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Cryogenic cooling using tunneling structures with sharp energy features
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Thermoelectric cooling, based upon the extraction of hot electrons and holes from a metallic electron
gas, holds unrealized potential for refrigeration at cryogenic temperatures. We discuss the performance
of two such electronic refrigerators: the quantum-dot refrigerator (QDR) and the normal-insulator-
superconductor {NIS) refrigerator. We obtain the QDR base temperature using a numerical simulation
and verify the validity of certain simplifying assumptions which allow refrigerating performance to be
summarized on a diagram of ambient temperature versus electronic temperature. In this way, we find
thai the best refrigeration is obtained with the electronic distribution far from the equilibrium Fermi-
Dirac function and the temperature reduction achieved is limited by the rate at which phonons are ab-
sorbed. We predict that, with sufficient thermal isolation, electronic devices could be cooled to a small
fraction of the ambient temperature using these solid-state refrigerators. The NIS refrigerator should be
capable of cooling thin-film devices from above 300 mK to below 100 mK; the QDR will cool macro-
scopic metallic samples in the pK or nK range. We also discuss topics related to thermoelectric refri-
geration including other cryogenic thermoelectric cooling schemes, the validity of the linear-response
theory of thermoelectric effects, the refrigerating efficiency of an optimized thermoelectric refrigerator,
and the overall cooling power of thermoelectric refrigeration.

I. INTRODUCTION

The electronic heat capacity exceeds the phonon heat
capacity in metallic solids at temperatures below about 1

K.' This occurs because the phonon heat capacity is pro-
portional to the third power of the temperature, whereas
the electronic heat capacity falls as only the first power.
Electronic refrigeration thus allows bulk cooling at low
enough temperatures.

Thermoelectric effects can be used to cool electrons.
The Peltier effect, in which a heat current accompanies
an electric current, is used for this purpose in semicon-
ductor thermoelectric refrigerators. The application of
Peltier refrigeration to the cryogenic cooling of metallic
electrons can be understood by examining a generic ther-
moelectric refrigerator.

Consider the following hypothetical device, shown
schematically in Fig. 1(a). At the center is a gas of metal-
lic electrons (the reservoir) with Fermi energy EF. The
electronic temperature Tp is manifest only in the thermal
smearing of the electron distribution by k~ Tp about
EF—in other words, its departure from a step function.
Now imagine that, by some type of tunneling or other
process, it is possible to extract electrons above EF and
holes from below EI;. These processes would modify the
electronic distribution function, with the result that the
electronic distribution sharpens and the electronic tem-
perature is lowered.

How well does this electronic refrigerator perform?
The range of energies over which electrons are excited
above and below EF is proportional to Tp. Each electron
extracted (and hole filled) removes an amount of heat
which is proportional to Tp as well. Thus the cooling
power of this refrigerator drops as the square of the elec-

tronic temperature.
The electrons also exchange heat with the lattice.

From the acoustic phonons which dominate at low tem-
peratures, metallic electrons absorb an amount of heat
proportional to (T To), whe—re T is the ambient tem-
perature. ' This phonon heat leak drops faster with tem-
perature than does the Tp-dependent cooling power.
Thus, at lower temperatures, the refrigerator is increas-
ingly adept at cooling the electrons, as is shown in Fig.
1(b). In addition, because the heat capacity of the elec-
trons exceeds that of the phonons at low temperatures,
the phonons will be cooled as well; again, this effect im-
proves with temperature reduction. At first glance, the
potential for cooling seems limitless.

One possible limit to the eKcacy of such a refrigerator
is the rate of electron-electron scattering in the metal.
According to the Fermi-liquid theory, the inverse lifetime
(decay rate) of an electron near Et. in a clean metal is pro-
portional to Tp. ' Because the fraction of the electrons
which are thermally excited is proportional to Tp, the
rate at which electron-electron scattering can replenish
the electron distribution under the action of this refri-
gerator is proportional to the third power of Tp. Because
each electron (or hole) removed from near EF carries
away a quantity of heat proportional to Tp the cooling
power of our hypothetical refrigerator is proportional to
the fourth power of Tp in this regime. Nevertheless, this
cooling power decreases more slowly with temperature
than the T phonon heat leak does. In fact, the scatter-
ing is enhanced by disorder in the metal and the exponent
may be smaller than 4. Therefore, our hypothetical ther-
moelectric refrigerator performs better overall as the
temperature is decreased, even when the cooling power is
limited by electron-electron scattering.
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FIG. 1. (a) A hypothetical electronic cryogenic refrigerator
which uses the Peltier effect. Electrons and holes are extracted
through tunneling channels to cool the reservoir, center. (b)
Operating diagram for the electronic refrigerator. At large am-
bient temperatures T, phonon absorption prevents operation.
At electronic temperatures To below the dotted line, electron-
electron scattering limits the tunneling rate, and the electrons
are driven out of thermal equilibrium (see diagrams at right).

These effects are shown schematically in Fig. 1(b). At
too-high ambient temperatures, the refrigerator may not
operate due to phonon heating (hatched area to the
right). The hatched area to the left corresponds to heat-
ing because there the electronic temperature To exceeds
the ambient temperature T. Actually, the refrigerator
may be useful in this regime —cooling electrons which
have been heated above the ambient temperature —but
we restrict our discussion to cooling the electrons to
below the lattice temperature.

The unhatched region represents the regime of refri-
gerator operation. Above the dotted line, the electrons
are in thermal equilibrium. This is represented schemati-
cally in diagram (i), where the electronic distribution
g(E) is sketched as a function of electron energy E. In
the case of equilibrium, g(E) is equal to f(E), the Fermi-
Dirac distribution. At lower To, the electrons in the
reservoir depart from thermal equilibrium because the
electron-electron-scattering rate ( ~ To) falls more quick-
ly with temperature than the extraction rate ( ~ To) does
[diagram (ii)]. At extremely low To, the electrons are far
from equilibrium [diagram (iii)]; there is a range of elec-

tron (hole) energies above (below) EF which is entirely
depleted. However, the remainder of the reservoir's elec-
tronic distribution is distributed thermally, so that the
thermal expressions for the electron-electron-scattering
rate and the phonon heating still apply approximately.
In this limit, the refrigerator's electron and hole extrac-
tion rate is fixed by electron-electron scattering rather
than the conductance of the extraction mechanism (e.g. ,
tunneling conductance) as it is in the equilibrium limit.

An electronic refrigerator seems to be capable of cool-
ing the electrons in the reservoir. In some cases, the
reservoir's crystal lattice will be cooled as well. For in-
stance, if the thermal coupling between the electrons and
the reservoir's crystal lattice is stronger than the thermal
coupling of the reservoir's crystal lattice to ambient-
temperature components such as the electrodes or a sub-
strate, then the crystal lattice will be cooled by the refri-
gerator.

The above arguments are based upon general proper-
ties of metals; we arrived at a favorable conclusion re-
garding the performance of our hypothetical refrigerator
without reference to specific mechanisms for extracting
electrons and holes near EF. In a previous paper, we pro-
posed a specific device, the quantum-dot refrigerator
(QDR), which would use resonant tunneling through the
discrete electronic states of quantum dots to provide
these tunneling channels. In this device, the electrons in
a two-dimensional electron gas (2DEG) in a
GaAs/Al„Ga

&
„As heterostructure would be cooled,

whereas the crystal lattice would remain at the ambient
temperature. Other cryogenic electronic refrigerators
based upon the extraction of hot electrons and holes have
been studied by other authors. These use the sharp su-
perconducting gap edge to provide the tunneling chan-
nels to remove hot excitations.

This idea was first proposed in 1961: removing quasi-
particles from a superconductor can enhance its super-
conductivity. An increase in the superconducting ener-
gy gap by quasiparticle extraction was observed some
years later. The use of superconductor-superconductor
tunneling to cool one superconducting electrode was pro-
posed in 1981. This line of research has recently come
to fruition in an experiment by Blamire et al. ; they used a
Nb/A10„/Al/A10 /Nb tunneling structure (hereafter
called SIS'IS) to drive the Al layer superconducting from
a temperature several times greater than its equilibrium
T, . The ability of quasiparticle extraction to enhance
superconductivity has been clearly demonstrated.

Martinis and co-workers at National Institute of Stan-
dards and Technology (NIST) have recently demonstrat-
ed a similar device, with two important differences: their
device cooled a normal metal film rather than another su-
perconductor, and the temperature was measured in-
dependently. ' This demonstrated unambiguously that
the normal-insulator-superconductor (NIS) tunneling was
refrigerating the metal. This NIS junction refrigerator
cooled the electrons in a Cu thin film from the ambient
temperature of T=100 mK to TO=85 mK. This result
provides experimental support for our idea of extracting
hot electrons and holes to cool metallic electrons. In all
these devices, the electrons were cooled but the crystal
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lattice remained at the ambient temperature. The perfor-
mance of these refrigerators could be improved substan-
tially if the reservoir were thermally isolated from
ambient-temperature components. Although cryogenic
thermoelectric refrigeration has been demonstrated, we
believe that the potential thermoelectric cooling holds for
cryogenic refrigeration has gone widely unrecognized.

In this paper, we argue that the exploitation of ther-
moelectric cooling for the cryogenic refrigeration of me-
tallic and other samples should allow the exploration of
whole new temperature regimes and hence new physics.
To this end, we describe the refrigerating performance of
the QDR. The QDR is a direct implementation of the
above hypothetical refrigerator because it relies upon in-
dividual tunneling channels to extract electrons from
above E~ and holes from below EF in a two-dimensional
electron gas (2DEG). These tunneling channels are pro-
vided by resonant tunneling through the discrete elec-
tronic states of quantum dots. Due to its analytical sim-
plicity, the QDR model can be solved in detail to reveal
how thermoelectric cooling improves at extremely low
temperatures. And, as we discuss below, the QDR offers
scientific and technological promise in its own right.

We also argue that a refrigerator similar to that built
by the NIST group should be capable of much greater
cooling than was achieved by their prototype if certain
parameters are optimized. Specifically, our model indi-
cates that by increasing the NIS junction area and fabri-
cating the device on a thin membrane for thermal isola-
tion from ambient-temperature components, it should be
possible to cool a metallic thin film (and hence small elec-
tronic devices such as radiation detectors) from above
300 mK to below 100 mK. This is an important techno-
logical goal, since 100 mK requires a dilution refrigerator
whereas 300 mK can be attained by pumping on liquid
He. Our model also indicates that, with a proper ma-

terial choice, it may be possible to cool a metal thin-film
device from above 1 K to below 100 mK with this type of
refrigerator.

The outline of the paper is as follows. In Sec. II we de-
scribe the operation of the QDR, first presenting equa-
tions for the electric current and cooling power, then
determining its base temperature numerically. The latter
is done in a numerical simulation based upon the condi-
tion that the cooling power match the Aow of input heat.
With this simulation, we verify the accuracy of certain
simplifying assumptions, which we use in Sec. III to esti-
mate how the phonon heat leak and electron-electron
scattering limit QDR operation. In Sec. III we also con-
sider the performance and refrigerating eKciency of a
QDR with a specific set of operating parameters. In Sec.
IV, we perform similar calculations for the NIS refrigera-
tor, finding agreement with recent experiments. We pre-
dict that large reductions in electronic temperature
should be possible for an optimized NIS refrigerator. In
Sec. V we discuss various issues related to cryogenic ther-
moelectric cooling. We conclude in Sec. VI.

In the Appendix, we summarize the linear-response
theory commonly used to treat thermoelectric effects, and
apply it to the QDR. This theory expresses thermoelec-
tric properties in terms of the thermoelectric figure of

merit Z, which is used to find the base temperature. We
compute the thermoelectric figure of merit for the QDR,
finding that the base temperature so obtained disagrees
with the results of the numerical simulation of Sec. II D.
We then discuss the physical origins of this discrepancy,
concluding that the linear-response theory should not be
applied without careful consideration of its suitability.

In this paper, we use the following units: temperatures
in K, energies in eV, conductances in conductance quanta
(e /h)=(26 kQ) ', lengths in pm, areas in pm, and
volumes in pm, unless otherwise specified.

II. THE QUANTUM-DOT REFRIGERATOR

The QDR offers more than just a pedagogical argu-
ment in favor of Peltier cooling; it will also provide
scientific and technological advances in its own right. As
we see in Sec. III C, the QDR can cool a pm-sized 2DEG
reservoir in the mK regime and larger 2DEG devices at
lower temperatures. In Sec. V A, we find that the 2DEG
heat capacity exceeds that of a mm-thick GaAs substrate
below 200 pK. For temperatures in pK and nK, the
QDR can cool macroscopic electron gases.

There are applications in the field of mesoscopic phys-
ics for a refrigerator which cools pm-sized devices in the
mK range. Due to the weak electron-phonon coupling in
small metallic components, mesoscopic devices often heat
to a temperature far above the ambient. For instance, a
recent experiment" revealed an electronic temperature
(60 mK) which was five times the ambient of 12 mK.
Other cryogenic-temperature experiments have found the
electronic temperature to be much higher than the am-
bient as well. ' A QDR could be integrated into the
design of mesoscopic circuits, providing local refrigera-
tion.

Potential applications for an ultracold (pK or nK)
2DEG include improved accuracy in the quantum Hall
effect, nonequilibrium effects in 2DEG, localization stud-
ies, and the discovery of additional low-temperature phe-
nomena. On the technological side, one could imagine
constructing a 2DEG bolometer (radiation detector)
whose thermal noise is many orders of magnitude less
than that of existing bolometers due to the low tempera-
ture. The QDR may also provide cooling for certain ap-
plications like quantum computing in which quantum
coherence (and hence a lack of thermal scattering) is
needed. Scientific applications of refrigerating macro-
scopic metallic samples to the pK and nK regimes in-
clude exploring the possibility of superconductivity in
gold and other metals which have not been tested below
100 pK. '

A. QDR model

The operating principle of the QDR was introduced in
another paper, so we will summarize its features brieQy.
The QDR is designed to be constructed by laterally pat-
terning gates above a 2DEG in a GaAsjAI„Ga, „As
heterostructure, a technology which has been applied
successfully to the fabrication and testing of quantum
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dots. ' The 2DEG structure of the QDR is shown in Fig.
2(a). There is a central reservoir R which is cooled by the
Peltier efFect of resonant tunneling through the discrete
electronic states of quantum dots DL and Dz. The latter
lie between R and the electrodes VI and Vz. The elec-
trochemical potential (Fermi level) of R is po; those of VL

and Vz are pL and pz. We assume for simplicity that
the bias voltage drops equally across the junctions be-
tween R and each of the electrodes: e Vb

=—pz —
pp

=go —pl . The total voltage applied to the QDR is thus

pz pL, 2«b.
The quantum dots are small enough (hundreds of

nanometers across) that the single-electron levels are
quantized (the energy-level separation b, is approximately
tenths of a meV). Capacitively coupled gate electrodes
can be used to tune the energy levels of DL and Dz sepa-
rately, to achieve the energy-level configuration of Fig.
2(b). Energy levels ED and ED of quantum dots DI and

L R

Dz are tuned so that ED is above pp, and ED is below
L R

pp: 6 =ED pp =pp ED ~ With this arrangement, a
L R

current fiows from left to right through the QDR as hot
electrons resonantly tunnel through E~ to VL and hot

L
holes resonantly tunnel through ED to Vz. The magni-

R
tude of this tunneling current is set by the energy smear-
ing 5 of the quantum dots' energy levels. This smearing
is due to the finite lifetime of an electron in the quantum
dot under tunneling to an electrode or R. Its magnitude
is roughly 5=th, where t is the transmission coefficient
for tunneling from a quantum dot to R or the electrodes
and 5 is the energy-level separation. Thus the quantum-
dot energy levels can be sharpened by reducing the quan-
tum dots' coupling to R and the electrodes.

The QDR contains several parameters I b„e, 5, kii T,
kii To, and eVb I which must be specified in order to pre-

K) QDR

:.:-.: Area A::.:.:.;:.

(b)

dict its properties. We can make several physically plau-
sible simplifying assumptions. First we assume for rough
estimates that s =kii To gives the best QDR performance.
We will show that this is true in the numerical simulation
of Sec. II D. This relation can be understood qualitative-
ly by the following argument. If c &&kg Tp then not
enough heat is removed per electron (hole), since the
thermal energy removed from the reservoir by an elec-
tron (hole) above (below) po is proportional to c,. On the
other hand, if c, ))k~ To, the electron (hole) population at
an energy E above (below) po will be exponentially small
and the tunneling rate will be low.

We also assume k~ Tp & 5. If the quantum dots'
energy-level smearing 5 is too great, the electronic
thermal conductance of the tunneling junction can pro-
duce a heat current into R which is greater than the cool-
ing power of the QDR. The validity of this assumption is
also supported by the numerical simulation of Sec. II D.

B. QDR tunneling current and cooling power

In our previous paper on the QDR, we presented a
simplified calculation of the QDR's tunneling current and
cooling power. Here we will calculate these currents in
more detail, considering the finite smearing of the
quantum-dot levels and the effects of tunneling through
adjacent quantum-dot levels. The results of this section
do not rely upon a linear-response approximation, but do
assume thermal equilibrium in the 2DEG of the QDR
reservoir. The effects of the departure from equilibrium
as the tunneling frequency approaches the finite
electron-electron-scattering rate in the 2DEG are dis-
cussed in Sec. III.

For simplicity, we take the probability of electrons and
holes tunneling between a quantum dot and R, Vl, or V~
to be t, independent of energy. This is an idealization; in
reality, the resonant-tunneling conductance will be re-
duced by a factor of 2 or so due to asymmetric barriers. '

The tunneling barriers that separate the quantum dots
from the other 2DEG regions can be tuned independently
with gate electrodes to optimize the symmetry of the bar-
rier.

In order to find the QDR cooling power, we need to
specify the heat removed from an electron gas by extract-
ing an electron. The change in internal energy U of an
electron gas on removal of an electron is

-::-:= :-:-:---;:4R::.-:'=:'=:'-.
=.

'.-::.-:.-'.:.'-.

D R

EDL 4'0 ~0 E~—~ ~R I 0 O'0 Py. = e )tQ

FIG. 2. (a) Schematic and (b) energy-level diagram for a
quantum-dot thermoelectric refrigerator (QDR). (a) represents
a laterally gated 2DEG in a GaAs/Al Ga& As heterostruc-
ture. Quantum dots DL and D~ are about (100 nm) in area and
act as thermoelements (DL negative, D& positive) which cool
the reservoir R.

b. U = TAS Pb, V pb N =b g —Pb V —p, ——

since b,N = 1 and hg = ThS. We assume that the
volume V of the electron gas is unaffected by the removal
of an electron and that the chemical potential p is un-
changed by the removal of a single electron. Essentially,
we assume that the QDR reservoir R is large enough that
single-particle charging effects are unimportant. Noting
that the internal energy of the electron gas decreases by
the energy of the electron, 6U = —E, we see that the heat
removed from the electron gas by removing an electron is
(E—p). Thus, removing an electron above the Fermi
level cools the electron gas. By a similar argument, re-
moving a hole of energy E from an electron gas extracts
heat —(E—p) from the electron gas. Removing holes
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from below the Fermi level also cools the electron gas.
Because the heat added or removed is just the difference
of the energy with the Fermi energy, we take the zero of
energy to be the Fermi energy and equate the heat re-
moved to the electron energy.

With reference to Fig. 2(b) we see that, for positive bias
potential Vb, positive electric current should flow to the
right so that positive electron flux should flow to the left.
The tunneling current is identical in our model for both
junctions

I=e fdE [fT (E) fT(—E+eV„)] .G(E)
(2.1)

We define positive heat flow to be out of R —I' is the
QDR cooling power. In this paper, we refer to a heat
current as a cooling power in the context of a thermoelec-
tric refrigerator. When discussing thermoelectric effects
in a general manner, we revert to the term heat current.
Because each junction cools R equally, we double the ex-
pression for the cooling power to obtain

P=2 fdE E [fT (E) fr(E+—eVI, )], (2.2)

2 5 (n.5) ' 1+
h

2 —1E—E;
(2.3)

where E; are the energies of the discrete electronic states
of the quantum dot, e is the electron charge, and h is
Planck's constant. The quantity in curly brackets in the
first equality is the transmission coefficient for resonant
tunneling through a discrete state (including electron
spin), in accord with the Landauer formula G =(e /h )T
which connects conductance G to the transmission
coefficient T.' The quantity in curly brackets in the
second equality is the Lorentzian energy broadening of a
single quantum-dot energy level due to the smearing 5.
The expressions for the tunneling current and cooling
power become 2 —1

I=2 fdE g 1+—h, . 5

X[fT (E) FT(E+eVb)], —(2.4)

P= —fdEE g 1+
h

'2 —1E—E;

X[fT (E) fT(E+eV~)] . (2 5)

where the integration extends over the conduction band
of R and the Fermi-Dirac function is fT(E)—E/k~ T=(1+e ) '. The temperature in R is Tp, and all
other circuit elements are assumed to be at the ambient
temperature T. This thermal isolation was found to
occur in the Coulomb-blockade electrometer, in which
the Coulomb island heated itself but the electrodes
remained at the ambient temperature.

The conductance of resonant tunneling through a
quantum dot is'

2 —1
2

G(E)= 2g 1+
h

Now we estimate the tunneling current (2.4) for use in
Sec. III below. We replace the Lorentzian broadening
with constant conductance G =2(e /h ) at E=e, over an
energy range 5:

GI=e, AT (s}
e2 0

2e
h

(k~Tp)fr (k~Tp) 1.8 nA Tp0
(2.6)

We have used the relations c=k&Tp and 5=k&Tp ob-
tained in the numerical simulation of an optimized QDR
of Sec. II D below. We also neglect fz (s+ e V& ), assum-
ing that the population in the electrodes at ED and EDL R
is much less than the corresponding population fT (e. ) in

0
R. Converting to a rate by dividing out an electron
charge,

+tunneling= 11 6Hz Tp
e

(2.7)

we estimate the cooling power (2.5) by assuming that
each tunneling electron and hole removes kg Tp of heat
from R:

P=2
2 5fT ( s)( k~T p)

6
e2 0

(ke Tp) fr (kg Tp) —O 31 PW Tp
4. 2 2

h 0
(2.8)

We have used the relations E kgTp and 5=kgTp be-
cause these represent an optimized configuration for the
QDR and so can be used to determine intrinsic limita-
tions. We will use these estimates in Sec. III for compar-
ison to the phonon heat leak and electron-electron-
scattering rate in the 2DEG. Note that Eqs. (2.6}—(2.8)
are only appropriate for an optimized QDR, i.e., a QDR
at its base temperature; they do not apply for arbitrary
Tp, in which case the integrals in Eqs. (2.4) and (2.5) must
be evaluated.

C. Thermoelectric efFects in the quantum
and Coulomb-blockade regimes

In this section, we explain why we restrict QDR opera-
tion to the quantum regime which requires lower temper-
atures than the Coulomb-blockade regime. We will also
briefly review some of the previous theoretical and exper-
imental works on thermoelectric efFects in quantum dots.
We will find in the Appendix that our theory is consistent
with these other results.

Thermoelectric effects have recently been studied in
systems of reduced dimensionality including quantum
point contacts and quantum dots in the Coulomb-
blockade regime. The thermopower, Peltier coefficient,
and thermal conductance of quantum point contacts were
found to exhibit quantum-size effects. ' Coulomb-
blockade oscillations were observed in the thermopower
of a quantum dot. ' These latter results were predicted
by a theory which used a linear-response approximation
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to derive the thermoelectric coefBcients for a quantum
dot' and a theory of thermoelectric effects in Coulomb
islands.

Our linear-response results of the Appendix agree with
the theory of Ref. 19. Specifically, our expression for the
quantum-regime thermopower and electric resistance is
equivalent to theirs. This agreement lends confidence in
the accuracy of our model. However, our treatment
differs from theirs in several ways. First, a thermoelectric
refrigerator utilizes the Peltier effect, rather than the See-
beck effect. The Seebeck effect occurs when a tempera-
ture difference hT is applied across a junction; a ther-
moelectric voltage V=ahT develops across the junction.
In the Peltier effect, the junction is current biased and a
heat current 8=~I Bows with the electric current I. In
reversible junctions the Peltier and Seebeck coe%cients m

and a are proportional, ~= Ta, due to Onsager's recipro-
city relations. However, this relation does not hold for
mesoscopic junctions and is not defined out of the
linear-response regime. Because the best operation of the
QDR occurs in the nonlinear regime, the measured See-
beck effect does not serve to predict the striking
temperature-reduction capabilities of the QDR.

The transport behavior of a quantum dot with an
energy-level spacing of roughly 6, a capacitance C, and a
Coulomb charging energy e /2C has several characteris-
tic temperature regimes. If k~T&e /2C and k&T&b,
the quantum dot behaves like a macroscopic, albeit small,
metal island. In the Coulomb-blockade regime,
k~T &e /2C; the Coulomb-blockade effect dominates
transport through the quantum dot. Because e /2C gen-
erally exceeds 5, the Coulomb-blockade regime is usually
b, &k&T &e /2C The .lowest-temperature regime, for
which k&T&6, is the quantum regime. The effects of
both the Coulomb blockade and the discrete electronic
states of the quantum dot are active at these low tempera-
tures. The QDR operates in the quantum regime; its re-
frigerating properties are based upon the discrete elec-
tronic states of the quantum dot rather than the
Coulomb-blockade effect.

Equations (2.4) and (2.5) are based upon a model of the
QDR which ignores the Coulomb-blockade effect. Its in-
clusion would modify Fig. 2(b) by introducing a
Coulomb-blockade gap between the empty and filled
states of the quantum dot. The result is that the discrete
electronic state at ED —6 would be lowered to

ED —6—e /2C by the Coulomb-blockade gap. Sirnilar-
L

ly, the discrete electronic state at ED +6 would be
R

raised to ED +b, +e /2C. This would effectively remove
R

tunneling channels which, in the current model, provide
a heat leak between the electrodes and R. In this sense,
the neglect of the Coulomb-blockade effect renders the
results based upon our QDR model conservative.
Specifically, including the Coulomb-blockade effect in our
QDR model should lower the case temperature obtained
by the numerical simulation of Sec. II D. Note that the
Coulomb-blockade gap is only beneficial in the quantum
regime (k~T &6, ); at higher temperatures (k&T&h) the
self-heating mechanisms discussed below become pre-
valent and the QDR cooling power is washed out.

In the QDR, electrons will primarily traverse a single
channel through each quantum dot: the one which ex-
tracts hot electrons or holes from R. Other channels are
suppressed because there are few electrons or holes
thermally excited further than 6 from the electrodes'
Fermi levels. In the Coulomb-blockade regime, however,
other channels —including those which heat R —are
probable as well. Since in the Coulomb-blockade regime
kz T)6, thermally excited electrons and holes will tun-
nel through states other than ED and Ez, depositing

L R

hot electrons and holes in R. Essentially, in the
Coulomb-blockade regime, heat streams back into the
reservoir from the electrodes.

The effect of this heat leak can be understood within
the context of the linear-response theory discussed in the
Appendix. The following argument is valid because the
linear-response theory does give qualitatively correct re-
sults, even if they are quantitatively inaccurate. The per-
forrnance of a thermoelectric refrigerator is parametrized
by the dimensionless figure of merit Z as given by Eq.
(A2); large Z corresponds to good refrigeration. The See-
beck coefficient (or thermopower) a is proportional to the
cooling power. If the Coulomb-blockade gap were used
for refrigeration instead of the gap 4 between the discrete
states, a would be increased by the larger energy scale,
about a factor of 3—10 for semiconductor quantum
dots.

However, the thermal conductance sc would be in-
creased by a much larger factor, roughly e . In the
quantum regime, the electrodes' population of electrons
at levels other than ED and ED is roughly e . In
the Coulomb-blockade regime, this population would be
increased to finite values (say, 0.2) because of the higher
temperature k~T) A. The heat leak and hence the
thermal conductance that it causes would increase by
roughly e . As we will see in Sec. II D below, the best
QDR operation occurs for 5/kiiT& 10. Thus the heat
leak is e' =20000 times worse in the Coulomb-blockade
regime than in the quantum regime. Overall, the dimen-
sionless figure of merit would be reduced by
20000/10 =200. The QDR refrigerating performance
would suffer in the Coulomb-blockade regime.

D. QDR base temperature

In this section we calculate the base temperature of the
QDR in a numerical simulation. Our primary motivation
is to justify the approximations that we used in Sec. II 8
to estimate the QDR tunneling current and cooling
power. Another motivation is to show that the QDR can
achieve a large enough temperature reduction that the
linear-response theory of thermoelectrics (see the Appen-
dix) is not quantitatively accurate.

The base temperature of the QDR is the temperature
T0 for which the cooling power Eq. (2.5) just balances
any external heat leaks. To find this temperature, we
simulated the QDR by numerically integrating Eq. (2.5).
Once we can find the QDR base temperature for a given
set of operating parameters [b„s,5, k&T, eVi, j, we vary
these parameters to obtain the maximum reservoir cool-
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ing ratio ( T/To ).
We can gain insight into the physics of the QDR by

considering the case in which there are no external heat
leaks. Then the QDR base temperature To is the root of
the equation P =0, with P defined in Eq. (2.5). It might
seem that, in the absence of external heat leaks, the QDR
should cool R to zero temperature. The reason that this
procedure produces a finite value To is that the QDR has
intrinsic heat leaks. Heat can leak back into R by reso-
nant tunneling through states other than ED and ED or

L R

by off-resonance tunneling through the wide Lorentzian
tails of E~ and ED .

L R

In order to compute the base temperature we evaluated
Eq. (2.5) numerically. By choosing b. as the energy scale,
it is eliminated as a parameter. For given values of c., 6,
k~T, and eV&, we compute the reservoir temperature
kg Tp by finding the root of I =0, assuming no external
heat leaks as we discussed above. Once our computer
program could find k~ To(s, 5, k~ T, e V& ), we wrote anoth-
er program which would maximize the temperature
reduction (T/To) with respect to kiiT, s, and eV&. That
a maximum with respect to these three variables exists
can be seen physically by the following considerations
based upon the diagram of Fig. 2(b).

If e is too large, there will not be enough hot excita-
tions in R to produce substantial tunneling. If c. is too
small, then each electron and hole tunneling through ED

L
and E~ will not carry much heat. In fact, as we will see

R

below, the optimum value for c, is always near kz Tp.
If k~ T is too large, electrons and holes will tunnel from

the electrodes to R via quantum-dot energy levels other
than ED and Ez,' R will be heated. However, if T is too

L R

small, the ratio ( T/To ) will suffer; thus the optimum am-
bient temperature k&T is the maximum possible without
heating R.

If eVb is too small, then tunneling cannot occur be-
cause the electron population at E~ in VI will be higher

L

than the corresponding electron population in R and
electrons will tunnel backwards (from VI to R). On the
other hand, if eV& is too large, then electrons and holes
will tunnel from the electrodes to R via quantum-dot
states other than Ez and E~, heating R.

L R

There is not a value of 5 which optimizes the QDR

operation. In fact, for a QDR operating in the absence of
external heat leaks, the temperature-reduction ratio
(T/To) improves as 5 decreases. Thus we will give the
results of the calculation as a function of 5, listing the op-
timum values for kz T, c, and e V&.

We performed the numerical integration for a varying
number of energy levels other than ED and ED . Aside

L R

from the energy levels at Ez —4 and ED +6, the in-
L R

elusion of more levels made only a small difference.
These two levels are important to include since they
represent a major heat leak that determines the optimum
e V&. The numerical results we quote here (and in the Ap-
pendix) were computed using six energy levels of each
quantum dot (e.g., ED 3b„ED —2b„. . . , E~—+26.),

to be certain of accurate results.
Table I lists the maximum value of (T/To) as a func-

tion of 5. Also listed in Table I are the corresponding
values of k& To, kiiT, s, eV&, (E/k~T&), and (k&To/5).
Note that (kii To/5), which is near unity for large 5, is a
slowly increasing function of —log, p5. We can summa-
rize this behavior approximately by the expression
kz Tp & 5, which we took as an assumption in our previ-
ous paper. Also, the rule c, =k~ Tp is obeyed very accu-
rately in these results. These accurate numerical results
justify the approximations used below in Sec. III C to del-
imit QDR operation. Specifically, we assume that the
lowest value that k~Tp can achieve is 6, and that the
QDR operation is optimized for E =kg To.

The results of this section account accurately for the
nonlinear dependence of the QDR cooling power on tem-
perature difference b, T=T—Tp, but assume that the
electron distribution in R and the electrodes is at thermal
equilibrium, i.e., is well described by the Fermi-Dirac
function. In Sec. III, we will specify the regime of QDR
operation for which this assumption is justified, and also
estimate the performance of the QDR in the nonequilibri-
um regime.

In the Appendix, we will compute the base tempera-
ture using the linear-response theory of thermoelectric
effects. The base temperature of any refrigerator is deter-
rnined by the condition that the cooling power rnatch the
heat load (or heat leak). This basic approach is shared by
the accurate numerical simulation of the present section
and the linear-response theory of the Appendix. Thus

TABLE I. Results of a numerical simulation of the QDR. These numbers represent an optimized
QDR. The base temperature To is obtained by finding the roots of P=0 [using Eq. (2.5) for P], then
varying the parameters c,, e V&, and T until a maximum of ( T/To) is found. Note the di8'erence between
this estimate of (T/To) and that obtained in Sec. III (see Table I); the linear-response approximation
does not describe the QDR well.

10-'
10
10
10-4
10-'
10

(T/To)

1.22
3.60

16.6
94.9

615
4310

k~ To/6

0.072 1

0.024 9
0.004 65
0.000 695
0.000 093 1

0.000 011 7

k~ T/5

0.0881
0.0896
0.0772
0.0660
0.0572
0.0505

0.158
0.039 5
0.006 66
0.000 953
0.000 125
0.000 015 5

eVg/6

0.103
0.237
0.257
0.243
0.224
0.206

8/k~ To

2.19
1.59
1.43
1.37
1.34
1.32

k~ To/5

0.721
2.49
4.65
6.95
9.31

11.7
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calculations based upon an accurate numerical simulation
and the linear-response theory should, in principle, be
equivalent. However, for most cases of interest, the tem-
perature reduction hT=T —To is comparable to T, in-
validating the linear-response approximation. Further-
more, there are also more subtle reasons why linear-
response theory breaks down; these are discussed in Sec.
7 of the Appendix. Thus it may seem fruitless to apply
the linear-response theory of thermoelectric effects to the
QDR. Our motivation for doing so in the Appendix is
partly to compare our theory to that of Ref. 19, partly to
show by counter-example that the linear-response theory
of thermoelectric effects does not apply well to all ther-
moelectric refrigerators, and should only be applied with
attention to the underlying physical assumptions.

III. QDR PERFORMANCE

The QDR can achieve a large temperature reduction in
the absence of external heat leaks. Heat leaks will con-
strain this cooling and set the temperature regimes in
which the QDR can operate. In Sec. III A, we incorpo-
rate the effects of phonon absorption on QDR perfor-
mance. In Sec. III B we explore the limit in which the
electrons in R are driven far from thermal equilibrium by
resonant tunneling. These effects are summarized in Sec.
III C as regions in diagrams of electronic versus ambient
temperature. In Sec. III D we discuss ways of measuring
the electronic temperature in the QDR. In Sec. III E, we
present an example of the performance of a QDR of
specified properties. Finally, in Sec. IIIF, we compute
the refrigerating efficiency of this example QDR, finding
that an optimized QDR approaches a value near the Car-
not eKciency limit.

A. Phonon heat leak for a 2DEG

Electrons at temperature To residing in a solid at tern-
perature T will absorb and emit phonons. If T & To, the
electron gas will absorb heat from the phonons. For the
low temperatures considered here, optical phonons are
frozen out and the dominant acoustic-phonon wavelength
is comparable to the dimensions of the reservoir R. Thus
we expect the heat leak in the QDR due to phonon ab-
sorption to be small. Nonetheless, phonon heating con-
strains the regime of the QDR operation.

The heat absorbed by electrons from acoustic phonons
at low temperatures follows the universal form
Pz hXQ(T To). This form ho—lds for bulk metals
such as aluminum and copper as well as other electron
gases such as the 2DEG of which the QDR is com-
posed. ' ' The constant X contains all of the intensive
material parameters. For a bulk metal, Q is the volume
that the electrons occupy; for a 2DEG, 0 is the area that
they cover.

Liu and Niu have computed X for bulk metals and
2DEG layers in a GaAs/Al Ga& As heterostructure,
finding good agreement with experiment. ' Their calcu-
lation is based upon a transition rate obtained from
Fermi's golden rule; it includes the electron-phonon cou-
pling due to both the deformation potential and the

screened piezoelectric effect. For a 2DEG in a
GaAs/Al Gai As heterostructure, they find X=30
AVK pm, so '

P i, =30 fWA [T To—] . (3.1)

The QDR base temperature is determined by balancing
the QDR cooling power P against the phonon heat leak
P~h. Using Eq. (2.8) for P and setting it equal to P~h, we
obtain a relation which determines the QDR base tem-
perature To for a given ambient temperature T and reser-
voir area A:

10.3TO & A [T —To] . (3.2)

B. Departure from thermal equilibrium

The calculations in Sec. II assumed that the electrons
in the reservoir of the QDR are in thermal equilibrium.
For some regimes of QDR operation, this is a good ap-
proximation. However, when the tunneling frequency
approaches the rate at which electron-electron scattering
can replenish the 2DEG states, the electronic distribution
in R departs from equilibrium. In this case, the electron-
electron-scattering rate, rather than the resonant tunnel-
ing rate Eq. (2.7), determines the QDR tunneling rate and
hence its cooling power. Here we estimate the electron-
electron-scattering rate, considering also the enhance-
ment due to disorder.

Electron-phonon scattering is another potential ther-
malizing mechanism for a 2DEG. However, for the re-
gime of QDR operation, electron-phonon scattering is
much slower than electron-electron scattering. This is
true because the average phonon has a large amount of
energy —k&T—and could heat the 2DEG. Thus the
QDR only operates when the electron-phonon-scattering
rate is slower than the tunneling rate which is always less
than or comparable to the electron-electron-scattering
rate. Because electron-phonon scattering is always
slower than electron-electron scattering during QDR
operation, we neglect the former as a mechanism for
2DEG thermalization in our analysis.

The departure of the QDR 2DEG from thermal equi-
librium should be similar to that in diagrams (i)—(iii) of
Fig. 1(b). That is, whereas the electron states near the
tunneling channels are saturated (empty above the Fermi
level and filled below), the rest of the electron distribution
should be thermal as in diagram (iii). Thus the rate at
which electrons and holes scatter into the tunneling chan-
nels is approximated by the expression for thermal
electron-electron scattering.

To obtain the actual tunneling rate when limited by
electron-electron scattering, we compute the rate at
which electrons scatter into states which lie in a range of
5 about pa+a. By the principle of detailed balance, this
rate is identical to the rate at which they are scattered
out of this range when the 2DEG is at equilibrium. Since
the latter rate is easier to compute, we will do so.

Electron-electron-scattering rates are quoted in terms
of the inverse lifetime (decay rate or scattering rate) of a
given electron. To obtain the scattering-limited QDR
tunneling rate we multiply the scattering rate by the
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number of initial states X& in each tunneling channel:

Ns =N~o Af T (s)=6.5To A (3.3)

When the tunneling frequency of the QDR is limited by
electron-electron scattering, the cooling power Eq. (2.8)
must be replaced by

where the energy width of each tunneling channel is
5=k&TQ, %+=2.8X10 pm eV ' is the 2DEG density
of states, and we have used the relation c.=kg Tp.

The electron-electron-scattering rate in a clean metal is
given by Fermi-liquid theory

P„„=2(k~To)r,, '

=39 ~T() 1+0.9234ATp

(k~ To)
+FL =1.3 GHz Tp .

hEF
(3.4)

s,),',„=0.199 GHz Tp 1+0.53 ln
TQ

(3.5)

For a 2DEG, there is a geometrical correction to the
electron-electron-scattering rate. Liu and Niu ' calcu-
lated the matrix element necessary to obtain an absolute
scattering rate from the equations of Hodges, Smith, and
Wilkins. The result for an electron c =kg Tp above the
Fermi level is '

X 1+0.53 ln
TQ

(3.8)

%'e have multiplied by 2 because there are two tunneling
channels: ED and ED [cf. Fig. 2(b)]. We can find the

R

temperature below which the QDR tunneling current is
limited by electron-electron scattering by setting Eq. (3.7)
equal to the QDR tunneling rate Eq. (2.7):

In the presence of disorder such as impurity ions, the
electron-electron-scattering rate is enhanced. This is due
to the modification of electronic eigenfunctions by the
elastic scattering. This correction depends upon the di-
mensions of the electron gas relative to a disorder length
scale ' Lsz =+A'v+I l5E, where 1 is the elastic mean
free path and 5E=k~TQ. Mobilities as high as 2X10
cm /Vs have been observed for 2DEG electrons in a
GaAs/A1„Ga& „As heterostructure. This mobility is
equivalent to a mean free path of I=16 pm. For this
value, l&&

=5. 1 pm Tp ', where we have used
v+=2. 11X10 cm/s. For this value of l, L&z exceeds
the dimensions of R for the temperatures at which
electron-electron scattering dominates the tunneling rate.
Thus we use the zero-dimensional expression for the
disorder-enhanced electron-electron scattering: '

0 73—QT2 1+0 3 1
0

(3.9)

For a larger reservoir, the greater number of initial states
allows the QDR to maintain thermal equilibrium at lower
reservoir temperatures. In a QDR with a (10-pm) reser-
voir, the 2DEG departs from equilibrium when Tp dips
below 130 mK. For a 1-crn reservoir, however, Tp can
be as low as 95 pK before thermal equilibrium is lost.
The disadvantage to a large reservoir is that it absorbs
more heat from phonons; it must be operated at a lower
ambient temperature. It is the competition between these
effects which defines the regime of QDR operation.

rd, ,'„d„=(4hN~ A )
' =0.216 GHz A (3.6)

C. Regime of QDR operation

In this section we show how the physical phenomena
described in Secs. III A and III B constrain the operation-
al regime of the QDR. The phonon heat leak limits the
ambient temperature T for a given reservoir size; the
electron-electron-scattering rate determines at what
reservoir temperature Tp the 2DEG electrons are no
longer able to maintain thermal equilibrium.

At high enough electronic temperatures To [above the
cutoff given by Eq. (3.9)] the 2DEG is in thermal equilib-
rium, and Eq. (2.8) describes the QDR cooling power. In
this case, Eq. (3.2) determines the QDR base electronic
temperature Tp for a given ambient temperature T.

For low Tp, the 2DEG departs from thermal equilibri-
um and the QDR cooling power is given by the electron-
electron-scattering-limited form Eq. (3.8). Setting this
equal to the phonon heat leak Eq. (3.1), we obtain a rela-
tion between Tp and T in the nonequilibrium regime:

= 1.4 GHz Tp 1+0.9234AT()

X 1+0.53 ln
99

0
(3.7)

The two-dimensional form (appropriate when L sz & A) is
obtained by replacing A in Eq. (3.6) by L &z The.
disorder-enhanced electron-electron-scattering rate in Eq.
(3.6) is independent of temperature because the physical
boundaries of the 2DEG have replaced the temperature-
dependent disorder length L&z.

Making the 2DEG dirtier (i.e., decreasing 1) would in-
crease the disorder enhancement to the electron-
electron-scattering rate by decreasing L&z. However, for
length scales above L&z, localization e6ects may occur;
thus it is best if impurity level is low enough that
L~~ ) A.

The electron-electron-scattering-limited tunneling fre-
quency is

—1
—1

ree NS (+clean+ +disorder)



52 CRYOGENIC COOLING USING TUNNELING STRUCTURES. . . 5723

T= Tp ~ 1 + 1.29To A +0.923To 1 +0.53 ln
TQ

' 1/5

(3.10)
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FIG. 3. Ambient temperature T—QDR reservoir tempera-
ture To diagram indicating regimes of QDR behavior. (a) A
small reservoir area A = 1 pm operates at T=600 mK, cooling
R to 200 mK. (b) A large reservoir area A =1 mm allows
lower-temperature operation with a base temperature of
TO=200 pK from an ambient of 3 mK. Regimes of QDR
behavior are as follows. (1) Refrigeration. (2) Cooling hot elec-
trons (To) T). (3) QDR cannot overcome phonon heat leak.
(4) Current limited by electron-electron scattering. (5) Point
with highest fractional temperature reduction (T/To); max
from Eq. (3.11).

In using Eqs. (2.7) and (2.8) to represent QDR tunneling
properties, we have assumed that the QDR has been opti-
mized as was done in the numerical simulation of Sec.
II D. Thus the QDR base temperatures To determined
by Eqs. (3.2) and (3.10) represent the limits of an opti-
mized QDR. For To above the base temperature, the
QDR may still operate, albeit nonoptimally; in this case,
its cooling power and tunneling current are not described
by Eqs. (2.6) and (2.8).

The performance of the QDR is best summarized by
marking regions where the QDR may operate on a dia-
gram of electronic temperature To versus ambient tem-
perature T as we did for a generic cryogenic thermoelec-
tric refrigerator in Sec. I. In Fig. 3, we show diagrams of
this sort. In region (1), the QDR operates with the

2DEG in thermal equilibrium. The dashed line shows
the cutoff between thermal equilibrium and nonequilibri-
um given by Eq. (3.9}. In region (2), the QDR acts as a
heater (To & T}. In region (3), the ambient temperature
T is so high that the QDR cooling is overcome by pho-
non heating. Finally, the QDR operates in the nonequili-
brium limit in region (4). Note that the QDR operating
diagrams in Fig. 3 differ from the generic operating dia-
gram of Fig. 1(b) by their scale. Figure 1(b) is a linear-
linear plot, with temperatures ranging from 0 K to a
finite value, whereas the diagrams in Fig. 3 are log-log
plots. Thus the region of QDR operation appears in Fig.
3 to increase without limit as the temperature is reduced,
whereas in Fig. 1(b) the operating region shrinks as the
temperatures approach 0 K. This is just a difference in
the plotting, not a difference in the physics. Plotted on a
linear-linear scale, the QDR operating regime shrinks as
the temperature is reduced; unlimited cooling is not pos-
sible. We used a log-log format in Fig. 3 because the
QDR can operate over several orders of magnitude in
temperature.

The small QDR [with a (10-pm) reservoir] of Fig. 3(a)
begins refrigerating at temperatures of hundreds of mK;
this device could serve as a good proof of concept since
dilution refrigerators can easily access this temperature
range. The larger QDR [ A =(1 cm) ] of Fig. 3(b)
demonstrates the potential of the QDR for ultracryogenic
refrigeration. This device is best suited to pK-range
operation and should be capable of cooling the 2DEG to
nK temperatures.

In general, a QDR refrigerates better at lower tempera-
tures. There may be a limit to this behavior as thermo-
dynamic Auctuations destroy our steady-state assumption
of heat balance. In other words, if phonon absorption
occurs only once an hour but tunneling occurs once a
second, it does not make sense to talk about a steady-
state electronic temperature. Each time a phonon is ab-
sorbed, the 2DEG is heated to a high temperature, after-
wards cooling until essentially all of the excited electrons
and holes are removed. This behavior should not dom-
inate until ( T/To ) becomes very large.

The above limitations are mostly based upon the phys-
ics of the 2DEG in R. What do the quantum-dot-
imposed physical restrictions imply about the QDR
operational regimes? The main constraint is that the
QDR must operate in the quantum regime, with kg Tp,
k~ T, and eV& less than h. The size of currently available
quantum dots limits the ambient temperature to below a
few hundred mK; this limit is not restrictive since even
the small QDR in Fig. 3(a) can only achieve significant
cooling for a few hundred mK and lower. Another
quantum-dot property which is critical for QDR perfor-
mance is the energy-level smearing 5, which we deter-
mined in Sec. II D to be 5 = k& To for an optimized QDR.
5 can be adjusted by changing the coupling between the
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quantum dots and the electrodes and R; this is accom-
plished by changing the gate voltages.

D. Measuring the temperature in the QDR

The QDR is designed to cool an electron-gas reservoir
which is small in size and is embedded in a GaAs chip.
One of the most difficult aspects of building and testing a
QDR will be measuring its temperature. We propose
several techniques.

The line shape (conductance as a function of gate volt-
age) of resonant tunneling through the quantum states of
a quantum dot is in some cases given by the temperature.
If the quantum dot couples two 2DEG regions which
differ in temperature, the line shape is generally thought
to be determined by the greater temperature. Conceptu-
ally, this notion requires that the bias e Vb be negligible
compared to the thermal smearing. For higher bias
values, one should see a step up to maximum conduc-
tance when the quantum-state energy lies between the
2DEG Fermi levels and a step back down to zero conduc-
tance when the quantum-state energy leaves this range.
The step up would be smeared by one temperature, and
the step down would be smeared by the other tempera-
ture. Thus it should be possible to infer the temperatures
of both 2DEG regions coupled by a quantum dot is the
bias e V& exceeds the thermal smearing on both sides.

This method could be applied to a QDR in which a
third quantum dot is coupled to the 2DEG reservoir.
This extra quantum dot would be coupled more weakly
to the reservoir than the other two, so that it would not
modify the electronic distribution in the reservoir. Its
asymmetric resonant-tunneling line shape should allow a
measurement of the electronic temperature in A.

This approach relies upon the assumption that the con-
ductance line shape of tunneling through a quantum dot
reveals the true thermodynamic temperature of the elec-
trons in the 2DEG. A more fundamental measurement
of the QDR temperature would directly take it from
some physical property of R. One possibility is offered by
finding the minima of the quantum Hall resistivity with
respect to magnetic field, i.e., constructing a QDR with
additional voltage-sensing electrodes on the sides of the
reservoir to measure the Hall voltage.

Alternatively, a superconducting quantum interference
device (SQUID) magnetometer could be used to measure
thermal current noise in a resistor coupled to a QDR.
This would provide another temperature measurement
which is independent of quantum-dot physics. Both of
these techniques have the drawback that any electrical
coupling to an external circuit could provide a strong
heat leak back into the QDR reservoir. In all, ther-
mometry is probably the biggest experimental challenge
in testing a QDR, as it is in any low-temperature experi-
ment.

E. QDR example

In this section, we present numerical results for a QDR
of specific parameters. This is intended to illuminate the
capabilities and realm of usefulness of the QDR. In addi-
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FICx. 4. Numerical evaluation of Eqs. (2.4) and (2.5) for I and
P vs reservoir temperature kg Tp for 5=0. 1 meV and
6=10 6=10 meV. Here k& T=0.07726=90 mK (shown
by dashed line), e Vb =0.2556 =0.0255 meV, and
@=0.006662k=0. 666 peV were chosen (as listed in Table I) to
maximize (T/Tp), giving Tp =4.65 mK (shown by dotted line).
The base temperature is set by the condition P =0.

tion, we show just how far the QDR lies from the linear-
response regime.

The results of the Appendix rely on the linear-response
approximation. Specifically, the linear-response theory of
thermoelectrics assumes that the cooling power P and the
tunneling current I depend linearly upon the temperature
difference AT = T—To. To check the validity of this as-
sumption, we have evaluated the integrals in Eqs. (2.4)
and (2.5) numerically. Figure 4 shows the variation of I
and P with reservoir temperature To for 5=0. 1 meV and
5=10 5=10 meV. The values of k&T, eV&, and c,

(listed in Table I) were chosen in the numerical simula-
tion of Sec. II D to maximize ( T /To ), yielding
( T/To ) ~„=16. The optimum ambient temperature so
obtained is T=(0.07726, )/k~ =90 mK. Note that I and
P do not vary linearly with AT at the QDR base tempera-
ture To=5 mK. The linear-response approximation is
not adequate to describe the operation of the QDR.

The calculations leading to Fig. 4 do not include the
phonon heat leak or the electron-electron-scattering
effects. In addition, we have not yet specified the area 3
of the reservoir. We do so now to illustrate these con-
straints on QDR operation. Suppose that we wish to use
a (10-pm) reservoir, as in the QDR of Fig. 3(a). For a
QDR this size, the electron-electron-scattering limit sets
in for electronic temperatures below 40 mK. According
to Eq. (3.10), the base temperature at T=90 mK is
To = 10 mK. For temperatures below 40 mK, Fig. 4 does
not give the accurate tunneling current and cooling
power because the QDR is operating in the nonequilibri-
um regime, where the tunneling rate is determined by the
electron-electron-scattering rate.

Suppose the QDR had a larger reservoir, (100 pm) in
area. Then Iagain from Eq. (3.9)] the electron-electron-
scattering limit sets in at a lower temperature, TO=3. 5
mK; this is because the larger reservoir has more total
states aligned with the QDR tunneling channel. This
QDR operates in the equilibrium regime, for which the
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cooling power is given by Eqs. (2.5) or (2.8). Then the
base temperature is determined by Eq. (3.2) to be To =70
mK. The larger reservoir allows greater electron-
electron scattering but also absorbs more phonons, in-
creasing the base temperature substantially.

We can also use this QDR example to check our sim-
plifying assumptions from Sec. II B. Equation (2.8) gives
P= 8 aW for a QDR with a base temperature of To =5
mK. This agrees well with the magnitude of the cooling
powers shown in Fig. 4. It is important to note that Eq.
(2.8) assumes optimized parameters, as we have chosen
for this QDR example. As we found in the QDR simula-
tion of Sec. IID, the optimum QDR parameters can be
summarized by the relations c=kg Tp and 5=kg Tp ~ In
the case of the QDR example with 5=10 6, we see
from Table I that the QDR behavior is optimized for
c= 1.43k' Tp and 5 =4.65k~ Tp. This indicates that the
simplifying assumptions 8 kg Tp and 6=k~ Tp are
obeyed within a factor of 5.

Equation (2.8) is not appropriate for a QDR with
nonoptimal parameters. For instance, consider the
(thermal-equilibrium limit) QDR with a (100-pm) reser-
voir. With its base temperature of 70 mK, Eq. (2.8) pre-
dicts a cooling power of 1.5 fW, about 200 times greater
than the values shown in Fig. 4; since this QDR operates
with the reservoir in thermal equilibrium, however, the
values in Fig. 4 should be valid. Equation (2.8) predicts
the wrong value because the (100-pm) -reservoir QDR is
not optimized for the temperature regime in which it is
being placed. Specifically, for this QDR, 5 «ks To.

F. QDR coefficient of performance

The refrigerating coefficient of performance P is
defined in thermodynamics to be the ratio of the cooling
power P to the rate P~ at which work is performed in or-
der to operate the refrigerator. For a Carnot refrigerator
cooling a reservoir to Tp from an ambient temperature of
T, the coefficient of performance is

Tp
Carnot

p

fT(EDi I L ) +fTp(EDi Po)

This gives an upper limit to the QDR coefficient of per-
formance:

P Tp
QDR P T—T Ncarnpt

N p
(3.11)

This rough calculation indicates that the QDR coefficient
of performance is bounded above by the Carnot value.
This must be true for any real refrigerator. The result
Eq. (3.11) was derived for a model in which only the tun-
neling channel is considered. In reality, the QDR departs
from this model. The energies of the quantum dots'
discrete electronic states are smeared by 5, and some tun-
neling occurs through states other than E~ and ED .

L R

These effects can be accounted for by using a computer
simulation similar to those employed in Sec. II D to com-
pute the QDR base temperature.

We computed the QDR coefficient of performance by
numerically integrating Eqs. (2.4) and (2.5) to find I and
P; we substituted these values into the definition of the
coefficient of performance QQDR

=P /Pii, =P /(2I Vb ).
We then varied c., eVb, and k~T to obtain the maximum

QQDR. Figure 5 shows QQDR for a QDR with 5/6 =10
plotted as a function of reservoir temperature reduction
from the ambient, To/T. Note that QQDR is very close to
the Carnot limit —the ratio exceeds 70% for large To/T.
For small (To/T), QQDR goes to zero. The temperature
at which this occurs is the base temperature of the QDR.
This occurs at T/To =16, in agreement with the QDR
example of Sec. III E.

Under a heat load such as the phonon heat leak, the
coefficient of performance of the QDR is reduced. This is
because P is replaced by the net cooling power P-P h.
Nonetheless, the intrinsic efficiency of the QDR is high

where P is the cooling power and P~ is the rate at which
work is performed to operate the refrigerator. According
to the second law of thermodynamics, the coefficient of
performance for any real refrigerator cannot exceed the
Carnot value. Note, however, that the refrigerating
coefficient of performance can exceed 1; this is because its
definition differs from the efficiency of an engine, for
which the Carnot value is b, T/T.

For the QDR, Pii, =I(2V& ). Using I and P from Eqs.
(2.6) and (2.8), which represent an optimized QDR,

0
0.00 0.25 0.50

0.5

0.0
0.75

k~ Tp
OQDR e b

To compare this to the Carnot value, we find limits for
eVb in terms of T and Tp. To extract hot electrons, the
electron population in R at ED must be greater than that

L
in VL..

FIG. 5. Comparison of the refrigerating coefficient of perfor-
mance Poos of a QDR with 5/6=10 ' and that of an ideal
Carnot refrigerator [Pc„„„=Tp/(T Tp)]. The coefficient of
performance is plotted vs the ratio of reservoir temperature To
to ambient temperature T. Note that pooR exceeds 70% of
Pc„„„for high temperatures. For smaller 8/b„ the QDR is ex-
pected to approach the Carnot limit even more closely.
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and may present an advantage over other cryogenic ther-
moelectric refrigerators, such as the NIS refrigerator, dis-
cussed in Sec. IV below. Each electron removed from the
Cu reservoir carries away kz Tp in heat; as a quasiparticle
in the Al electrode, it can recombine with another quasi-
particle to release a phonon with 26A& in heat, where AA&

is the superconducting energy gap of Al. AA& is ten times
or greater than kg Tp so the refrigerating efficiency of the
NIS refrigerator is very low. However, as we will see in
Sec. IV 8, these quasiparticles can travel a long way be-
fore recombining. The recombination heat can be depos-
ited in a warmer or dirtier region of the Al —a heat
sink —which is far away and thermally decoupled from
the NIS refrigerator. Thus, the relatively large amount
of work performed to remove a given amount of heat
does not cause a disproportionate heat leak to the refri-
gerator.

Refrigerating eKciency would only be important in
two situations. If the heat deposited in the electrodes or
thermoelements could leak back into the reservoir, low
eKciency would hurt refrigerating performance. This is
probably not the case for either the QDR or the NIS re-
frigerator. If it is desired to cascade several refrigerators
so that the reservoirs of the refrigerators in each stage
cool the electrodes of the next stage, low efFiciency re-
quires an inordinately large cooling power of the outer
stages. For this type of application, it would be appropri-
ate to use high-cooling-power NIS refrigerators for the
outer stages and high-elliciency QDR for inner, colder
stages.

IV. NORMAL-SUPERCONDUCTOR
TUNNELING REFRIGERATOR

In this section, we use the methods of Sec. III to ana-
lyze the refrigerating performance of the NIS refrigerator
built by Martinis and his group NIST (Boulder). This de-
vice operates by using a normal metal-insulator-
superconductor (NIS) tunneling junction to remove elec-
trons above the Fermi level from the normal metal X.'
This prototype NIS refrigerator cooled a Cu strip to 85
mK from an ambient temperature of 100 mK. Although
the temperature reduction achieved so far is not large, we
show in this section that a much greater temperature
reduction should be possible with an optimized, thermal-
ly isolated NIS refrigerator.

The NIST group's refrigerator was very small and was
fabricated on a solid substrate; the electrons in the Cu
reservoir were strongly coupled to the ambient tempera-
ture. With a larger NIS refrigerator fabricated on a sil-
icon nitride membrane, it should be possible to achieve
temperatures below 100 mK from ambient temperatures
in excess of 300 mK. ' This refrigeration would be tech-
nologically useful because the most sensitive bolometers
(radiation detectors) operate best below 100 mK.

In Sec. IV A, we describe our NIS-refrigerator model,
including an estimate of the NIS cooling power. Then in
Sec. IV B, we discuss the heat leaks provided by phonon
absorption, quasip article recombination, and thermal
conduction through the silicon nitride membrane. We
also estimate the temperature at which electron-electron

scattering limits the NIS tunneling rate and the NIS cool-
ing power in this nonequilibrium limit. In Sec. IV C, we
summarize the NIS-refrigerator performance, comparing
our model to the NIST group's experiment. In Sec. IV D,
we calculate the performance of a similar device, the
SIS'IS refrigerator built by Blamire et al. The latter de-
vice provides a test of thermoelectric refrigeration in the
nonequilibrium regime, for which electron-electron
scattering limits the tunneling rate. We find that our
theory agrees with the results from both the NIS and
SIS'IS devices.

A. NIS refrigerator model

In a normal-insulating-superconducting (NIS) tunnel-
ing junction, heat Aows from the normal electrode X to
the superconducting electrode S if the bias voltage e Vb is
less than but near the energy gap AA&

(~At kaTp + leVb &bp, ~) and the ambient temPerature
T is much less than the critical temperature T, . For
T ((T„ there are few thermally excited quasiparticles in
S so the tunneling of quasiparticles in 5 to states in X
may be neglected. However, with the above bias condi-
tion, there will be enough thermal excitations in % to pro-
vide an appreciable current of electrons and holes tunnel-
ing from near Ez in X to quasiparticle states in S. If the
bias is too high ( ~

e Vb ~

)A~&), X will be heated.
If X is biased negatively with respect to

S[ (6~~ kg Tp ) ) e Vb & EA~] the tunneling current
will be composed of electrons tunneling from above Ez in
X to electron quasiparticle states in S [cf. Fig. 6(b)]; if X
is biased positively with respect to S(AA, —k~rp
(eVb (b,A, ), holes below EF in X will tunnel to hole
quasiparticle states in S. As we discussed in Sec. IIB,
both of these processes remove heat from X& = kg Tp per
electron or hole).

To model the NIS refrigerator, we use the
configuration of Fig. 6(a). A circular silicon nitride mem-
brane of radius r2 is attached to a substrate which is at
the ambient temperature T. The NIS refrigerator is fa-
bricated in the center of the membrane and is confined to
a circle of radius r &. The NIS refrigerator contains a Cu
thin film of thickness t, area 3, and volume V=td. Su-
perconducting films are deposited on the Cu film and ex-
tend out to connect to an external circuit. One supercon-
ducting film (Al) connects to the Cu reservoir via a tun-
neling barrier so that an NIS tunneling junction is
formed.

The other superconducting film (Pb) makes a metallic
junction with the Cu film so that it injects electrons at the
Fermi level of the Cu reservoir by Andreev reAection. In
Andreev reAection, a hole at EF in the normal metal
combines with a Cooper pair in the superconductor, leav-
ing an electron at Ez in the normal metal. We show this
schematically as the injection of an electron at Ez in Fig.
6(b); there is a hole (not shown) traveling in the opposite
direction as well. Andreev reAection is elastic so it does
not a6'ect heat How.

The silicon-nitride membrane is used as a substrate for
the NIS refrigerator because, due to its low thermal con-
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(a) N IS Refrigerator Schematic

Silicon Nitride Cu Reservoir
Membrane (Electrons at

A1 Electr tice at T&q)

Substrate at
Temperature T

(b) Energy-level diagram of NI8 Refrigerator

where G is the conductance of the NIS junction in units
of the conductance quantum (e /h ) =(26 kA) ', and To
is in K. For the NIST group's device, G = (10
kQ) '=2.6(e /h ).' Equation (4.1) may be obtained by
noting that the cooling power is due to extracting elec-
trons from above EF in the Cu reservoir; on average,
each electron removes k~TO from the Cu reservoir. The
tunneling rate is the product of the conductance per ener-
gy (G/e ) and the energy range k~To of initial states.
We arrive at Eq. (4.1) by noting that the cooling power is
the product of the tunneling rate and the heat carried per
electron.

An alternate design would use two NIS junctions, one
to extract electrons from above EF in the Cu, and one to
extract holes from below EF in the Cu, analogous to our
generic cryogenic thermoelectric refrigerator of Sec. I.
To extend our model to such an SINIS (SIN+ NIS) refri-
gerator, we would double the cooling power in Eq. (4.1)
to account for the combined e8'ect of the two tunneling
junctions. We do this in Sec. IV D to compare our theory
to the SIS'IS devices of Blamire et al.

B. NIS-refrigerator heat leaks
and electron-electron-scattering limit

ductance, it allows thermal isolation from the ambient
temperature. We assume that the Cu film and the por-
tion of the membrane upon which it is deposited are at
Tph a temperature intermediate between To and T. The
goal of our NIS-refrigerator model is to find the highest
ambient temperature T at which a given To may be
achieved.

The NIS junction is biased [as was the case for the
NIST group's device; see Fig. 6(b)] so that EF in the Cu
reservoir is aligned in energy with the quasielectron states
above the gap in the superconductor S. In this
configuration, the cooling occurs as follows. Electrons
are injected at EF in the Cu reservoir by Andreev
reQection from the Pb electrode. These electrons scatter
with other electrons in the Cu reservoir; some absorb en-
ergy from this scattering and are promoted to states
kg To above EF, from which they can tunnel to the Al
electrode. In this process, each electron traversing the
entire structure removes about kz To of heat from the Cu
reservoir.

The cooling power is approximately'

G
(k~TO) =0.29 pWTOG, (4.1)

e
P=

A1 Cu Pb
Electrode Reservoir Electrode

FIG. 6. (a) Schematic and (b) electronic energy diagram of
the NIS refrigerator. A Cu thin film is cooled as hot electrons
are removed by NIS tunneling to the Al electrode. The circuit
is completed by a NS contact to the Pb electrode which injects
electrons at EF. The silicon nitride membrane provides thermal
isolation for the NIS refrigerator.

The electrons in the Cu reservoir are heated by absorb-
ing phonons. This heat leak is'

Pph=2 WnV(T t,
—To) . (4.2)

whose solution gives a heat leak of

4m(162 pW)t(T Th )—
7 ln(r2/r& )

3 nW( T7/2 T7/2 )ph (4.3)

where we have assumed in the final expression a mern-
brane thickness of 1=0.5 pm, an outer radius of r2=1
cm, and an inner radius of r

&

= 1 mm.
There are two other possible heat leaks: thermal con-

duction through the Al and Pb films, and quasiparticle

This phonon heating is of the same form as the 2DEG ex-
pression Eq. (3.1). However, it is much stronger (nW in-
stead of fW) due to the thin (100 A thick) 2DEG used in
Eq. (3.1) and the stronger electron-phonon coupling in
metals.

Another heat leak comes from lattice thermal conduc-
tion through the silicon nitride membrane. The thermal
conductance of a silicon nitride membrane is ~=162
(pW/K) cm ' T, where T is the local membrane
temperature in K.' Because the temperature varies radi-
ally on the membrane (from T = T h at r, up to T = T
at r2), we integrate radially to obtain the overall thermal
conductance from the outer edge to the NIS refrigerator.
The heat transfer equation to be integrated is

V (~VT )=0,
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recombination in the Al. We neglect these for the follow-
ing reasons. First, the electronic thermal conductivity of
a superconductor is very low. ' The lattice thermal con-
ductance of the Al and Pb thin films should be less than
that of the silicon nitride membrane because these films
have a much smaller cross section ( &1 iMm thick and 1

mm wide) than the membrane (0.5 pm thick and several
cm wide). Thus we can neglect thermal conduction
through the Pb and Al films.

Another potential heat leak is provided by quasiparti-
cle recombination in the Al. When an electron is extract-
ed from above EF in the Cu reservoir, it enters an elec-
tron quasiparticle state in the superconducting Al elec-
trode. This quasiparticle can combine with another
quasiparticle to form a Cooper pair, emitting a phonon of
energy 26A1. If this occurs near the NIS junction, these
hot (because 2b, ~i))k~To) phonons can travel back to
the Cu reservoir where they could be absorbed by elec-
trons, causing a heat leak.

Quasiparticle scattering rates in the BCS superconduc-
tors were published in a comprehensive study by Kaplan
et al. Of the different scattering processes in their cal-
culations, there are two which release a phonon of energy
25A1. Equilibrium recombination of quasiparticles, ac-
cording to their Eq. (14), occurs at a rate of r„'=80
MHz +Te in Al. At 1 K, for instance, r„'=10
MHz, giving a mean free path vF~ of several cm; at lower
temperatures, it is much greater. At 300 mK, ~„'=60
kHz, and the quasiparticles collide with the boundaries of
the thin film far more often than they recombine. At 100
mK, this rate is negligible due to the exponential temper-
ature dependence.

The second relevant quasiparticle scattering process
described by Kaplan et aI. is the recombination of inject-
ed quasiparticles, in this case those injected into quasipar-
ticle states roughly k~TQ above the gap edge by the NIS
tunneling. This process occurs in Al at a rate of 20 kHz
at 300 mK and 500 Hz at 100 mK.

We now estimate the quasiparticle recombination heat
leak at 300 mK. If electrons are injected into quasiparti-
cle states in the Al at kg TQ above the gap edge, the quasi-
particle decay rate (including both processes) is 80 kHz.
Thus the average quasiparticle will travel 4000 cm before
decaying. Qr, in other words, only a fraction (1 cm/4000
cm) = 3X10 =0.03%%uo of the quasiparticles will decay
near the NIS junction. Since each electron removed from
the Cu reservoir carries away k~ TQ of heat, and each
quasiparticle recombination generates AA1=10—20k~TQ
of heat, this heat leak is less than l%%uo as strong as the
NIS cooling power. If the action of the NIS refrigerator
cools the membrane and the metal thin films, the quasi-
particle heat leak will decrease dramatically.

Even though the quasiparticles are slow to decay, it is

necessary to get rid of their energy; this must be done far
from the Cu reservoir. If a normal ~etal contact is made
to the Al at a point which is not in thermal contact with
either the NIS refrigerator or the membrane, this elec-
trode will serve as a heat sink; quasiparticles in the Al
will be deposited as hot electrons in the normal metal.
Overall, we expect that quasiparticle recombination can
be avoided as a heat leak in the NIS refrigerator. We
neglect quasiparticle recombination in our analysis of
NIS refrigerator performance in Sec. IV C. One possible
weakness of this approximation is enhanced quasiparticle
recombination at the boundaries of the superconducting
films.

If the tunneling rate is too high, the electrons in the Cu
reservoir will be driven out of equilibrium; eventually the
tunneling rate will be determined by the rate at which
electron-electron scattering replenishes the tunneling
channels. As we discussed in Sec. III 8 above, the rate at
which a given electron near EF in a clean metal scatters
from other electrons is given by

«a To)'
+FL =1.3 GHzTQ .

hEF

Disorder enhances this rate by a correction '
(3.4)

AvFI
+disorder ~NF

fungi Q

TQ=1100 Hz
It

(4.4)

—1 —1 —1
ree init( disorder++PL )

=0.57 THzT()A +0.39 THzTQV . (4.5)

When the NIS tunneling rate is limited by electron-
electron scattering, the NIS-refrigerator cooling power is

p„„=(k~To)r,,i=7.9 pWTOA [1+0.684tTO] . (4.6)

Setting Eq. (4.6) equal to the NIS cooling power Eq. (4.1)
gives a temperature

where I is the elastic mean free path, t is the film thick-
ness, and we have used the two-dimensional form for the
disorder correction. ' For the sheet resistance of the
NIST group's Cu thin film, ' we obtain an elastic mean
free path of i=30 A. As in the case of the QDR, we
must multiply by the number of initial states to find the
tunneling rate when limited by electron-electron scatter-
ing.

N;„;,=(k~TO)VNF=1. 55X10 TOV .

The tunneling rate as limited by both clean-metal and
disorder-enhanced electron-electron scattering is then

r

T„=O.73Ir r '[ i/1+ 0. 101t ( G /V) —1]=37 mKt —,0. 101t —« 1

1/2
G=230 mK
V

G0. 101t —» 1, (4.7)
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below which the NIS tunneling rate is limited by
electron-electron scattering.

C. NIS-refrigerator performance

T=T h [1+4.6X 10 GT T h

1/5

Tp} = To ' 1 +0.000 145 To

(4.8)

Equations (4.8) apply to the case in which the electronic
temperature To exceeds T„. For lower temperatures, the
electron-electron-scattering-limited rate P„„ from Eq.
(4.6) must replace Eq. (4.1), modifying the heat-balance
condition

scat ph cond

to give two equations once again:

T=T h[l+0. 317VT h [T —T ]]
T „=TO I 1+0.003 95TO [t '+0.68TO]] ' (4.9)

Note that these equations do not depend on the NIS tun-
neling conductance 6, verifying that NIS tunneling is not
the limiting factor.

For the NIST group's NIS refrigerator, G =2.6(e /h ),
V=0.4 pm, and t=0.08 pm. The area of the NIS junc-
tion is about (0.5 pm) =0.25 pm, so that the conduc-
tance per junction area is 10(e /h ) pm . For these pa-
rameters, Eq. (4.7) gives T„=20 mK. Because they
operated above this temperature, the NIST group's NIS
refrigerator was not limited by electron-electron scatter-
ing; the eIectrons in the Cu reservoir were near equilibri-
um. If To=85 mK, then from Eqs. (4.8) T h =100 mK.
For these parameters, T= T h. This indicates that the
NIST group's refrigerator was not capable of cooling the
phonons as well as the electrons, so that the thermal iso-
lation of the silicon nitride membrane is not adequate to
help the refrigeration in this case. Our model thus agrees
well with their results.

For different NIS refrigerator designs, however, the sil-
icon nitride membrane will improve NIS-refrigerator per-
formance. If the conductance of the NIS junction is in-
creased (by increasing its area or decreasing the thickness
of the tunneling barrier), the NIS cooling power Eq. (4.1)
will increase. The heat leak due to thermal conduction

We can use the above results to find T h and T for a
given To. At steady state, heat balance determines the
relationships between these temperatures. That is, an
equal amount of heat must Row through the NIS junctiorr
[via Eq. (4.1)]; from the phonons to the electrons in the
Cu reservoir [via Eq. (4.2)]; and from the periphery of the
silicon nitride metnbrane to its center [via Eq. (4.3)]. As
we discussed above, we neglect the heat leak due to quasi-
particle recombination in the Al electrode. Then heat
balance in this thermal circuit gives

P =Pph —Pcond

This leads to two equations for the two unknown temper-
atures, Tand T h..

D. SIS'IS refrigerator: A test of the nonequilibrium limit

Blamire et al. fabricated Nb/A1O„/Al/A10 /Nb
double-barrier devices, referred to as the SIS'IS struc-
ture, where I=A10„, S=Nb (T, =9.3 K), and S'=Al
(thin film T, = 1 —2 K). The devices were operated at 4 K
and, because of the extraction of hot quasiparticles, the
Al was driven superconducting. Although a realistic in-
terpretation of these experiment requires that the super-
conducting properties of Al be incorporated, it is il-
luminating to apply our theory to this structure, treating
the Al as a normal metal.

Repeating the above analysis with the parameters for
Al, ' we obtain

P=0.29 pWTQG,

P,„=0.2 &W V(T' T,'), —

P„„=12pWVTO(t '+0. 69TO) .

(4.10)

through the silicon nitride membrane is essentially fixed;
the NIS cooling power can be increased by orders of
magnitude. Consider the following example.

Suppose that the Cu reservoir is t = 1 pm thick, A = 1

mm in area, and the tunneling conductance per area of
the NIS junction is the same as that of the NIST group's
refrigerator. If the junction covers most of the surface
area of the Cu reservoir then the conductance is
G=10 (e /h) and the Cu reservoir volume is V=10
pm . With these parameters, T„=300mK. At TO=50
mK, then, the NIS tunneling current is electron-electron
scattering limited and Eqs. (4.9) give T~h=61 mK and
T=600 mK. This NIS refrigerator can cool the elec-
trons and the lattice of the Cu reservoir to well below 100
mK from an ambient temperature above 500 mK. This
refrigeration is technologically interesting because tem-
peratures down to 300 mK can be attained by pumping
on He. Lower temperatures currently require a dilution
refrigerator.

The NIS cooling power for this NIS refrigerator is
given by Eq. (4.6) to be 0.8 nW at To = 100 mK. A 1-cm
NIS refrigerator (on a several-cm silicon nitride mem-
brane) would provide about a pW of cooling power at 100
mK. This is l%%uo of the cooling power that the Oxford In-
struments model 75 dilution refrigerator provides at the
same temperature. This is an impressive amount of cool-
ing power for a thin-film device.

If a material other than Al were chosen for S, the NIS
refrigerator could operate at temperatures up to a few K.
Consider the above NIS refrigerator with a 1-pm-thick
reservoir which is 1 cm in area. Then V=10 pm and
6=10 (e /h). With these parameters, Eq. (4.7) gives
T„=300 mK. For To=300 mK, this device is on the
border between equilibrium and nonequilibrium; Eqs.
(4.8) and (4.9) both give T h=303 mK and T=ll K.
For these high temperatures, some assumptions of our
model such as the low quasiparticle recombination rate
may no longer be valid. However, it is plausible that the
NIS refrigerator can operate in an ambient temperature
of a few K and cool a thin-film device to 300 mK or
below.
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0
We have assumed an elastic mean free path of i=30 A
(we simply chose the smallest film thickness) and used the
fact that there were two thermoelements in the SIS'IS
structure (giving a factor of 2 in P). Setting P =P„„,we
find an expression for the electronic temperature To
below which electron-electron scattering dominates the
cooling power:

TO=73 mKt '[+1+0.13tGA ' —1 j . (4.11)

For the SIS'IS devices, the tunneling conductance was in
range 400—1000(e /h ) pm and the thickness of the Al
layers was 3—20 nm. The junctions were conductive
(40—100 times more so than the NIST group's) and thin
(4—25 times thinner than the NIST group's). According
to Eq. (4.11), the tunneling is electron-electron scattering
limited for temperatures below To =16—44 K. These de-
vices, tested at a few K, operated in extreme nonequilibri-
um, in agreement with Heslinga and Klapwijk s interpre-
tation.

Setting P„„=P», we obtain an expression for the
electronic temperature To in terms of the ambient tem-
perature T:

T= To(1+0.060TO (t '+0.69TO) j
'i (4.12)

For the devices with the thinnest Al layers (3 nm), Eq.
(4.12) gives T=3 K for To=2.4 K, the measured T, of
the Al film in the SIS'IS devices. Blamire et al. saw a
greater temperature reduction than this; even the devices
with thicker Al layers (up to 10 nm) were driven super-
conducting from 4 K.

There are several possible causes for this discrepancy.
The actual mean free path may be shorter than 30 A. It
is also possible that the Al lattice was cooled by the elec-
trons, reducing the phonon heat leak. Or perhaps ther-
moelectric cooling does not account for all of the T,
enhancement; nonequilibriurn superconductivity may ex-
plain part of the effect. However, it does seem likely that
thermoelectric cooling played a role; Heslinga and
Klapwijk's simulations of the electronic distribution in
the Al film also indicate that the electrons were cooled
substantially.

The agreement of our calculations with both the equi-
librium (the NIST group's NIS refrigerator) and none-
quilibrium (the SIS'IS structures of Blamire et al. ) limits
lends confidence in the validity of our arguments in Sec. I
on the general properties of a cryogenic thermoelectric
refrigerator.

V. DISCUSSION

In this section, we discuss several aspects of cryogenic
thermoelectric refrigeration. In Sec. V A, we discuss the
cooling power of a thermoelectric refrigerator in relation
to that needed for useful cryogenic applications. Then in
Sec. V B we review several other schemes for thermoelec-
tric cooling at low temperatures. In Sec. V C we discuss
a thermodynamic limit to the temperature dependence of
the cooling power of an electronic refrigerator; we find
that an optimized thermoelectric refrigerator operates
near this limit, consistent with the finding of Sec. IIIC

that a QDR may operate with an efficiency close to that
of a Carnot refrigerator.

A. Cooling power of cryogenic thermoelectric refrigerators

Electronic refrigeration schemes such as the QDR and
the NIS refrigerator may be accused of providing meager
cooling power without much temperature reduction.
This criticism has indeed been leveled at cryogenic ther-
moelectric refrigeration recently, in an article by Wash-
burn. ' He makes several points: that the temperature
reduction so far achieved is small; that the ambient tem-
perature at which it is accomplished is too low to be of
any use; and that the cooling power is so small that it will
be impossible to cool bulk samples.

The temperature reduction which the NIST group
achieved with their prototype refrigerator was small—
only 15%%uo of the absolute temperature. However, their
experiment was aimed at a proof of the concept rather
than an exhaustive test of the method. As we have
shown, a NIS refrigerator with an optimized design can
accomplish the technologically important goal of bulk
cooling from above 300 mK to below 100 mK. Further-
more, the SIS'IS devices of Blamire et al. achieved as
large a temperature reduction from ambient temperatures
as high as 4 K. Thus it is fair to say that cryogenic refri-
geration by thermoelectric effects is capable of large tem-
perature reduction at useful temperatures.

The total cooling power of these electronic refrigera-
tors is smaller than that of a dilution refrigerator. Thus
NIS refrigeration will not replace other refrigeration
techniques in applications such as liquid-helium studies,
where a large sample volume is required. However, in
fields such as high-precision radiation detectors, quantum
computing, or any based upon thin-film devices, a com-
pact solid-state refrigerator may be preferable to bulk
techniques. In addition, direct electronic cooling may be
preferable to bulk cooling for some applications.

The cooling power of the QDR example discussed in
Sec. III E was a few aW for refrigeration in the tens of
mK. This is orders of magnitude smaller than the cool-
ing power of a dilution refrigerator at the same tempera-
ture; the latter is measured in pW. The difference is that,
at mK temperatures, the QDR cools only a microscopic
portion of a 2DEG. At lower temperatures —below the
operating regime of a dilution refrigerator —a QDR
should be capable of cooling the electrons of macroscopic
samples. In fact, as can be seen from a simple calcula-
tion, ' the 2DEG heat capacity exceeds that of a mm-
thick GaAs substrate for temperatures below 200 pK.
Thus for p, K and nK temperatures, a QDR cools the
largest heat capacity of the solid. With strong enough
thermal coupling between the electrons and the GaAs
crystal lattice (and weak enough thermal coupling to
ambient-temperature components), bulk refrigeration
would become possible.

B. Other schemes for cryogenic thermoelectric cooling

In the 1950s and 1960s, there was an extensive research
effort devoted to large-scale cooling at noncryogenic tem-
peratures using semiconductor thermoelectric refrigera-
tors (also known as Peltier refrigerators). Aside from
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small-scale (e.g. , diode-laser cooling) and specialty (e.g.,
portable cooling of biological specimens) applications,
this effort was largely dropped when these refrigerators
were found to be inefficient. This inefticiency was due to
the large lattice heat leak at noncryogenic temperatures.

These semiconductor thermoelectric refrigerators
operated on the following principle. A semiconductor
with a small band gap is heavily doped so that hot elec-
trons (holes) above (below) the Fermi level of a metallic
reservoir would travel into the conduction (valence) band
of the n-type (p-type) semiconductor thermoelement. In
theory, this scheme should be possible at cryogenic tern-
peratures. However, there seem to be practical limita-
tions such as finding a stable material with a small
enough band gap.

When we first proposed the QDR, we considered (but
did not publish) a bulk cooling scheme which would use
band-engineered III-V heterostructures. There are many
ways of using modulation doping to construct a ther-
moelectric refrigerator; any device structure which allows
the extraction of electrons above E~ and holes below EF
can function in this way. Due to the fast pace of this
technology, particularly type-II band-offset heterostruc-
tures, this type of device may be feasible in the near fu-
ture. It should be possible to conceive a structure using
this technology which allows a large cooling power by
tunneling through a large-area junction or even by ballis-
tic transport across a modulation-doped band edge. The
small effective electron mass and low lattice heat capacity
make these III-V structures excellent candidates for cryo-
genic refrigeration of bulk samples.

This idea of using a system of reduced dimensionality
to increase the thermoelectric figure of merit ZT has been
explored from a different direction by Dresselhaus and
co-workers at MIT. They have considered confining car-
riers in Bi2Te3 with a two-dimensional superlattice;
confining carriers in BizTe3 with a one-dimensional super-
lattice; and the use of two-dimensional superlattices of
unconventional thermoelectric materials (they examined
the case of Bi) for thermoelements. These studies re-
sulted in predicting that quantum confinement could in-
crease the maximum attainable dimensionless figure of
merit ZT from the current value of about 1 to a value of
10 or more. As discussed in the Appendix below, this
would allow large temperature reduction —up to a factor
of (T/To) =3. Because they relied on the case of one or
at most two electron subbands, this refrigerating scheme
seems most likely at low temperatures, although
confinement in small enough structures may allow room-
ternperature operation.

Among the more exotic proposals we found was
Kapitulnik s idea of using a metal near a metal-insulator
transition as a thermoelement. Kapitulnik computed
the thermoelectric figure of merit (see the Appendix) for
this material, finding that it can become larger near the
transition. This idea is reminiscent of the proposal to use
a semimetal as a thermoelement.

C. Thermodynamic limit of electronic refrigeration

In this section we argue that the cooling power of an
optimized thermoelectric refrigerator is the best possible

for an electronic refrigerator. Specifically, an electronic
refrigerator whose cooling power falls more slowly than
T with decreasing temperature can be used to achieve
T=0, a thermodynamic impossibility.

The internal energy U of an electron gas is proportion-
al to the square of the electron temperature T:

U=aT

As discussed in Sec. I an optimized cryogenic ther-
rnoelectric refrigerator has a cooling power proportional
to T, as well:

P=bT

The identification d U Idt = Pgive—s the differential
equation

dU b

dt a

with the solution

U U e
—(b/a)t

pe

U (and hence T) decreases exponentially with time for an
optimized thermoelectric refrigerator. Suppose now that
P =aT". If n & 2, the solution is

U ~ t
—zr(n —z)

U decreases as a power law of time. This is much slower
than the exponential decrease for T cooling. If n (2,
the solution is

U ~ (r r )2/(2 —nif
so that, after a time tf, the energy and hence the temper-
ature reach zero. Since it is impossible to use any ther-
modynamic process to reach absolute zero, this type of
cooling is impossible.

For a nor"optimized thermoelectric refrigerator, it is
possible to have a cooling power which falls off more
slowly than T with decreasing temperature over some
temperature ranges. For instance, if we relax the require-
ment 5=kg Tp which we used in Sec. III to determine the
performance of the QDR, then the cooling power Eq.
(2.8) indicates that the cooling power is proportional to
T. However, this is only because we have fixed 5 at some
smaller value than kgTp and the cooling power is less
than optimal; for optimal cooling, 6 kg Tp and the cool-
ing power is again proportional to Tp.

Another way of viewing this thermodynamic argument
is to consider the coe%cient of performance of an elec-
tronic refrigerator. As we showed in Sec. III F for the
QDR, an optimized thermoelectric refrigerator ap-
proaches a value near the Carnot limit for refrigerating
efficiency.

VI. CONCLUSIONS

Thermoelectric effects present an unexplored avenue of
cryogenic refrigeration. Due to the small lattice heat
capacity at low temperatures, an electronic refrigerator
can cool bulk samples to low temperatures. We have ex-
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amined the effects of phonon absorption and electron-
electron scattering on two cryogenic refrigerators: the
QDR and the NIS refrigerator. We found that phonon
absorption limits the base temperature. Electron-electron
scattering limits the cooling rate at the lowest tempera-
tures, but the best refrigeration is obtained in this none-
quilibrium regime.

Each of these refrigerators has its own characteristic
temperature regime. The QDR can operate over a wide
temperature range. In the mK, pm-sized mesoscopic
components can be cooled by a QDR; in the pK and
below, a cm-sized QDR can provide bulk refrigeration in
that the 2DEG electronic heat capacity is greater than
that of the semiconductor substrate. An experimental de-
vice could be thermally sunk to the reservoir and thus
cooled.

NIS-based refrigerators operate from a few K down to
tens of mK. The top limit of this range is set by the T, of
the superconducting thermoelement and the thermal iso-
lation of the reservoir. The lower limit is set by the ener-
gy smearing of the superconducting gap edge. ' This
lower limit could be decreased by using lower-T, super-
conductor since the smearing should scale with T, . We
have shown that the devices of the NIST group and
Blamire et al. provide experimental tests of our theory
in the equilibrium and nonequilibrium limits, respective-
ly; the comparison is favorable. By scaling these micro-
scopic electronic refrigerators up to cm size scales, a
cooling power large enough to cool macroscopic thin-film
devices could be obtained.

It is conceivable that these refrigerators could be cas-
caded. For instance, a NIS refrigerator could operate at
an ambient temperature of about 10 mK in a dilution re-
frigerator, cooling the leads of QDR to a few hundred
pK. The QDR would cool its reservoir and an attached
heat load to a few pK or even nK. Or, for a detector ap-
plication, a first NIS refrigerator could cool a membrane
from 1.2 K (a pumped He bath) to 300 mK, and a
second NIS refrigerator would cool a bolometer to below
100 mK.

By allowing access to temperatures which have not
been explored for metallic samples and mesoscopic de-
vices, additional physics will surely be uncovered. In ad-
dition, compact solid-state refrigerators may allow cryo-
genic components to be used in various technological ap-
plications.
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APPENDIX

In this appendix, we will briefly summarize the linear-
response theory of thermoelectric effects and apply this
formalism to the QDR. Our motivation for doing so is
twofold. First, we wish to compare our theory to the
linear-response results of Ref. 19. Second, we want to ex-
plore the effects of the departure of the tunneling current
and cooling power from linear dependence on the tern-
perature difference AT= T—To. In other words, we will
demonstrate that the hnear-response theory is not cap-
able of accurately predicting the QDR base temperature.

As we mentioned in Sec. II D, the general approach to
determining the base temperature of a thermoelectric re-
frigerator is as follows. The base temperature is found by
setting the net cooling power to zero, so that the ther-
moelectric cooling power just balances the heat leaks. In
the case of the numerical simulation of Sec. IID, this
procedure was carried out by an iterative procedure to
find the root of the equation P(k~ To) =0. In the linear-
response theory, the base temperature is found by setting
the coefficient of performance, which is proportional to
the net thermoelectric cooling power, to zero. Thus,
apart from the linear-response approximation (and the
physical processes discussed in Sec. 7 of this Appendix),
the two procedures are equivalent.

1. Thermoelectric efFects

Thermoelectric effects arise at a junction between two
dissimilar materials. The Seebeck effect occurs when a
temperature difference is placed across the junction. If
no current flows, a thermoelectric voltage V=a( bT)—
develops; u is called the Seebeck coefficient or the ther-
mopower. In the Peltier effect, an electric current I is
forced through a junction at (initially) uniform tempera-
ture. A heat current P =~I Rows, heating one metal and
cooling the other; ~ is the Peltier coefficient. In some in-
stances, the Peltier coefficient may be related to the See-
beck coefficient via Onsager's reciprocal relations, to
obtain m =Ta.

As electrons traverse a junction of dissimilar materials,
they will either lose or gain energy on average because
the set of electronic states they occupy will generally
have different energies in the two materials. This is the
simple physical principle which underlies all thermoelec-
tric effects. To cool the reservoir of a thermoelectric re-
frigerator, the average energy of electrons entering the
reservoir must be lower than that of the electrons leaving
the reservoir. Because each electron carries away energy
on average, heat is removed from the reservoir. This is
how the QDR works.

None of the currently available thermoelectric materi-
als are effective at cryogenic refrigeration. The Peltier
effect in normal metals is too weak to provide effective
cooling at any temperature. Semiconductor thermoele-
ments, whose Fermi level lies within the band gap, suffer
carrier freeze-out at low temperatures.
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2. CoefBcient of performance, base temperature,
and Sgure of merit

Conventional thermoelectric refrigerators cool their
reservoir by up to about 20%,' AT is small relative to T.
Since most of the voltage drop occurs resistively across
the semiconductor thermoelements, the overall device
has a fairly linear I(V) curve. For conventional ther-
moelectric refrigerators, it is thus appropriate to assume
that the electric current and cooling power depend linear-
ly upon the bias V and temperature difference AT. For
this reason, the theory which is conventionally used to
study thermoelectric effects assumes this linear depen-
dence.

The starting point of the linear-response analysis is the
refrigerating coefficient of performance P, defined to be
the ratio of the net cooling power of the refrigerator to
the rate at which work is performed. After maximizing
with respect to electric current (in the process fixing the
bias voltage), the coefficient of performance for a ther-
moelectric refrigerator is

To M —T/To
T—To M+1 (A 1)

where M=[1+Z(T+To)/2]'~ and the thermoelectric
figure of merit Z is:

+2
Z (A2)

which has units of K '. R is the junction resistance and
K is its thermal conductance. The dimensionless figure of
merit ZT, where T is the ambient temperature, is often
quoted for thermoelectric devices. Values of ZT for
semiconductor thermoelectric materials are generally
near unity; a larger value would produce better perfor-
mance, such as a lower base temperature. Note that the
first factor in (Al) is the coefficient of performance of a
Carnot refrigerator, and the second factor is between
zero and unity, being closer to unity for large ZT and
TO

The maximum temperature difference T—To=ET,„
that the refrigerator can achieve (under zero heat load) is
obtained from the condition /=0 that the net cooling
power vanish. The result is b,T,„=(1/2)ZTO. Rear-
ranging,

T
, max

=
—,'[1+v'1+2ZT ], (A3)

which approaches 1+ZT/2 for ZT «1 and (ZT/2)'~~
for ZT »1.

Aside from its appearance in the above equations,
there is an intuitive motivation for calculating ZT. A
large thermopower a implies a large Peltier coeKcient
m=Tu, hence a large cooling power. Low electrical
resistance leads to low resistive heating near the junction
and low thermal conductance allows a large temperature
gradient to be maintained across the thermoelectric junc-
tion. Thus a large ZT should indicate good thermoelec-
tric performance. This is clear for semiconductor ther-
moelectrics, but what part do resistive losses and thermal

conductance play in the QDR? Resistive losses should
occur in the QDR structure: the 2DEG has a resistivity,
and electrons and holes injected far from the Fermi ener-
gies pL and pz in the electrodes will scatter to thermalize
with the 2DEG there, heating the electrodes. However,
it is unlikely that this heat current will stream back into
the reservoir of the QDR, since the electrodes should be
much larger than the reservoir and can conduct the heat
current away —we assume that the electrodes stay at the
ambient temperature. This thermal isolation was found
to be the case for the Coulomb-blockade electrometer, in
which the electrodes remained at the ambient tempera-
ture even though the Coulomb island was heated to a
significantly higher temperature. Below, we will use the
expression (dI/dV) ' as the resistance of the QDR to
set an upper bound on the resistive heating of the QDR.
This renders the analysis conservative; we will see that it
is, in fact, very conservative.

A thermal conductance is related to a heat current via
Fourier's law P =a( bT). I—n semiconductor ther-
moelectric refrigerators, the appropriate thermal conduc-
tance to use in Eq. (A2) is the semiconductor lattice
thermal conductance, since this dominates over the elec-
tronic conduction of heat at room temperature. For the
QDR, however, we will define an electronic thermal con-
ductance K, with reference to the heat current which
fiows through the quantum dots (when no electric current
does) under a temperature difference b T= T To. The-
phonon heat leak could be incorporated by adding
Kph=P~&/( bT). Because—the goal of this section is to
compare the linear-response base temperature to the re-
sults obtained in the numerical simulation of Sec. IID,
which did not include the phonon heat leak, we neglect
Kph.

3. Linear-response theory

Thermoelectric properties of a system are intrinsically
linked to the system's coupling to the external world; the
thermoelectric coe%cients are defined differently when
different pairs of I I,P, V, b, T I are chosen as independent
variables. Our treatment in this section is similar to that
in Chap. 13 of Ashcroft and Mermin. ' It is easiest to cal-
culate the heat current P and the electrical current I in
terms of an applied voltage V and temperature difference
hT. First, we assume that these quantities have been cal-
culated from a model of the system under study:

I=I( V, bT), —

P=P(V, hT) . —
(A4)

(A5)

Next we take the linear-response approximation to
these equations:

I= V+ ( bT), —M ar
(A6)

(A7)

where (aI/aV) implies limi, 0(aI/aV)&T 0. We recast

P= V+ ( bT), —
av a( —~T)



5734 ED%'ARDS, NIU, GEORGAKIS, AND de LOZANNE

aI
BV

BI
a( —~T) ( —b, T), (A8)

P= BP
BV

I+s, ( —b, T), (A9)

where the electronic thermal conductance is

Eqs. (A6) and (A7) in terms of the independent variables I
and AT:

k~eI= 2 Io Vb+ 2 Ii ( bT)—, (A14)

Vii and R-to-VL junctions. Because Eq. (2.5) includes the
contributions of both junctions, this has implicitly been
done. To separate the effects of each junction, simply re-
peat the following analysis using P /2 where P is given by
Eq. (2.5). The linear-response approximations to Eqs.
(2.4) and (2.5) are

BP
8( AT)— 8( —AT)

k~e k~P= 4T I, Vb+ 4T Ii ( —AT), (A15)

These relations can be used to compute thermoelectric
parameters for an electronic device.

We now obtain expressions for the thermoelectric
coe%cients and the junction resistance in the linear-
response approximation. The Seebeck coeKcient cz is
defined by V= ahT when no current Aows, resulting in

where we have defined the dimensionless integral
T

(E—E )2

i
P

1 EX sech
2 k~T

n

(A16)

BI M
8( 4T) —

' BV
(A10)

The Peltier coe%cient is defined by P=~I when AT is
zero:

The limits of integration are +00 for mathematical con-
venience; the integrand is small except near the Fermi
level in A.

5. Dimensionless figure of merit for QDR
M
av

The electric resistance R is 8 V/BI:

(A 1 1) We can now write down the linear-response approxi-
mations for the QDR thermoelectric parameters using
the definitions of Sec. 3 above:

BI
av (A12)

k~T I0I2 —I)
K, =4k~

0
(A17)

Using these results, the dimensionless figure of merit
[defined in Eq. (A2)] becomes

2

1 h 1R=—
2 e2I0
k~ I,&=2
e Ip

(A18)

(A19)

BP
8( bT)—BI

8( b,T)—
(A13)

k~
77=2

I)
T 7

'2
2I0I2 —I )

Io

(A20)

(A21)

ZT may be used in Eq. (A3) to estimate the base tempera-
ture of a thermoelectric refrigerator.

The validity of these expressions is limited to the re-
gime in which Eqs. (A4) and (A5) are linear in their
dependence on bias voltage and temperature difference.
For standard thermoelectric refrigerators, this assump-
tion is good, as discussed above. However, the QDR
should be capable to reducing the temperature Tp to a
small fraction of T. In this case, the linear-response
theory breaks down. Bearing this in mind, we compute
the linear-response approximations to the QDR tunneling
the heat currents.

4. Lfnear approximations to QDR tunneling
current and cooling power

To compute the thermopower and Peltier coefFicients
properly, we must combine the contributions of the R-to-

I2
ZT= ——

2 IpI2 I (A22)

Note that Eqs. (A19) and (A20) obey Onsager's reciproci-
ty relation ~= Te. This is because we have not included
the Coulomb-blockade effect in our model of the QDR.
This neglect is justified because the QDR operates in the
quantum regime, with kgTp and eV& much less than 6
and e /2C. Because Onsager's reciprocity relation is
defined only in the linear-response limit, we cannot test it
with the numerical simulation of Sec. II D.

Equations (A18) and (A19) can be compared to the re-
sults of Ref. 19, where it is assumed that 5«k&T, in
which case Eq. (A16) simplifies to

n

I„=— h — . A16'
4 k~T k~T 2 k~T
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TABLE II. Results of a numerical determination of the QDR base temperature using the linear-
response theory. These numbers represent an optimized QDR. ZT is found using Eq. (A22) and then e
and T are varied until a maximum ZT is obtained. Then me find the base temperature (T/To) using
Eq. (A3). Comparing this base temperature to the one in Table I demonstrates the inaccuracy of the
linear-response theory.

1O-'
10
10
ao-'
ao-'
ao-'

0.236
3.89

36.7
329

2960
26 800

(T/Tp)

1.11
1.98
4.81

13.3
39.0

116

ka To

0.074 0
0.037 4
0.013 1

0.004 07
0.001 22
0.000 365

0.0819
0.0741
0.0630
0.0542
0.0476
0.0425

0.210
0.165
o.a39
0.122
0.108
0.0969

c/k~ To

2.84
4.41

10.6
30.0
88.5

265

k~ To/5

0.740
3.74

13.1
40.7

122
365

2hkaT, 1 cR =— cosh
6 2 k~T

(A 18')

We have used a definition of the Dirac 6 function and
have included only one quantum-dot energy level at c
above the Fermi level po of reservoir R. Because Ref. 19
quotes results for a single quantum dot, Eq. (A18) must
be halved and Eq. (A19) doubled to obtain

fact that the QDR operates best when its response to an
applied temperature difFerence is far from linear. The
QDR thus serves as an example of a system for which the
standard theory of thermoelectrics does not produce ac-
curate results. Care must be taken in calculating the
properties of a thermoelectric refrigerator when the tem-
perature is reduced to a small fraction of the ambient
temperature.

(A 19')

With the correspondence between our notation and that
ofRef. 19, c. 6;„,u S, R 6 ', and6 ht;we
see that our Eq. (A18') for the tunneling resistance agrees
with their Eq. (5.12) for the tunneling conductance, and
our Eq. (A.19') for the thermopower agrees with their Eq.
(5.10).

6. Linear-response base temperature for QDR

The base temperature can be obtained from the dimen-
sionless thermoelectric figure of merit ZT by using Eq.
(A3). In this section, we compute the optimum QDR
base temperature and tabulate it as a function of 6. As
given by Eq. (A22), ZT is a function of 5, s, and ksT.
e V& does not enter as it did in the numerical simulation of
Sec. II 0 because the optimum value is already obtained
in solving for Eq. (A3). ZT exhibits a maximum (ZT),„
with respect to c and k~ T.

We computed the numerical integrals in Eq. (A22) us-

ing six energy levels for each quantum dot (as in Sec.
IID), varying E and k&T to obtain (ZT),„. Then we
found the base temperature using Eq. (A3). We present
these results in Table II. (ZT),„ increases quickly as 5
decreases; the values of ZT achieved by the QDR are
much greater. than 1. This is in accord with the results of
Sec. II D, which indicate that the QDR is capable of re-
ducing the temperature by a large factor. However,
despite this qualitative agreement, the linear-response
calculation and numerical simulation of the QDR base
temperature disagree quantitatively.

By comparing the values for ( T/To ) in Tables I and II,
we see this sharp disagreement. The linear-response
theory clearly underestimates the temperature reduction,
and the comparison becomes worse as the temperature
reduction increases. This inaccuracy is a result of the

7 Physical origins of inaccuracy of linear-response theory

Aside from the nonlinear dependence of I and I' on
AT=T —To, there is another, more subtle reason that
the linear-response theory of thermoelectrics does not
predict the correct base temperature for the QDR. In the
linear-response theory of Ref. 2, Ohmic losses in the
semiconductor thermoelements give rise to heating of the
reservoir. This makes the net cooling power depend non-
linearly on current, as I R. This nonlinearity is what
causes the base temperature to be finite even in the ab-
sence of external heat leaks; without Ohmic losses, the
linear-response theory predicts that the base temperature
of a thermoelectric refrigerator is always zero. However,
the QDR does not sufFer from Ohmic losses in this way.
While Ohmic losses should occur in the 2DEG, the pri-
mary heat leak (aside from phonon absorption) in the
QDR is the electronic thermal conductance of the quan-
tum dots. Thus the derivation of the base temperature
Eq. (A3) in terms of the dimensionless figure of merit ZT
does not apply to the QDR.

We have included the linear-response analysis in this
paper in order to demonstrate that, when analyzing the
properties of a thermoelectric refrigerator, care must be
taken to identify the true heating mechanisms. It does
not suffice to quote a high thermopower or even a large
thermoelectric figure of merit to prove that a device will
be efFective as a thermoelectric refrigerator. It is neces-
sary to perform a numerical simulation such as we have
clone in Sec. II 0, or, better, to build a real device and
measure its base temperature.

Tote added. It has just come to our attention that a
device similar to the QDR, in which a quantum dot is
cooled rather than a bulk 2DEG, has just been dernon-
strated [Leo Kouwenhoven, Science 268, 1440 (1995).
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