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Electron transport through one-dimensional lateral surface superlattices in magnetic fields
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A scattering-matrix method for the calculations of electron transport through lateral quantum systems
in the presence of a perpendicular magnetic field is developed and is used to investigate the effects of an
applied magnetic field on electron transport through a quantum channel modulated by a smooth period-
ic potential along the direction of the current Aow. At zero magnetic field, the calculated conductance
displays regular dips due to the formation of minigaps (or the Bragg reAections) and the rapid oscilla-
tions due to electron transmission through the coupled quasi-zero-dimensional states in the cavity re-
gions between the potential barriers. Both are shown to be suppressed when a magnetic field is applied
to the quantum channel. This is interpreted as the formation of propagating edge states. However, oth-
er irregular dips are shown to appear in the conductance of the modulated channel in the presence of the
magnetic field. These dips reAect the coupling between the electron states propagating along the oppo-
site edges of the channel and may appear so densely in a wide quantum channel with a strong modula-
tion that the conductance exhibits fluctuations. In the high-field regime where the magnetic length lz is
much smaller than the channel width w, these irregular dips are seen to be also suppressed, leading to a
nearly perfect recovery of the conductance quantization.

I. INTRODUCTION

Recent advances in submicrometer technology have
made it possible to confine the electrons of a two-
dimensional electron gas (2DEG) in a semiconductor het-
erostructure to regions with lateral dimensions on the or-
der of 100 nm, and have naturally led to rapid develop-
ment in the field of electron transport in low-dimensional
systems, such as narrow quantum wires, constrictions,
and quantum dots. ' In such a tiny structure, the elec-
tron transport can be ballistic and the motion of electrons
is governed by quantum mechanics rather than classical
mechanics, revealing a few additional and interesting
transport phenomena. A notable example is that in the
linear-response regime, the conductance of a quasi-one-
dimensional (Q1D) channel was found to be quantized in
units of 2e /h at low temperatures, ' while in the
nonlinear-response regime, the quantization of the con-
ductance in units of e /h was observed. ' These fascinat-
ing phenomena have now been well understood, thanks to
a number of theoretical calculations including those using
adiabatic approximation and those based on exact
quantum-mechanical calculations.

If the Q1D channel is further modulated by a periodic
potential or patterned with a periodic structure, minigaps
of zero density of states and minibands are expected to
form. These lateral superlattice effects may be studied
in the linear-response regime of small applied voltage by
varying the Fermi energy E~ or the width of the Q1D
channels. The conductance dips or wells are expected to
be observed if EF is in a minigap. In addition, for a
periodically modulated channel with a finite number of
unit cells, a miniband is represented by a group of
discrete states. The discrete states give rise to closely
spaced resonances in the transmission probability
through the superlattice as a function of energy, and may

thus be observed as a series of peaks in the conductance
as a function of the Fermi energy or the width of the
channel. A successful experiment of this type was report-
ed by Kouwenhoven et al. '

With use of transfer-matrix methods, a number of
quantum-mechanical calculations' have been made
for electron transport through one-dimensional (1D) la-
teral superlattices. Both the grouped miniband-associated
conductance peaks and the conductance dips, due to the
occurrence of minigaps, were obtained. However, the ap-
plications of the methods have been very much limited by
numerical instability of the methods. One may remove
this numerical difficulty from the calculations by refor-
mulating the problem with the use of the recursive
Green's-function technique. However, a large comput-
ing effort is often in demand in the implementation of the
technique. The applications of the technique have, there-
fore, been primarily confined to simple quantum systems.
The effects of the formation of minigaps and minibands
on electron transport through 1D lateral superlattices
were also studied by Leng and Lent very recently using
the finite-element method. In their study, the results of
the transfer-matrix calculations of Refs. 18—23 were
reproduced, and a one-to-one correspondence between
the index of quantized conductance plateaus and the
number of Bloch bands with positive group velocity was
demonstrated by a comparison between the calculated
conductance and the band structure. The study shows
also that the one-to-one correspondence persists in the
presence of an applied magnetic field. The magnetic field
was disregarded in the transfer-matrix calculations of
Refs. 18—23.

In this paper, we present an alternative formalism for
treating the transport properties of lateral superlattices in
magnetic fields, based on the scattering matrices. Previ-
ously, the scattering-matrix method was successfully
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used, without suffering numerical instability, for the
study of electron transport in lateral antidot lattices when
no magnetic Aeld is applied. Here, we will reformulate
the method to allow the presence of a magnetic field. We
then report on the results of its application to a periodi-
cally modulated Q1D channel. The modulation potential
will be modeled by a smooth function realistic to experi-
mental situations. In the application, we are particularly
concerned about the e6'ects of the magnetic field on the
minibands and minigaps formed in the system. We will
explore them by computing the conductance of the sys-
tem at a Axed magnetic Aeld as a function of the channel
width m and a function of the Fermi energy EI;.

I ~ gxx~gxxg~ ~ ~ . . s gxx~gx ~x ) R

I
L b c ~R
0 0

(b)

II. SCATTERING-MATRIX TECHNIQUE
IN MAGNETIC FIELDS

A scattering-matrix method has been described in de-
tails in Ref. 26 for electron transport through lateral su-
perlattices at the zero magnetic field (B =0 T). Although
it is elementary to reformulate the method for the cases
when a magnetic field is applied, we prefer to present the
reformulation for completeness, and because we need it
to discuss some fundamental and computational features
that appear due to the presence of the magnetic field.

Let us consider a lateral, ballistic quantum channel of
finite width w, defined in the plane of a 2DEG (the x-y
plane) and modulated by a periodic potential V(x,y). We
wish to confine ourselves to the mesoscopic regime by as-
suming that the quantum channel has a finite length
L, T=xo —xo and is sandwiched between two perfect
semi-infinitely long leads of the same width m at equal
Fermi energy EF [see Fig. 1(a)]. The Schrodinger equa-
tion of motion of an electron with energy c. in a uniform
magnetic field B=(O,O, B) can then be written as

(P+e A) + V, (y)+ V(x,y) %(x,y) =ET(x,y),
277l

where m* is the effective mass, V, (y) represents the
confining potential of the quantum channel in the direc-
tion perpendicular to the current Aow, and A is the vec-
tor potential. In this work, we choose the Landau gauge,
A=( —By, 0,0), and consider only 1D modulations along
the channel,

-b/2 0
I

b/2

FIG. 1. Schematic view of the Q1D channel modulated
periodically by a finite number M of smooth potential barriers.
(a) Layout of the lateral surface superlattice. The modulated
channel has a width w and is connected at xo and xo with two
perfect leads of the same width m at equal Fermi energy E~.
When a potential difference is applied, electrons are assumed to
Aow from L to R, i.e., in the x direction. (b) Assumed potential
Profile of the barriers, V&(x)= Vo cos e(~x/b), [ bl2, bl2]—,

with P= l. Vo and P control the strength and the steepness of
the modulation, respectively.

We begin with the assumption that the potential-
modulated Q1D channel can be decomposed into X
transverse strips and the potential in strip i can be ap-
proximated by a constant V& (x '), where i = 1,2, . . . , N
and x ' may be chosen to be the x coordinate at the center
of the strip. Thus, Eq. (1) may be solved for strip i by
separation of variables of the form

g'(x, y)=e'" y'(y), (3)

where y'(y ) satisfies the reduced one-dimensional
Schrodinger equation,

2 2

+ co, (y —leak') + V, (y)+ V&(x') .g'(y)
2pl dp

V(x,y) = Vb(x) xo ~x ~xo and —w/2~y ~ w/2

0 otherwise, (2)
=Eq'(y) . (4)

where V&(x) = V&(x +a) and a is the modulation period,
as schematically shown in Fig. 1(a). We further assume
that Vb(x) in a barrier region is in general a smooth func-
tion of x along the direction of the current fiow [see Fig.
l(b), for an example].

For V&(x)=0, Eq. (1) can be solved by separation of
variables. However, such a separation of variables may
not be achieved for a general modulation potential of the
type as shown in Fig. 1, and Eq. (1) may have to be
solved numerically. In this work, we prefer to solve Eq.
(1) using scattering-matrix technique.

Here, co, =eB /m is the cyclotron frequency and
lz = (fi/eB)'~~ the magnetic length. For electron-
transport calculations, Eq. (4) is solved at a given electron
energy c. for eigenwave numbers k' and eigenwave func-
tions y'(y). The properties of the functions y'(y), in-
cluding the orthogonality relation and normalization,
have been discussed by many authors. ' For reasons to
be seen later, here we choose to normalize our functions
y' (y), so that

(5)

and to define a velocity matrix v' =—
[ u'

& ] by
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2u'is= qr'(y) k' +k& — p&(y)dy=v' 5 &,2m l~

d + V, (y) N„(y)=E„4„(y) .
2m dg

In this basis, the wave function y (y) is written as

y'(y)=gd„' +„(y),

while Eq. (4) as
r

[E—c,„—Vb(x')]5
1

W

%co
2

Y2
2F

k'w
Y n—

2k'm
=0,

(6)

where v' is a short notation for v' and is known as the
quantum mean velocity when it is real.

Equation (4) may be solved by using a complete basis of
j @„(y)} satisfying

exploding modes. In order to overcome the difficulty in
numerical calculations due to the presence of the explod-
ing modes, we shall divide our eigensolutions into two
groups and adopt the scattering-matrix formalism. The
first group, in which the eigenwave functions are denoted
by [ks } and [ys (y)}, consists of those modes whose
wave number has a positive imaginary part and those
modes whose wave number has a null imaginary part, but
a positive real part, while the second group, in which the
eigenwave numbers and eigenwave functions are denoted
by [kss } and [ass (y) },consists of all the rest, i.e., those
modes whose wave number has a negative imaginary part
and those modes whose wave number has a null imagi-
nary part, but a negative real part. In fact, the eigensolu-
tions in the first group, denoted by [1is (x,y) },are those
modes that are propagating forwards or evanescent,
while the eigensolutions in the second group, denoted by
[itsss (x,y) },are those that are propagating backwards or
exploding.

In terms of these notations, the wave function %"(x,y)
of an electron with energy c. in strip region i can then be
written as

ik~ (X —Xo) 1k' (X X() )+ (x y)=/[as e %i (y)+ass e O'ss (y)]

(9)
Ikey (X x() )

(y)[ds as e

where

(@ (y) ~y'~@„(y)), (10)

(y) lyl @.(y) &,

and E„=(iii /2m )(ir/w) .
Equation (9) is solved in an expanded basis, due to

Tamura and Ando as follows. By introducing auxiliary
coefficients f„' =(k' w l~)d„', we can rewrite Eq. (9) as

0 & ~'
w

f k (12)
l

with

(S) „= [e—e„—V„(x')]6= 1
2

'Rco

2E, w

Y „, (13)

(T) „= %co
Y „. (14)

Solving Eq. (12) for a given energy E, we obtain a set of
eigenwave numbers (k' } and a set of corresponding
eigenwave functions j y' (y) j. Inserting them into Eq. (3),
eigensolutions [itj (x,y) j in the strip region i are then ob-
tained.

The transport property of these eigensolutions is deter-
mined by their wave numbers [k' }.These wave numbers
can be real, imaginary, or complex. Only those eigenso-
lutions whose wave numbers are real represent propaga-
ting modes, while the others correspond to evanescent or

krI (x XO)+ dssn aassae

with vs=[us~} and vss=[uss~ j, where vs~(vss ) is the
velocity matrix element calculated from Eq. (6) with the
eigenwave number ks (kss ) and the eigenwave function

ys (ass ) in the first (second) group;
Obviously, we have a set of unknown coefficients [as

and [ass j in the expansion of the wave function 4"(x,y)
in each transverse strip region. However, the connection
between the expansion coefficients jas } and (ass } in
the strip region i and the expansion coefficients jas+' }
and [ass+' } in strip region i +1 can be achieved via a
transfer matrix M(i, i + 1),

Ai Ai +1
I I

=M(i, i +1)
II II

where AI and AII are coefficient vectors containing

[as j and [ass }, respectively. It is elementary to show
that the transfer matrix M(i, i + 1) can be written as

0 ' 0
M(i, i +1)= 0 T(i, i +1),

where x o is the reference coordinate along the x direction
for the strip region i. The calculation for electron trans-
port should not depend on the choice of xo. Thus, for
simplicity, we chose a set of [x 0 }, such that x 0 =x 0,
xo +' =xo, and xo+' —xo = l', where l' is the width of
the ith narrow strip. Furthermore, since the velocity ma-
trix v is diagonal, it can immediately be written as

(16)
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(y I) =exp(ikt l'),
(yh) =exp(ikjt l )

and T(i, i + 1) is the matrix defined by

(19)

Pi +1
II

Qi+1II
(20)

with the submatrices Pt tt and Qt It given by

where yI and @II are two diagonal matrices with ele-
ments given by

quantum system can only be obtained after we impose a
boundary condition on the electron wave function. Here,
we are interested in such electron states that may carry
the electric current through the quantum system. Thus,
let us consider an electron of energy c. in the left lead in a

ik~ {x—xo )
state, E '~

q&1 (y), propagating forward from left to
right. After being scattered in the potential-modulated
channel, the wave function of the electron in the left and
right leads should be written as

kr~ (~ ~oL) L ikII (Jf, —xo )

(Pi )..=di.

( PII )n a 1In a
(21)

@R( ) yaRe' I 0 R (y)

(26)

(27)

AkI
(Qt ) +dI 5„W Y„

(22)
Thus, the boundary condition imposed on the wave func-
tion of the electron is

(Qtt ) =gdtl
I'I.

~n~ ~g ~pgmm* AL

Here, M(L, 1) and M(%, R) are the two transfer matrices
that couple the wave function in the quantum constric-
tion to the wave function in the two perfect leads.

It is well known that in the calculations for the total
transfer matrix M(L, R), one often suffers a numerical in-
stability due to the presence of both exponentially grow-
ing and exponentially decaying terms in the formula-
tion. ' ' This problem may be removed by rewriting Eq.
(23) as

AR

AII,L

'A I
=S(L,R)

II

where S(L,R) is known as the scattering matrix of the
system and can be obtained iteratively with the help of
the transfer matrix M(i, i +1). For details of this pro-
cedure, we refer to our earlier work of Ref. 26.

A unique solution of the Schrodinger equation of the

The tilde "-"in Eq. (20) denotes the matrix transpose.
Here, we note that although the matrices PI and PII are
seen to remain in the same form as we derived in Ref. 26,
the matrices Qt and Qtt are found to difFer from that in
Ref. 26. The fundamental difference is the appearance of
the term iv, Y„ in the brackets of Eq. (22), due to the
presence of the magnetic field. The connection between
the expansion coefficients of the electron wave function in
the two perfect leads may be written as

A.L
'

AR
=M(L, R) (23)

II II

where AI and AII are the coefficient vectors containing
tal I and [art I, AI and Atl are the coefficient vectors
containing {at I and Iatt I, and M(L, R) is the total
transfer matrix of the system given by

X —1

M(L, R)=M(L, 1)X + M(i, i +1)XM(XR) . ' (24)

AIIR 0 (28)

where Iz is a unit vector with elements given by
(I~) =5 ~. The wave-function coefficients AI and AII
are simply obtained by inserting this boundary condition
into Eq. (25).

At T =0, the conductance of the quantum constriction
in the linear-response regime can be written as

(R)

QJ(EF,kt )lvl
y

(29)

where J (Ez, ktz ) is the current carried through the quan-
tum system by the electron state associated with the in-

kr (~ ~oL) Lcident wave e '~ '
q&t (y) at energy EF [see Appen-

dix for a derivation of the current J(EF,klan)j, and (R)
indicates that the sum is taken over those values of y for
which

klan
and thus vtr [see Eq. (6)j are real. In terms of

the expansion coefficients of the wave function in the per-
fect leads, the conductance is simply given by

2(R) (R) U

y a very

(30)

Compared with what we obtained in Ref. 26 at the zero
magnetic field, the quantum mean velocity (instead of the
wave vector) is seen to enter the expressions of the con-
ductance, Eqs. (29) and (30). Note that Eq. (30) is the
multichannel Landauer-Buttiker formula in a magnetic
field and has been derived in many different ways.

The method presented in this section is formulated in a
basis of infinite order and is exact. However, Eq. (9) or
(12) has to be solved numerically by truncating m and n
at a high transverse level E. In the actual calculations,
we set E as large as it is necessary to obtain a desired
convergence in the conductance.
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III. PERIODICALLY MODULATED
QUASI-ONE-DIMENSIONAL CHANNEL

IN MAGNETIC FIELDS
(a) B=OT, EF ——10me

We will now apply our theoretical formulation to study
the magnetoconductance of a Q1D channel modulated by
a periodic potential containing a finite number M of bar-
riers as shown in Fig. 1(a). We describe the potential of
each barrier by a realistic model of the form

1P VP

Vb(x) = Vo cos ~(m.x/b), b —/2~ x~ 5/2,

where b is the width of the barrier, Vo and integral P con-
trol the strength and steepness of the modulation, respec-
tively. In the present calculations, we choose P= 1 [see
Fig. 1(b) for the potential Vb(x) in the barrier regions in
this case]. The barriers are separated by a distance
c =a —b and the potential in the regions between the
barriers is simply set to zero. Here, we note that our
model potential is continuous in the direction of the
current How, and so is its first-order derivative. The de-
tailed shape of the confining potential [i.e., V, (y) in Eq.
(1)] across the Q1D channel is not important in the
present study. We, therefore, define the channel by the
hard-wall confinement for simplicity. All our calculations
presented in the following have been performed with the
assumption of an effective mass m*=0.067m„which is
appropriate to the Al„Ga, „As/GaAs interface.

We begin with the study of the conductance at a fixed
magnetic field B as a function of w (the width of the QlD
channel). Figure 2 shows the calculated results for the
channel with M=20 and five modulation strengths Vo
when no magnetic field is applied (B =0 T). The calcula-
tions have been done for two Fermi energies. Figure 2(a)
shows the calculations for E~ = 10 meV, while Fig. 2(b)
shows that for E~ =14 meV. The electron transmission is
not possible at these Fermi energies for m &20 nm. The
confining potential of the channel gives rise to a set of
electron subbands with sublevel energies E„as their band
edges At .B =0 T, E„=(fi /2m*)(nm/w) and is
lowered as w increases. The electron transmission
through subband n can take place only when E„&Ez.
However, because of the periodic modulation, the sub-
band will split into minibands separated by minigaps.
The electron transmission is blocked when the Fermi en-
ergy is in a minigap. This is seen as the appearance of a
dip in the calculated conductance as shown in Fig. 2.
The formation of minigaps is observable even when the
modulation is as weak as V0=0.2 meV. For example,
two sharp dips followed by a shallow dip are clearly seen
in each conductance plateau of the channel at Vo =0.2
meV [see the lowest curve in Figs. 2(a) and 2(b)]. The
channel widths at which the minigaps and, thus, the con-
ductance dips appear can be estimated for each subband
by using the Bragg reAection condition k„=m m/a,
where n is the index of the subband and m is the index of
minigaps in the subband. Using k„=[(2m *Ezlfi )—( n m /w ) ]

' ~, one may find that the separation (in terms
of the channel width w) between the two sharp dips at the
edge of a conductance plateau increases approximately

0
0

0.2
tt

1

I

100

W (nm)

200

10 &0

0
0

05 P(
'

I' ll'
0.2 II'

II'
I

100

W (nm)

200

FIG. 2. Conductance G vs the channel width w at the zero
magnetic field for the lateral surface superlattice shown in Fig. 1

with five modulation strengths Vo and the following parameters:
P=1, a =150 nm, b =50 nm, c =100 nm, LT=xo —xo =2960
nm, and M =20. (a) shows the calculations for EF= 10 meV. (b)
shows that for EF =14 meV.

linearly with the subband index n. This is in agreement
with our exact numerical calculations as shown in Fig. 2.

Figure 2 shows also that as the modulation strength Vo
increases, no significant change in the positions of the
conductance dips is observed, but the dips are seen to
widen up toward large width value. At strong modula-
tion, minigaps (as well as minibands) that develop from
different subbands may overlap, leading to some irregular
structure in the conductance spectra. For example, at
Vo =2.0 meV and EF = 10 meV [Fig. 2(a)] some dips and
peaks are seen to appear irregularly in conductance pla-
teaus with index n ~ 3. Such an irregular structure can
also be seen in the calculations for Vo=2. 0 meV and
Ez = 14 meV [Fig. 2(b)] and the calculations for some rel-
atively weak modulations at both Fermi energies. The
rapid oscillations are also seen in Fig. 2 in the cases of
strong modulations. These oscillations originate from the
coupling of the quasi-zero-dimensional (QOD) states in
the cavities formed between the modulation barriers.
However, the number of oscillations between two adja-
cent conductance dips, in general, has no direct
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correspondence to the number of cavity regions. This is
again due to the presence of overlaps between the mini-
bands and that between the minigaps.

When a magnetic field is applied perpendicularly to the
modulated QlD channel, electrons tend to move along
the edges of the channel and the change in the charac-
teristic of the calculated conductance is, therefore, ex-
pected. Figure 3 shows the results of our calculations at
B =1 and 2 T. Two modulation strengths are considered
in the calculations. The calculations for a relatively weak
modulation (V o=0. 5 meV) are shown in Figs. 3(a) and
3(c), while the calculations for a strong modulation
(Vo =3.0 meV) are shown in Figs. 3(b) and 3(d). It is seen
that at the considered Fermi energies (E~=10 and 14
meV), the applied magnetic field (B = 1 and 2 T) has little
effect on the calculated conductance when the width of
the channel w &40 nm. This can be easily understood,
because in this case, only the lowest subband of the quan-
tum channel is open for electron transmission and the
free cyclotron energy Ace, is much less than the energies
of the subband. Therefore, the feature of the edge state
transport is not significant. But this feature should
emerge as the width of the Q1D channel increases and

becomes much larger than the magnetic length l~
(l~ =25.66 nm at B = 1 T and 18.14 nm at B =2 T).

Figures 3(a) and 3(c) show that for the weak modula-
tion at VO=0. 5 meV, the regular minigap structure as
observed at B =0 T is no longer seen at the calculated
conductance at B = 1 and 2 T, when w gets approximate-
ly larger than 80 nm. This may be interpreted as follows.
In terms of the Bragg reAections, the formation of mini-

gaps can be attributed to the formation of standing
waves, due to wave interference between the forward and
backward propagating electron states at the Fermi energy
EF. At B =0 T, the forward and backward states locate
in the same region across the channel, giving a maximum
probability for wave interference between them. When
the magnetic field is applied, the forward and backward
states tend to separate in their locations, leading to a di-
minution in the probability for their interference and thus
the formation of minigaps. However, for a channel
which is not very wide, the backscattering as a result of
coupling between the forward and backward states can
still take place at a relatively low magnetic field, due to
the presence of the potential modulation. Therefore, we
shall still see many dips in the calculated conductance for

15

(b) V0 ——3.0 meV, EF ——10 meV

10- 10-

B
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0

I
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0 100

W (nm)
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15

(c) V0 ——
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B =OT(t'

10-
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200
0

0 100

W (nm)
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FIG. 3. Conductance G vs the channel width m at 8 =0, 1, and 2 T for the lateral surface superlattice shown in Fig. 1 with the pa-
rameters: P= 1, a =150 nm, b =50 nm, c =100 nm, Lz =xo —xo~ =2960 nm, and M =20. The modulation strength and the Fermi
energy assumed in the calculations are (a) Vo =0.5 meV and EF= 10 meV, (b) Vo =3.0 meV and EF= 10 meV, (c) Vo =0.5 meV and
EF=14 meV, and (d) V0=3.0meV and EF=14 meV.
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w ) 80 nm, as shown in Figs. 3(a) and 3(c), although their
appearances become irregular now. When m)) z,h )I this
kind of back scattering is expected to be suppressed and,
as we see inwe see in Figs. 3(a) and 3(c) for the calculations at

lB =2 T and m ) 100 nm, the conductance vs m shou d
become structureless.

The suppression of miniband-associated conductance
dips by applied magnetic field are also seen in the calcula-
tions for the quantum channel with the relatively strong
modulation of Vn=3 meV, as shown in Figs. 3(b) and
3(d). Again, the irregular conductance structure seen in
calculations for B =0 T and to ) 100 nm [Figs. 3(b) and
3(d)] originates from the overlaps between the minibands
and that between the minigaps formed from different sub-
bands, while the rapid oscillations re Acct electron
transmission through coupled QOD states in the modulat-
ed channel and should form continuous conductance pla-
teaus when the number of potential barriers M goes to
infinity. At BWO T, particularly in the case of B =2 T
and E = 14 meV, many minigap-associated conductanceF
dips are seen to be replaced by the dips originating from
the back scattering via the electron states propagating
along the two edges of the channel. Because of the strong
modulation, the latter are very pronounced over a much

wider range of value m compared with the calculations
for the weak modulation of Vo =0.S meV [Figs. 3(a) and
3(c)].

Another interesting effect of magnetic field as seen in
Figs. 3(b) and 3(d) is the suppression of the rapid conduc-
tance oscillations, i.e., the electron transmissions through
coupled QOD states. This can be understood as follows.
It was shown that the QOD states are most likely local-
ized deep inside the channel. However, the electron
states at magnetic field tend to propagate along the edges
of the channel. When the width of the channel becomes
large enough, the propagating edge states can be decou-

1 d from the QOD state and the 1D characteristic o
~ ~ ~

electron transport (i.e. , the quantized conductance) wtl
then be recovered. This recovery may clearly be recog-
nized in the calculations for B =2 T, as shown in the
lowest curves of Figs. 3(b) and 3(d). We recall that the
dips seen in the recovered quantized plateaus are due to
the backscattering via the coupling between the electron
states propagating along the opposite edges of the chan-
nel. This coupling should mostly take place in the barrier
regions.

Finally, we show in Fig. 4 the results of our calcula-
tions for the conductance as a function of the Fermi ener-
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gy EI; when the width of quantum channel is fixed. Fig-
ures 4(a) and 4(b) [Figs. 4(c) and 4(d)] show our calcula-
tions for w = 100 nm (w =200 nm), but Vo = 1.0 and 3.0
meV, respectively. At B =0 T, we again see conduc-
tance dips associated with the formation of minigaps and
rapid oscillations re Aecting the electron transmission
through the coupled QOD states in the cavity regions be-
tween the barriers. Both are suppressed or partly at
B = 1 and 2 T. Many new dips seen in the calculations at
8 = 1 and 2 T for w = 100 nm [Figs. 4(a) and 4(b)] and in
the calculations at 8 = 1 T for w =200 nm [Figs. 4(c) and
4(d)] again originate from the backscattering via the cou-
pling between the electron states propagating along the
opposite edges of the channel. It is interesting to note
that due to the presence of a large number of such new
dips, the calculated conductance at B =1 T for Vo=3.0
meV and w =200 nm [Fig. 4(d)] are actually seen to
display fluctuations. These fluctuations are rather slow
compared with the oscillations seen in the calculated con-
ductance at B =0 T.

In addition, we see in Figs. 4(c) and 4(d) a rather per-
fect recovery of the conductance quantization at B =2 T
and w =200 nm, although sharp resonant structure may
still be seen at the edge of each plateau. This is in agree-
ment with our results presented in Fig. 3, where a large
suppression of backscattering of the propagating edge
states at B =2 T and w close to 200 nm can be seen. The
sharp resonant structure seen particularly in the lowest
curve of Fig. 4(d) indicates that at high magnetic field the
backscattering can take place only when the Fermi ener-
gy EF lies in the neighborhood of a magnetoelectric-
subband edge of the Q1D channel.

IV. SUMMARY AND CONCLUDING REMARKS

We have presented a method for the calculations of
electron transport through lateral quantum systems in a
magnetic field, based on scattering-matrix formalism.
The transfer matrices needed in the implementation of
the method are derived and some features that appear as
a result of the presence of the magnetic field are dis-
cussed. Since its formulation has been developed by
representing all required matrices in a common basis, the
method has a great Aexibility, i.e., it can easily be used to
treat electron transport through a quantum system
modulated with a complicated potential profile.

As an example of its application, the method has been
used to investigate the effects of an applied magnetic field
B on electron transport through a periodically modulated
Q1D channel. We have modeled the modulation poten-
tial by a realistic, smooth function and have calculated
the conductance of the system as a function of the chan-
nel width w and as a function of the Fermi energy EI;.
The results of these calculations are presented in Figs.
2 —4.

At B =0 T, in addition to the well-known quantized
conductance plateaus, the calculated conductance vs the
channel width w displays regular dips. We have found
that the values of w at which the dips appear do not
change significantly as the modulation strength Vo in-
creases. However, at strong modulation the dips are

found to widen up towards wide width w and the rapid
oscillations are seen to appear between the dips. The
conductance structure of the system can, therefore, be
complicated in this case. We have interpreted the dips as
a result of the formation of minigaps (or the Bragg
refiections) and the rapid oscillations as electron
transmission through the coupled QOD states in the cavi-
ty regions between the potential barriers.

When a magnetic field is applied perpendicularly to the
Q1D channel, the suppressions of both the minigap-
associated conductance dips and the rapid oscillations are
seen in the calculated conductance vs the channel width
w. This is because the electron states propagating in the
opposite directions tend to locate along the opposite
edges of the channel, leading to the reductions in the
probabilities for the Bragg reAections and for the cou-
pling between the propagating edge states and the QOD
states located deep inside the channel. However, the con-
ductance dips may appear irregularly in the system.
These dips reAect the existence of the backscattering via
the coupling between the electron states propagating
along the opposite edges of the channel as a result of the
presence of the potential barriers. When the channel
width w becomes much larger than the magnetic length
l~, these irregular dips are seen to be also suppressed by
the applied magnetic field. The calculations for the con-
ductance vs the Fermi energy E~ show rather similar re-
sults. However, the features of the propagating-edge-
state transport are more clearly displayed in these calcu-
lations. It has been shown that in the presence of a mag-
netic field, the dips due to the backscattering of the prop-
agating edge states can appear in a wide channel with a
relatively strong modulation so densely that the conduc-
tance actually exhibits Auctuations. It has also been
shown that these fluctuations can be washed out in the
high-field regime, leading to a nearly perfect recovery of
the conductance quantization.
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APPENDIX

In the presence of a perpendicular magnetic field, the
electric current J(EF,klan) carried through a lateral quan-
tum channel by an electron state %(x,y) associated with

ikr (~ ~o )
L

the incident wave e " '
y~ (y) from left at energy

EF is given by

J(E~,klan)= ——f dy[%" (x,y)v„%(x,y)

+%(x,y)v *V*(x,y) ], (A 1)

where the electron charge, —e, has been assumed and
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a—iA
X

(A2)

v is the electron velocity operator in the magnetic field,

1Vx- —e8y

Inserting Eq. (15) into Eq. (Al), the current J(E~,klr)
can be rewritten, in terms of the eigensolutions
Ikr'a&tPla(y) J and I ktla~tPlla(y)) 'n one of the narrowly
divided strip regions or in one of the two leads, as

J(E~,kr ) = —egg, aI* at pe
a P

y

—i (klra —krr&)(x xo) ~ u /2 ~ 2y+aIIaaIlp dy kIIa +kIIp p PIIa(y ) PIIp(y )
2m ~ —w/2 $2

+at atrpe
krr p)(x xo )

dy kI'. +kllp , —V~I*.(y)V ltp(y)
2m I

—i (krr —
kryo)(x

—xo ) Q tt) /2
+ail alpe, dy kl +kIp 2 0'tl (y)V'Ip(y')

2m $2
(A3)

Here, the region index (i, L, or R) has been dropped. Us-
ing Eq. (6), we see immediately that the first and second
terms in the braces can be nonzero only if ct=P and the
eigenwave numbers kIa =kI& and kIIa =kII& are purely
real. However, for the last two terms in the braces to be
nonzero, the eigenwave numbers k;a, kI&, kIIa, and kII&
have to be imaginary or complex with a nonzero imagi-
nary part. Furthermore, if the eigensolutions

Ikla tPla(y)I and Iktra tPIra(y)I are numbered in such a
way that kI" =klla a d tPIa(y)=tea(y) for both iinagi-
nary and complex kI and kII, one of the required con-
ditions for the last two terms in the braces to be nonzero
is again a=P. Having all these in mind, we can now
write Eq. (A3) in a compact form,

(R~

J(EF kr )= e Xl"I laI +Un laII l

(R)
J(EF klan)= —e Ulr+QUlla allal' (A5)

In the right lead, aII =0 for all a' s. The current is thus

(R)
J(EF kr ) = e+Ul la (A6)

Combining Eqs. (A5) and (A6) gives the familiar relation-
ship,

I

real, while (C) indicates that the sum is taken over those
values of a for which kt and klla (thus via and Ult ) are
either imaginary or complex. A further simplification of
the equation can be achieved if the current is evaluated in
a lead. In the left lead, ara =&ar and both vIa and v

are real when a =y. The current is then

(C)
+y(UII ai aII +VI aI aII

(R) (R) UR

y(T,.+R,.) =y ', la,".l'—
a a UIr

v
L

laII l

= 1, (A7)
UIr

(A4)

where (R ) indicates that the sum is taken over those
values of a for which klan and ktla (thus via and ursa) are

where T =(vtalvtr)lat l
and Rra= (Utt I—

UI ) l aII l
are known as the transmission and the

reflection coefficients, respectively.

'D. K. Ferry and R. O. Grondin, Physics of Submicron Devices
(Plenum, New York, 1991).

2Physics of Nanostructures, Proceedings of the 38th Scottish
Universities Summer School in Physics, edited by J. H.
Davies and A. R Long (Institute of Physics, Bristol, 1992).

C. W. J. Beenakker and H. van Houten, in Solid State Physics:
Advances in Research and Applications, edited by H. Ehren-
reich and D. Turnbull (Academic, San Diego, 1991), Vol. 44,
p. 1.

4B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Wil-
liamson, L. P. Kouwenhoven, D. van der Marel, and C. T.

Foxon, Phys. Rev. Lett. 60, 848 (1988).
5D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, and

H. Ahmed, J. Phys. C 21, L209 (1988).
N. K. Patel, L. Martin-Moreno, M. Pepper, R. Newbury, J. E.

F. Frost, D. A. Ritchie, G. A. C. Jones, J. T. M. B. Janssen, J.
Singleton, and J. A. A. J. Perenboom, J. Phys. Condens.
Matter 2, 7247 (1990).

7N. K. Patel, J. T. Nicholls, L. Martin-Moreno, M. Pepper, J.
E. F. Frost, D. A. Ritchie, and G. A. Jones, Phys. Rev. B 44,
13 549 (1991).

8A. Szafer and A. D. Stone, Phys. Rev. Lett. 62, 300 (1989).



5812 HONGQI XU 52

E. G. Haanappel and D. van des Marel, Phys. Rev. B 39, 5484
(1989).
G. Kirczenow, Solid State Commun. 68, 715 (1988); J. Phys.
Condens. Matter 1, 305 (1989);Phys. Rev. B 39, 10452 (1989).
E. Tekman and S. Ciraci, Phys. Rev. B 39, 8772 (1989); 40,
8559 (1989).
L. Escapa and N. Garcia, J. Phys. Condens. Matter 1, 2125
(1989).
M. Biittiker, Phys. Rev. B 41, 7906 (1990).
L. I. Glazman and A. V. Khaetskii, Europhys. Lett. 9, 263
(1989).

~5L. Martin-Moreno, J. T. Nicholls, N. K. Patel, and M.
Pepper, J. Phys. Condens. Matter 4, 1323 (1992).
Hongqi Xu, Phys. Rev. B 47, 15 630 (1993).
L. P. Kouwenhoven, F. W. J. Hekking, B. J. van Wees, C. J.
P. M. Hermans, C. E. Timmering, and C. T. Foxon, Phys.
Rev. Lett. 65, 361 (1990).
S. E. Ulloa, E. Castario, and G. Kirczenow, Phys. Rev. B 41,
12 350 (1990).

J. A. Brum, Phys. Rev. B 43, 12 082 (1991).
Hua Wu, D. W. L. Sprung, J. Martorell, and S. Klarsfeld,
Phys. Rev. B 44, 6351 (1991).

~ Hua Wu and D. W. L. Sprung, Phys. Rev. B 47, 1500 (1993).
Hongqi Xu, Zhen-Li Ji, and K.-F. Berggren, Superlatt. Mi-
crostruct. 12, 237 (1992).
Hongqi Xu, Phys. Rev. B 47, 9537 (1993).
E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46,

618 (1981);D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851
(1981); P. A. Lee and D. S. Fisher, Phys. Rev. Lett. 47, 882
(1981);L. Schweizer, B. Kramer, and A. MacKinnon, J. Phys.
C 17, 4111 (1984); Z. Phys. B 59, 379 (1985); A. MacKinnon,
ibid. 59, 385 (1985).
M. Leng and C. S. Lent, Phys. Rev. Lett. 71, 137 (1993);Phys.
Rev. B 50, 10823 (1994).

2 Hongqi Xu, Phys. Rev. B 50, 8469 (1994).
In fact, x ' can be chosen to be any x value within the ith nar-
row strip and the calculation for electron transport should be
insensitive to its choice when the number of strips divided in
the modulated channel X is very large so that all the strips
are extremely narrow. In the actual calculations, we let N in-
crease until our required accuracy is achieved.
J. Kucera and P. Streda, J. Phys. C 21, 4357 (1988).
R. L. Schult, H. W. Wyld, and D. G. Ravenhall, Phys. Rev. B
41, 12 760 (1990).
H. Tamura and T. Ando, Phys. Rev. B 44, 1792 (1991).
D. Y. K. Ko and J. C. Inkson, Phys. Rev. B 38, 9945 (1988).
M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986).
P. Streda, J. Kucera, and A. H. MacDonald, Phys. Rev. Lett.
59, 1973 (1987)~

J. K. Jain and S. A. Kivelson, Phys. Rev. B 37, 4276 (1988).
Zhen-Li Ji, Phys. Rev. B 50, 4658 (1994).
This numbering is possible, because if k and y (y) (we have
omitted the subbasis labels I and II) are a solution of Eq. (4),
their complex conjugates k* and y*(y) are also a solution.


