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Confined excitons in semiconductors: Correlation between binding energy
and spectral absorption shape
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We calculate excitonic absorption spectra in several types of semiconductor nanostructures by using
an original formalism involving fractional-dimensional spaces. This compact, analytical formulation
predicts a surprising one-to-one mapping between the enhanced exciton Rydberg and the shape of the
spectrum, whatever the physical origin of the confinement. By all-numerical calculation of the optical
susceptibility we check that different systems with identical exciton Rydbergs exhibit nearly identical
spectra, strikingly close to those given by the fractional-dimensional approach.

The concept of "reduced dimensionality" has been reg-
ularly encountered in many fields of physics in recent de-
cades. It is mostly connected with the change —or the
suppression —of one or several degrees of freedom for a
given system. Thus is usually obtained by the reduction
of one or several geometrical dimensions of an object, or
by introducing anisotropy through some perturbation. In
general, the mathematical description of ideal problems
in one, two, or three dimensions is well established.

Now, in most cases, the experimental reality would
normally correspond to some intermediate dimension, as
evidenced by the frequency of locutions such as "quasi-
one-" or "quasi-two-dimensional, " for example. In par-
ticular, the recent progress in crystal growth permits the
fabrication of very small semiconductor structures like
quantum wells, superlattices, quantum wires, and dots,
with a one-atomic-layer accuracy. This makes it possible
to observe the effects of spatial restrictions on the wave
functions of electrons, holes, or Wannier excitons —i.e.,
electron-hole pairs bound by a screened Coulomb interac-
tion. The first of these effects is a dramatic change in the
energetic spectrum of quantum states. Consequently, the
optical properties of these artificial materials, mostly
governed by the physics of excitons, are very different
from those of bulk three-dimensional (3D) semiconduc-
tors, which they are made of. However, none of the
integer-dimensional modelings of transition energies and
oscillator strengths perfectly describes the experimental
reality.

In recent years, numerical methods of increasing accu-
racy have been proposed for calculating the optical spec-
tra of such "low-dimensional" systems. So far, the most
accurate of these modelings are all-numerical resolu-
tions' of the excitonic Schrodinger equation, which is
particularly tedious in the case of the so-called scattering
(unbound) states. The resulting wave functions are then
used to calculate the spectral optical susceptibility of the
medium. Such methods are rather complicated from
both the theoretical and numerical points of view. More-
over, they have to be properly adapted to each different

physical situation, since quantum wells or quantum wires,
for instance, cannot be treated in the same way.

Alternatively, the effects of spatial restriction on exci-
tons can be faced by using metric spaces with fractional
dimensions: the quenched exciton is treated exactly
as a hydrogenic system with a noninteger dimensionality
a. The absorption spectrum is then obtained from a sin-
gle general equation, where a appears as a charac-
teristic parameter of the system. To date, the most reli-
able way to determine o. consists in first calculating the
binding energy of the squeezed exciton by a variational
model; then a is derived from the elementary relationship
between the binding energy and the corresponding
dimensionality. Indeed, the binding energy of the czD
exciton is given by E„=4%/( —a 1), where % is the
efFective Rydberg (the binding energy) of the 3D exciton.
Defining a more mathematical way to determine exactly
the value of the dimensionality remains an open problem.

Once a is known, and taking the zero of photon ener-
gies at the interband gap of the structure, the whole opti-
cal cross-section spectrum is readily obtained, versus the
photon energy A'co, by using the exact generalization of
Elliott's formula ' for arbitrary dimensions,
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U(x) represents the Heaviside step function, I (x) is
Euler's gamma function, and y =&A/fico is the reduced
parameter introduced by Elliott. We shall not discuss
here the value of the amplitude factor o.o, which has been
given in a previous work, and shall concentrate on the
spectral term within the curly brackets in Eq. (1). The
first part of this term is a series of Dirac distributions,
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centered on the bound energy levels E„
=%/[n+(a —3)/2] . The amplitude of these peaks rap-
idly decreases with increasing n, while they tend to con-
stitute a pseudocontinuum, the absorption of which has a
finite value. The second part of the spectral term corre-
sponds to the so-called scattering states of the exciton,
which constitute a real continuum. Of course, by letting
a=3 or 2 in Eq. (1), one gets the well-known expressions
of Elliott' and of Shinada and Sugano. " Broadening
effects can be included by convolution with a Lorentzian
function of half width at half maximum P.

Obviously, the most surprising conjecture of the
fractional-dimensional formalism is that the physical
mechanism causing the confinement, the geometrical
shape, and the dimensions of the confining system are en-
tirely described by a single dimensionality parameter. As
a corollary, this approach predicts that, as far as the
shape of the absorption spectrum is concerned, complete-
ly different physical systems should show identical spec-
tra, provided that they have the same dimensionality, i.e.,
the same exciton binding energy. Up to now, this ques-
tion had not been investigated in such terms, because the
common intuition suggests that the details of the system
strongly inhuence optical properties. This explains the
fact that very few attempts have been made to propose a
simple and universal modeling of optical spectra in
quantum-confined structures. So, the fundamental ques-
tion is the following: Is there really a one-to-one relation-
ship between the binding energy of the perturbed exciton
and the shape of the absorption spectrum, independent of
the origin of the spatial restriction?

In this paper, we address this question by calculating
linear absorption spectra near the fundamental band-gap
energy of semiconductor systems such as quantum wells,
quantum wires —of various geometries —and bulk ma-
terials in magnetic fields. The prevision of the
fractional-dimensional Elliott equation is checked by car-
rying out an advanced all-numerical calculation of the n-
dimensional linear optical susceptibility (n is an integer).
Using the density matrix formalism in the framework of
the envelope functions, the linear optical susceptibility
can be traced back to a quantum-mechanical two-particle
problem for the electron-hole motion, which contains the
confinement potentials in the case of a microstructure, '"
or the magnetic field:
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FIG. 1. (a) Calculated absorption spectra of an ideal
quantum-well wire obtained from a vanishingly thin quantum
well by adding a parabolic potential well along one in-plane
direction (the total additional electron-hole confinement energy
is A'0=6%). (b) and (c) The same for two ideal quantum wells
of respective widths 0.4 and 1.6az. Dots correspond to numeri-
cal calculations of the dielectric susceptibility. Solid curves re-
sult from the fractional-dimensional Elliott equation. The inset
gives a magnified view of the high-energy parts of the spectra.

Here, m, &h are the masses and 8'
&h the confinement

potentials for the electron and hole, respectively, and A
is the vector potential of the magnetic field. The quantity
Q'" ' denotes the n-dimensional normalization volume.
The Schrodinger equation is numerically solved in real
space using a representation in real space with
5000—50000 base functions, in order to model the con-
tinuous spectrum. For simplicity, we consider ideal sys-
tems with equal electron and hole effective masses,
infinitely high square and/or parabolic potential wells,
and we express all energies and lengths in units of the 3D
exciton effective Rydberg (A) and Bohr radius a~, respec-
tively.

For each situation, the numerical calculation provides
the binding energy of the 1s exciton state. Using the
above relationship between E&, and a, we derive the cor-
responding dimensionality, which allows us to calculate
analytically the spectral-shape term in Eq. (1). This spec-
trum is finally compared with the result of the numerical
calculation.

Figures 1 and 2 display examples of such calculations
for different physical systems. The absorption spectra
have only been calculated near the fundamental valence-
to-conduction band gap. In other words, we have not
considered here the absorption due to possible excited
confinement subbands. In fact, bound exciton states re-
lated to such excited critical points are coupled with
scattering states originating from lower-lying singulari-
ties. This leads to the well-known Pano resonances, '

which strongly affect the shape of absorption spectra, in
particular when broadening effects are small. Such phe-
nomena fall outside the scope of this study.

In all cases, the intensities of the 1s absorption peaks,
calculated by both analytical and numerical methods,
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Quantum Wells (QW), Quantum-Well Wire (QWW) and
Cylindrical Quantum Wire (CQW)
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FIG. 2. Calculated absorption spectra of two pairs of physi-
cal systems with identical exciton binding energies. (a) corre-
sponds to a square 1.134a&-wide quantum well (solid line) as
well as to a quantum-well wire (dashed line), built from a
0.8a& -wide well, with an additional in-plane parabolic
confinement. The total additional electron-hole confinement is
ZA. (b) is the spectrum of a 0.091a&-wide square well (solid
line), or that of a cylindrical quantum wire (dashed line) with
completely parabolic confinement (electron-hole confinement
energy: 6A). Dotted lines show the results of the n-
dimensional Elliott equation. In both cases (a) and (b), it is al-
most impossible to distinguish between the three lines.

have been matched to each other, and very small
broadening parameters (P=0.2%) have been assumed, so
as to emphasize as many details as possible. Figure 1

shows the spectra obtained for ideal quantum wells with
infinite potential barriers and two different widths, and
for a quantum wire obtained from a vanishingly thin
square well by adding a parabolic potential well along
one direction, in the layer plane (quantum-well wire).
The sharper the curvature of this potential profile, the
stronger the confinement.

In Fig. 2, we present the spectra obtained for two
square quantum wells, compared, respectively, to that of
a quantum-well wire, built upon a quantum well of finite
thickness by adding a parabolic in-plane potential well,
and to that of an ideal cylindrical quantum wire with a
parabolic confinement potential. Note that the latter sit-
uation is essentially similar to that obtained by applying a
magnetic field onto a bulk semiconductor. In this last
case, the strength of the field —which acts as the curva-
ture of the quadratic potential of the cylindrical wire—
controls the degree of confinement of the electron-hole
relative motion, around the field axis. The numerical pa-
rameters in Fig. 2 have been taken such that the two
pairs of systems exhibit exactly the same exciton binding
energy. The principal effects of increasing the
confinement —of reducing the dimensionality —are the
shift of the 1s peak towards lower energy, and the simul-
taneous enhancement of its intensity, relative to the rest
of the spectrum. A slight change in the variation of the
absorption by scattering states, above the band gap, can
also be noticed.

Whatever the situation, a striking agreement is ob-

0.3 t

E
0 0.2

CO
I&

LU

O 01

R Square Quantum Wells

~ Cylindrical Quantum Wires
(parabolic potential)

Quantum-Well Wires (parabolic in-
plane potential)

Bulk Material in Magnetic Fields

~ I ~ ~ I I I ~ ~0

1 2 3 4 5 6

EXCITON BINDING ENERGY (R)

FIG. 3. Plot of the dimensionless ratio between optical densi-
ties at the free-electron band gap and at the top of the 1s peak vs
the corresponding exciton binding energy. Circles, squares, and
triangles correspond to diferent physical systems, while the
curve shows the result of the fractional-dimensional formalism.

tained between both numerical and analytical methods on
all important points: both the energy and relative inten-
sity of the secondary absorption peak, mainly due to the
contribution of the 2s state, are given as almost identical
by both approaches. The same remark is valid for the ab-
sorbance due to excitonic unbound states, above the free-
electron band gap, and for its spectral variation. Even
more striking is the fact that excitonic absorption spectra
of systems with very different shapes and physical nature
seem to follow some scaling law, of which the fractional-
dimensional approach gives an excellent picture. This
can be observed in Fig. 2, where, for each value of the
dimensionality, all curves are very close to each other,
which is an interesting result in itself.

We have achieved a systematic verification of this
point by calculating the absorption spectra of a variety of
structures, namely, (i) quantum wells of various widths;
(ii) quantum-well wires based on square wells of
thicknesses 0 and 0.8 Bohr radii, with several curvatures
of the additional in-plane quadratic potential; (iii) quan-
tum wires obtained by parabolic potential wells with a cy-
lindrical symmetry around the wire axis; and (iv) bulk
semiconductors submitted to magnetic fields of various
strengths. We have chosen to characterize the spectral
shape of the absorption by the value of the ratio,
8 =O(E =0)/O(ls), of the optical density at the band
gap (E =0) to the optical density at the is peak. Now,
the fractional-dimensional formalism yields an explicit
variation of R versus E„;in other words, any reference
to the a-dimensional parametrization can be eliminated:
for a Lorentzian broadening, we obtain R
=nPx "+ /2I (2x), where x =+A/E„.

In Fig. 3 we have plotted% versus E„,not only from
the above equation (solid curve), but also from the results
of numerical calculations (circles, squares, triangles).
Figure 3 proves, first, that there is effectively a very good
correlation between the exciton binding energy and the
general shape of the absorption spectrum, regardless of
the physical mechanism of the confinement. Second, Fig.
3 demonstrates that this correlation is very well described
by the fractional-dimensional approach.
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Practically, this result constitutes a warranty of relia-
bility for the analytical modeling which can be safely
used for all types of semiconductor heterostructures. The
simplicity of its formulation is a decisive advantage over
costly numerical procedures.

From the fundamental viewpoint, the above result can
be explained by the fact that the optical response is essen-
tially a picture of a spatially averaged electron-hole in-
teraction: it is obtained as the integrated probability for
creating an electron-hole pair by absorption of a photon.
Boundary effects are thus washed out, which explains
their small contribution. Reducing the dimensionality
then forces the spectrum to follow a kind of general pat-
tern, of which the above generalized Elliot formula is a
remarkable approximation. Besides, it is most likely that
the same formula can describe cases where the electron-
hole interaction is weakened (namely, type-II or
separate-confinement structures), by considering dimen-
sionalities larger than 3.

We have shown an example of the considerable
simplification brought by the use of fractional dimen-
sions. Now, the above type of scaling behavior is prob-
ably met in many other fields of physics: experimentalists
often obtain results which lie "somewhere in between"
the usual integer-dimensional cases. We believe that a
fractional-dimensional approach should be serviceable in
all cases where the measured quantity gives an averaged
picture of the system, wiping out microscopic features.
The rnathernatical determination of the effective dimen-
sionality remains an open question, but "seminumerical"
methods, comparable to those described above, could be
used.
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