FIG. 3. Acoustic-phonon distribution vs phonon-wave
vector in the field direction (q ) and z direction (q ). Nonequi-
librium part g of the distribution is shown for N~ = 11 and 36
(centered symbols connected by full lines). Equilibrium Bose
distribution no is shown in a full line. Distributions g(q ) and
g(q, ) were obtained in the same MC run as the results from
Fig. 2.

to no(q ). For these phonons, deformation-potential cou-
pling is much more important than piezoelectric coupling:
when deformation-potential coupling in each well was re-
stricted to equilibrium phonons, we found g(q ) (( no(q )
and the TAP drag was not detectable.

In Fig. 2, one sees the decrease of the "drive" velocity
with increasing N~. A detailed understanding of this
friction requires some simulations beyond our computa-
tional possibilities, so we only give a brief discussion. The
electron &iction due to hot phonons with forward drift
has already been demonstrated for optical phonons in
bulk GaAs (Fig. 13 in Ref. 31) and for acoustic phonons
in bulk Ge. The interaction of hot phonons with drift-
ing hot electrons causes the drag efFect, but also dissi-
pates the electron momenta. The &iction appears when
the latter eKect prevails. ' Since the kiction is due to
hot phonons, it tends to diminish with the decreasing hot
phonon population, i.e. , with the decreasing 1V~ in the
case of Fig. 2. For %~ ——11, the "drive" velocity is close
to the results (not shown here) obtained for N~ = 2 or
for n(q) -+ no(q). In Ref. 33, it was shown for mul-
tiple heterojunction that the phonon drag enhances the
low-temperature lattice-scattering limited mobility with
increasing N~. For N~ )) 1, a zero electron-phonon re-
sistance (infinite mobility) appeared, due to the neglect
of phonon thermalization by bulk nonelectronic scatter-
ers. Since the phonon thermalization is neglected also
in our model, the increase of the friction with N~ in
Fig. 2 may seem in contradiction with Ref. 33. In fact,
in our model ihe zero electron-phonon resistance cannot
appear, because the decay of excess phonons in the region
z & z~~ is realized through the phonon escape into the
thick substrate. This decay mechanism does not exist in
thin samples considered in Ref. 33.

In Fig. 5, the TAP drag in the MQW with N~ = 36 is
calculated including electron interaction with imperfec-

2
O 4

0
8 . Longitudinal .. Transverse

6

O 4
S

—1

oOO-

0 2 4 -4 -2 0

Wave —vector component [10 m ]g -1

FIG. 5. The same as in Fig. 3 for N~ ——36, but the result
obtained for wi ——7.5 x 10 s is also shown. These results
were obtained in the same MC run like the corresponding drift
velocities in Fig. 4.

tions of the host crystal, i.e. , taking 7I ——7.5 x 109 s
The "drive" velocity is decreased only 22%%uo, because hot
electrons relax their momenta mainly through sponta-
neous phonon emission. The "drag" velocity is, how-
ever, reduced about three times. This decrease is con-
sistent with the decrease of electron mobility p, which
is reduced by a factor of 3.2 (from 8 x 10 cm /Vs to
2.5 x 10 cm2/Vs; see Sec. II). Consequently, estimation
of r& from relation (21) gives nearly the same value

( 1.5 x 10s s i) like for wi
——0. In other words, irn-

perfections of the host crystal reduce the "drag" velocity
mainly by reducing p, rather than w& . To support this
interpretation, in Fig. 5, we compare g for wl ——0 and
7.5 x 10 s . In the latter case, g is about 20% smaller
and can only cause about 20%%uo decrease of the "drag"
velocity.

In Fig. 6, the TAP drag in the MQW with N~ = 36
is compared for T =4.2 K and T=2.2 K. We use ~1
7.5 x 10 s to include electron interactions with im-
perfections of the host crystal. An important result is
the very small change of the drift velocities with T. Also
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FIG. 6. Drift velocity vs time in the MQW at 4.2 K and
2.2 K for N~ ——36 and 7I = 7.5 x 10 s . 60 000 parti-
cles per channel were simulated here. Other parameters and
notations are given in the text of Fig. 2.

the momentum transfer rate w& remains nearly the same
( 1.5xl0 s ). These results

differ�fromthoseobtaine

for Ohmic conditions, where the phonon drag steeply
decreases with T due to the onset of Bloch-Griineisen
regime, i.e. , due to thermal ceasing of the phonons with
q 2k~. A fundamentally difFerent behavior of the hot
phonon distributions can be seen in Fig. 7. g is almost
the same for both temperatures, because it is determined
mainly by spontaneous phonon emission, which is not af-
fected by lattice temperature. Thus, thermal ceasing of
nonequilibrium phonons does not appear, although the
Bose distribution significantly decreases with T. Since
the difFerence between the electron mobilities at 2.2 K
and 4.2 K is small, the "drag" velocities in Fig. 6 are
close.

IV. NONEQUILIBRIUM PHONONS
AND TAP DRAG IN THIN SAMPLES

v, g(r—L z) + ' = (g%—, z))
d g(q z) 8

dz
(22)

where (Bg/Bt)zh, ~ is the phonon-electron collisional inte-
gral. Equation (22) holds for both longitudinal (v, = v~)
and transversal (v, = vq) phonons, where v~ and v& are
the corresponding phonon velocities (for siinplicity, we
assume the same l~h for both phonon branches). It is
problematic to apply (22) to the structure in Fig. 1, due
to the z dependence of g within the quantum well. One
cannot introduce z dependent g into the 2D electron-
phonon scattering rate (7,8), because 2D electrons have
no exact values for z and A:, i.e., they cannot have z
dependent-scattering rate. The same problem appears,
when g(q, z) enters into (Bg/Bt)~h, i. In our simulations,

—11typical phonon-transit times, I~/
~

v, ~= 10 s, are
two orders of magnitude shorter than the typical time
necessary for the phonon to be absorbed in the quantum
well. That means that g varies with z negligibly on the
length scale L~. Since lph )) LI3, g changes negligibly
also on the length scale L~ + L~. In these conditions,
the semiclassical model (22) should be justified and the
mentioned z dependence can be kept or neglected at will.
We rewrite (22) into the integral form

fzl 1
g(q, z) = exp

( ) c(q) +-
(vz7') 'Uz

x —g q, z'

f'z' l
dz'exp

/(v,~)

(23)

In thin samples with L, « /ph one has to consider
multiple-phonon reflections from sample surfaces as well
as the finite lifetime r = l~h/v, . Transport equation for

34phonons in thin samples reads

8
~ Longitudinal

6 . phonons,
field direction

Transverse
phonons,
field direclip'n

/
l9«(~)—:(z,mi~)) „ (24)

where c(q) = g(q, z = 0). Then we replace (Bg/Bt)ph z]
inside the lth quantum well by the z-independent func-
tion,

I

o 4

Longitudinal
phonons,
z direction

Transverse
phonons,
z direction

where

e(q) =
zi+L~/2

I —I W/2
dz g(q, z) (25)

and G~(q) is given by (19). Outside each quantum well,
we set

0---
0 2 4 W -2 0

8 -1Wave-vector component [10 m ]

t9—g(q, z) = 0,
ph-el

FIC. 7. Acoustic-phonon distribution vs phonon-wave
vector in the field direction (q ) and z direction (q ) at 2.2 K
and 4.2 K. Equilibrium Bose distribution no is shown in a full
line (2.2 K) and in a dashed line (4.2 K). Nonequilibrium part
g of the distribution is shown with centered symbols. Curves
for 2.2 K and 4.2 K are not distinguished, because g is almost
the same for both temperatures.

g~(q, z = 0) = Pi g~(q, qy, —q„z = 0)
+ (1 —Pi) go~(q, z = 0), (27)

assuming that there are no &ee carriers in the
Al Ga1 As barriers. Assuming elastic phonon reBec-
tions &om the interfaces z = 0 and z = L„we adopt
boundary conditions,
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g (q, z = I,) = Pq g (q» qyp q» z = L, )

+ (1 —P~) go(q z=L.) (28)

Here, Pq and P2 are the probabilities of specular phonon
reBection &om the interfaces z = 0 and z = I„re-
spectively, notations and hold for q & 0 and for
q, & 0, respectively, and go&(q, z = 0) and g(q, z = I,)
are spherically symmetric parts of g&(q, z = 0) and
g&(q, z = L,), which appear due to diffusive phonon
reQections at the interfaces. In present calculations, we
use (27) and (28) with ge& = g = 0 for simplicity. Dif-
fusively reQected phonons could, in part, reduce electron
mobility when absorbed in the quantum well, but they

z
g~(q, z) = c~ (q) exp

I ) '

where

(29)

would not contribute to the TAP drag.
Using {24)—(28) and neglecting Gi {q) {due to the same

reason as in Sec. III), we get from (23) for z & zg —Iw/2
distributions g, which can be used in the drag channel.
They read.

( —z
g& {q,z) = c& (q) exp

I

( Lw- 2L, l-
exp

I I

—exp
I I

1 —PiP~ exp
I

&2 I" I ~) E. l
v.

I ~)
c&(q) =

( —zi z,x ) GE (q) exp
I I

+ P~'xp
I

'
I «(q* qy q) exp—

I(v, ~) vz T) ( vz r) (30)

and
I

averaged using (25) with z = zq, reads

c&(q) = Pi c&(q, qy, —q, ) . (31)

Exponential dependences on z and z~ can be neglected
(replaced by 1) for

I
v, I& 10zi/w. Also the exponential

dependence on Lw disappears for
I

v, I& 10Lw/(2T).
Then (29) reduces to simple expressions,

g'(q) =

&w

x)

2I..)—1 —PiPq exp
E, l

v.
I ~)

(qz ) qy ~ qz)

+P, exp
I

'
I
G, (q)

vz 7) (32a)

g (q) = 1 ( 2L, )—
1 —PiPq exp

I v,
N~

x ) Gi&(q)
l=2

f 2L,l-
+Pzexp

I

'
I G, (q, qy, —q,), (32b)

which do not depend on z and, therefore, they provide
for the drag channel a reasonable semiclassical phonon
model of the 2D electron —3D phonon scattering. For

v, I
& 10z/r the z dependence in (29) begins to be

important and semiclassical model becomes wrong. For-
tunately, this is the case only for a small part of excess
phonons, because 10z/v v, /400 for typical z 1 pm
and w 10 s. We use (29) with z = zi in the drag
channel for all v .

The phonon distribution for the drive channels can be
derived in a similar way as (29). We present only the re-
sult for N~ ——2, since our simulation will be restricted to
the case of DQW. The distribution in the drive channel,

gz=. (q) =c(q) L
I( Lw

v,
I
&)

( Lw l — f +z,—exp
I I

exp
I

E. l
v.

I r)
G(q) v v t Ttw~~+7 1p 1 —exp

Lw vw)
(33)

where the upper sign holds for q, & 0 (for g&, c&, and
G&) and the lower sign holds for q & 0 (for g+, c&, and
G ). For

I v, I& 10zq/w, the first term on the right-hand
side of (33) becomes the same as the right-hand side of
[(32a) and (32b)] with Nw = 2. The second term, which
can be simplified to G(q)/(2 I

v, I), is negligible com-
pared to the first term, when PiPq = 1 and 2L, &

I
v,

I
w.

The phonon distributions in the drag and drive channels
thus differ only in case of small

I
v, I. We use (33) in the

drag channel for all
I
v, I.

The mean &ee path l&h depends on N~, due to the
phonon scattering by layer interfaces. Since we consider
N~ ——2, our Lph should be greater than the value of 1
mm, observed for N~ ——100. On the other hand, it
should be less than the bulk value [& 5 mm (Ref. 35)].
We choose l~h ——4 mm and assume Pq ——P2 ——P.

In Fig. 8, we compare the TAP drag for samples with
L, = 50 pm and 20 pm, and P = 1 and 0.9. The electric
field in the drive channel zz is 1000 V/m, the electric field
in the drag channel is zero. Electron scattering with the
imperfections of the host crystal is neglected (~l = 0), in
order to reduce computational time. In Fig. 9, we com-
pare corresponding longitudinal acoustic-phonon distri-
butions, which are responsible for the TAP drag. When
P = 1, the drag velocity is larger for L, = 20 pm than for
L, = 50 pm. This is due to the more effective con6ne-
ment of nonequilibrium phonons in the thinner sample,
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V. LIMITATIONS OF THE MODEL
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depth, one n s n,
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1 d d in the henomenological mean &ee
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l is not necessary as long as lph & d )) z~~, ecaph is no neces
ion of the device withoutthe phonons cross the active region o
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being scattered by nonelectronic scatterers. In thin sam-
ples with highly polished surfaces (Sec. IV), the results
depend on lph. We have chosen lph: 4 mm in order to
obtain quantitative insight for case N~ ——2, but the in-
terpretation of the TAP drag in a specific sample would
require an independent experimental determination
of /ph.

Finally, the semiclassical approach to the 2D electron—
3D nonequilibrium phonon coupling is justified for
phonon distributions with negligible z dependence within
the quantum well. For phonons with small v the z de-
pendence is important, because they are localized near
the quantum well. In this case, a quantum approach
should be used perhaps in a similar way as for polar-optic
phonons, which remain localized near the quantum well
due to their small group velocities. Nevertheless, in re-
alistic samples the "small v " phonons can be expected
to leave the region between the contacts without crossing
the drag channel, i.e. , without contributing to the TAP
drag. As discussed in Sec. III, a rigorous exclusion of
these phonons from the phonon distribution g would re-
move the z dependence, but the dependence on phonon
position between the contacts would appear.

Physical conditions considered in our simulations are
experimentally realizable. The MQW and DQW struc-
tures with similar electron mobilities and densities have
already been realized. ' Thin samples with high-
quality surfaces (with P close to 1) have been reported
as well. Due to the large spacing (200 nm) between the
quantum wells in Fig. 1, it should be less complicated to
prepare separate contacts to the 2D gases than in previ-
ous measurements with the 20-nm spacing. Thus, we
believe that the TAP drag e8'ects predicted by our simu-
lation could be observed.
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APPENDIX A

We intend to replace functions
~

Sp(g, ) ~2, n(q), C2(q),
and e(Q) in (10) by more simple functions, which ensure
that the distribution B+(Q, P, k) obtained in this way
is greater than distribution P+(Q, g, k). We search for
proper upper limits of these functions [for the lower limit
in case of e(Q)]. Let n(q) = [exp(&"'g) —1] + g(q),
where g(q) is a nonequilibrium contribution to the Bose
distribution. Choosing a large enough Tf ) T, we
may assume for any g(q) without poles, that n(q)
[exp(&""'~ ) —1] i. Then one finds

n(q)
k~Tf
hvar

(A1)

(A2)

n(q) & 6( ) (A3)

From (2), one gets

I Sp(g. ) I' & 1. (A4)

Function (3) has no upper limit. Functions (4) and (5)
obey the inequality
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VI. SUMMARY C'(q) & CM (A5)

We have developed low-temperature MC simula-
tion of the TAP drag between 2D electron gases in
GaAs/Al Gai As systems. When the MQW struc-
ture is considered, the TAP drag current increases lin-
early with the number of the drive channels and the ex-
change of hot acoustic phonons between the drive chan-
nels causes the friction of hot electrons (Fig. 2). Unlike
to Ohmic conditions, the TAP drag in hot electron
conditions is mainly due to the deformation-potential
coupling and its dependence on lattice temperature is
negligible in the Bloch-Griineisen regime (Figs. 6 and
7). This might provide a new probe for the deformation-
potential D, which is rather problematic to determine
from mobility measurements. Momentum transfer rate
7.„' = 1.5 x 10 s is much larger than the one esti-
mated in Ohmic conditions [ 5 x 10s s i at 4.2 K and

1.3 x 10s s i at 2.2 K (Ref. 12)]. We have also de-
veloped MC simulation of nonequilibrium phonon e8'ects
in thin samples, where multiple-phonon reflections from
sample surfaces tend to enhance the TAP drag. This ef-
fect has been demonstrated for the DQW structure (Figs.
8 and 9).

where CM —— 36(eki4/e, ) for (4) and C~
12(ehi4/e, ) for (5). From (6), one finds that

e(Q) & 1. (A6)

e(Q) & 1+— (A7)

(Pp is a proper constant) in order to avoid divergency
of piezoelectric scattering rates. It is useful to introduce
notations

2mv
(A8)

~ min
min 2mv

hQ
2mv

(Aga)

which give for a ) 1 equations

The right-hand side of (A6) is a proper lower limit in case
of deformation-potential interaction. In case of piezoelec-
tric interaction, we adopt this limit for Q & Q „. For
Q & Q+ „,we assume
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b+
min 0 b+.„=a~1,

and for a ( 1 equations

min 1 —G
~ bmax G+ 1

!P+(b) = arccos
I a

Finally, we introduce functions

f+(P) = (acosP ~ b) —1,

Notations (A8) allow us to express P+(Q) as

(A.9b)

(A9c)

(A10)

(A11)

4mkfsTyD f+(p) + 1 mv,1+
f+(&)

xblf f+(g) 1 1(16 1)). (A19)

where P = hPO/2mv, .
B+(Q, P, k) for deformation Ifo-tential interaction. We

replace functions n(g), I So(q, ) I
and s(Q) in the right-

hand side of (10) by the right-hand side of (Al), (A4),
and (A6), respectively. Using (A8) and (All), we get

where the f+(P) is defined for b+;„& b & b+ „and f (P)
is defined for b,„& b .& oo. As shown in Appendix B,
for b+,„&b & b „and P F (—(t)+, P+), we have

f f+0f (P) & min!,2asing
I (P —

I y I) .'I

(A12)
For b & b „and p C (—vr, vr) one finds

P+(Q, 4, k) & B+(Q, d, k) =—B+. (»& ) (A20)

4 kTD'

Except for the denominator, we replace f+(P) in (A19)
by (a + b) —1. In the denominator, we replace f+(P)
by the right-hand side of (A12)—(A13). For b & b+ „
(Q & Q+ „),we get

f (P) ) (b —a) — 1 . (A13)

B+(Q, P, k) for piezoelectric interaction. We replace
functions n(cI), I So(q, ) I

and C (cI) in the right-hand
side of (10) by the right-hand side of (A2), (A4), and
(A5), respectively. Using (A8) and (All), we get

P (Q, g, k) & B (Q, (t), k) —= B,.„(b P, a) (A15)

q mv.' ) gf+(y) b2e2(b)

2

x 1+
I

' ~I b2(1+1) . (A14)
f )

For b ) b „(Q & Q „),we replace e'(Q) and f (P) in
(A14) by the right-hand side of (A6) and (A13), respec-
tively. We get

x 1+ ' ba+b 1+1
B f

X max
1

f+(0) ' /2asing+

4mkfBTf D b(a + b)

g(b —a) 2 —1

1

v'&+ —
I @ I

while for b ) b „(Q) Q „),we get

P (Q ftbk) & B (Qpk) = Bq f(bpa)
(A22)

B fk T 1„..(» ) =,, b, ~(b,),
(A16)

For b & b+ „(Q & Q+ „),we replace s(Q) and f+(P) in

(A14) by the right-hand side of (A7) and (A12), respec-
tively. We get

P+(Q, g, k) & B+(Q, g, k) = B+, (b, Q, a),

Function (A23) gives infinite integral

jb db f dP B&,r. To avoid this, we adopt (A23) only
for b „(b ( bp, where bp is chosen as bp ——2b „—1.
For b ) b(), we need Bz,r(b, P, a), which gives finite inte-
gral js db I dP B&,f. We again substitute functions

I So(q, ) I

and s(Q) in the right-hand side of (10) as in
the derivation of (A19), but n(g) is now replaced by the
right-hand side of (A3). Using (A8) and (All), we get

(A17) GhB~ (kgb)
~ 1

(A24)

2-2mv.(" ''
BTf

b (1k 1))

X max
f+(o) '

g2 . y+

1

v'++ —
I + I

mv2 ) (b+P 2 Replacing f (P) in (A24) by the right-hand side of (A13)
we obtain (A22) with

Bq,f(b, P, o)
6hD2 kBTy 3 1

mv, hv, b[(b —a) 2 —1]

(A25)

Generation of P() 2), Q(ri) and A+. We replace
P+(Q, g, k) in (12)—(17) by B (b, P, a). From (13), we
get
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p+(b) 1 —4r2
10&r2& —

) (A26a)
volved integrals. Finally, replacing P+ by B+ in (7,8), a
new A+ can be evaluated by numerical integration.

~ = -4 (b)1-4(1-")'j 1—&r2&1, APPENDIX B

(A26b)

which are valid for b+;„& b & b+ „.From (17) (for
absorption in case b ) b „),we get

To prove inequality (A12) it is sufFicient to consider
P ) 0, because f+(&j&) = f+(—P). For P g (0, P+) func-
tion f+(P) is positive, with maximum

(2rz —1)vr

From (12), we obtain

0&r2&1 (A27)
f+(0) = (a ~ b) —1

and with minimum

fs+ db Bi+(b, a)

fs+
"

db Bi+(b, a)

and from (14) and (15), we have

(A28)
f (o) =o (B2)

Since d f+(0)/d P & 0, f+(P) is concave at least for (t)

close to zero. Solving equation d f+(P)/d P = 0, one
Finds inflex points P,. and P, , given as

f~ db Bi (b, a)1=
f&

"
db Bi (b, a) + f& db B2 (b, a)

b & t-.„, (A29)

cos P;

cos P,

+b+ gb'+ 8a'
4a

+b —Qb + 8a
4a (B3)

f " db Bi (b, a)+ J& db Bz (b, a)
r$

f&
"

db Bi (b, a) + f& db Bz (b, a)

6 &6

where

~.+(~)

Bi+(b, a) = dPB+(b, (t, a),
—4o (&)

b+,.„&6 & 6+

B~ (ba) = J , dPB (tP,a),

(A30)

(A31)

(A32)

(B4)

If P,+. C (0, $+), then f+(P) is concave only for P E
(0, $,+) and (B4) holds only if

df~(~~)
dP

(B5)

where df+(P+)/dP = —2a sin(P+). If (B5) does not
hold, then

It is easy to see that P,
+ ) P+ (check that cosP,+

cos P+), i.e. , that only P,+. can fall into the interval
(o &+).

If P,+. ) P+, f+(P) is concave for P E (0, $+) and
due to (Bl)—(B2), we have

with notations "piez" and "def' omitted. Integrals (A31)
and (A32) can be calculated analytically. Equations
(A28) —(A30) yield b = b(ri) [Q = Q(ri)] after some nu-
merical work, including numerical tabulation of the in-

(B6)

Finally, &om (B4)—(B6) and from f+(P) = f+(—P), we
obtain (A12).
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