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EfFects of quantum lattice fluctuations on the charge-density wave
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The effects of quantum lattice Quctuations on the charge-density wave (CDW) of a one-
dimensional one-band model for halogen-bridged mixed-valence linear chain complexes are studied
by a functional integral approach. Equations for the phonon order parameter and the phonon exci-
tations are derived within a one-loop approximation. They can be applied to any value of the ionic
mass ranging from the M = 0 (antiadiabatic limit) to the M = oo (adiabatic) limit. We find that
the dimerized CDW survives the quantum lattice Quctuations for arbitrarily small electron-lattice
coupling. In the case of 6nite ionic mass, the low-energy properties of the system are governed
by the limit of M = 0 for a weak electron-phonon interaction, whereas they are governed by the
adiabatic limit (M = oo) for a stronger electron-phonon interaction.

I. INTRODUCTION

In a one-dimensional system, the metallic state of elec-
trons is unstable against the electron-phonon interaction,
and it results in the Peierls transition. A dimerized lat-
tice will be formed at band half-Ailing. This is true for an
arbitrarily small coupling between the electrons and the
lattice in the mean-field adiabatic approximation, which
treats the phonon degree of &eedom classically. In the
case of polyacetylene, the archetype of conducting poly-
mers, the ground state is a bond order wave (BOW).
The elementary excitations on the BOW are solitons and
polarons, which play an important role in the explana-
tion of the peculiar properties of conducting polymers.
For halogen-bridged mixed-valence transition-metal lin-
ear complexes (HMMC or MA chains), the symmetry
broken ground states exhibit many possibilities, such as
BOW, the charge-density wave (CDW), the spin-density
wave (SDW), and their competition and coexistence. 4'

On these symmetry broken ground states, there exists a
variety of localized excitations such as solitons, polarons,
bipolarons, and excitons. The contributions of these
localized excitations to various observable effects are es-
sential in the understanding of experimental results such
as optical absorption and resonance Raman scattering.

Although the mean-field theory of the one-dimensional
electron-phonon models has achieved great success, the
quantum lattice fluctuations are believed to be important
in the understanding of these linear and nonlinear opti-
cal properties. A prime question is whether the sym-
metry broken ground state survives the quantum lattice
fluctuations. For the Su-SchriefFer-Heeger (SSH) model,
it has been shown that the ground state is of a dimer-
ized lattice for the spin degree of freedom N & 2.~

Furthermore, by employing renormalization-group argu-
ments, Fradkin and Hirsch showed that the low-energy
behavior of the system is governed by the M = 0 limit,
i.e. , by the Gross-Neveu model, and not by the adiabatic
M = oo limit. However, in the one-dimensional one-

band model for MX complexes, the symmetry broken
ground state is a CDW state, not a BOW state, will the
situation be different? It is the purpose of this paper to
investigate the effects of quantum lattice fluctuations on
the CDW of MX complexes. We find that the dimer-
ized CDW survives the quantum lattice fluctuations for
an arbitrarily small electron-lattice coupling as the BOW
in the SSH model. For the case where the ionic mass is
finite, it agrees with the renormalization-group analysis
by Fradkin and Hirsch that the low-energy properties
of the system are governed by the M = 0 limit for a
weak electron-phonon interaction. However, for a strong
electron-phonon interaction, the quantum lattice fluctu-
ation is suppressed and the system's behavior is governed
by the adiabatic limit.

This paper is organized as follows. In Sec. II we de-
scribe the model Hamiltonian which we use in this work
and derive an effective phonon action by integrating out
the electronic variables. In Sec. III we studied the quan-
tum effects on the phonon excitations of the MX model
at the CDW state in a similar way by treating the o.-
and m'-modes of the Hubbard model. In Sec. IU the
equations for the phonon order parameter are derived
within a one-loop approximation, and the dependences
of quantum lattice fluctuations on the ionic masses and
the electron-phonon couplings are discussed. In the last
section, a brief summary is given.

II. THE EFFECTIVE ACTION

The one-dimensional one-band model for the MX
complexes can be written as

t tH = ) pi + Kui —) tp(ci ci+i ~ + ci+i ci ~)
l l, s

+ ) n(ui —u)+i)c, ,ci „
L, s
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where cl, and cl, are the creation and annihilation op-
erators of electrons sitting at the lth metal ion (M) with
spin s, u~ (its conjugated momentum is p~) is the displace-
ment of the tth halogen ion (X) to is the supertransfer
integral between the nearest-neighbor metal ions, the co-
efBcient o. denotes the coupling strength parameter, and
K is the elastic constant between the halogen ion and its
neighboring metal ones. M is the mass of halogen ions.
In this model, we have assumed the metal ions are much
heavier than that of halogen ions, therefore the effects of
quantum fluctuation are mainly induced by the halogen
ions.

It should be noticed that the above Hamiltonian for
MX complexes differs from the SSH model for polyacety-
lene by two points. In the SSH model, the displacement
ul modifies the transfer integral to. Such an interaction
is called site-ofF-diagonal. In Eq. (1), on the other hand,
ul is coupled to the energies of electrons on the metal
ions. The interaction is site-diagonal. Another is the
bare phonon dispersion. The bare phonon excitations
are correlated in the SSH model while they are indepen-
dent in Eq. (1). These two points will be smeared out in
their continuum versions, but will they lead to a qual-
itatively different result on the quantum Huctuations?

To take into account the quantum lattice fluctuations,
we employ a functional integral approach. The parti-
tion function for the Hamiltonian (1) can be written as
a functional integral over both complex and Grassmann
variables:

Z= Vv& 6 (2)

where the action S is

S = J, d~ ) [Ku,'+ ,'M(du(/d7—-)']
l

+ ).&i;.(~- —v)«, .
l, a

—).to(«;.«+~, + &~+i,.«, )

u)(~) = ) e'~ '+ luq(n),
1

v'P~ (4)

and similarly for P&*, and « „then for the phonon vari-
ables we have two branches on a dimerized lattice, that
is, the acoustic phonon aq(n) [= uq(n)] and the opti-
cal phonon bq(n) [:—uq+q(n)], Q = 2k~ (kF = vr/2 for
the band half-filling, the lattice constant has been set as
unit). For the Grassmann variables we could introduce a
spinor notation via

~( p„„

which are right- and left-moving electrons, respectively,

) ~(+I +I—1)4't, O'I,

l, 8

By making Fourier transformations on the integral vari-
ables

we could rewrite the partition function as

Z = 'V a*a, b*b, 4*4 e

and the corresponding action could be written as a sum
of five terms,

S=S +Sg+S, +S,+Sb (7)

where the acoustic- and optical-phonon parts of the ac-
tion are, respectively,

S. = ) [K+ —,'Mn']a, (n), (-n),
q, O

Ss = ) [K+ 2Mn ]bq(n)b q(
—n),

q, A

(sa)

(sb)

the electronic part of the action is

S, = ) 4„,((u) [(iur —p) + 2to si nk
.

O]s@A, , (~), (8c)

and the acoustic-, and optical-phonon —electron interac-
tion parts are the following:

S,= — ) ) sin(q/2) aq(n)
q, A A„~,a

x @tq, ((u) 4 g q, (ur —n), (sd)

Ss, = — ) ) cos(q/2) bq (n)
q,B k, ~, s

xct„,((u)ag@A, q, ((u —n), (8e)

where o.; are Pauli matrices.
As seen from Eq. (8d), the coupling between electrons

and acoustic phonons vanishes for small q. Hence we
will focus on the optical phonons although the effects of
acoustic phonons can be readily taken into account, and
the &equency of acoustic phonons will remain as the bare
one sr~(q) = erg = +2K/M, a dispersionless excitation.
One can obtain an efFective phonon action by integrating
out the electronic variables of the partition since the ac-
tion in Eq. (7) is bilinear in the Grassmann fields. The
resulting partition function is

Z = B b'b ~-'-« (s)

and the efFective action is

S,ff = ) [K+ 2Mn ]bq(n)b q( —n) —Nlndet(M),

III. THE PHONON EXCITATIONS

A. Saddle point approximation

By the functional derivation of the effective action
S ff with the phonon variable bq (n) vanishing, we have

(1O)

where N is the spin degree of freedom and det denotes
the determinant of the matrix ~, which is defined by
the actions S, + Ss, = Q, 4'ted@, and has k, u, and
the indices of the Pauli matrices as labels.
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the lattice dimerization, i.e. , the phonon condensation
at zero momentum and zero &equency (2nb~(O))
i/PLED& p8ri p where the phonon order parameter b,
describes the lattice dimerization. Defining the unper-
turbed electronic Green's function Gp(k, ur) by

Gp(k, (u) = —i(ip) —p+ 2tp sinkos —Aoi)

and bs(O) = (b~(O)) + b~(O), we obtain the effective ac-
tion by expanding the logarithm in order of b:

1 5

1.0
&I

0.5

/
/

/
/

/

n=l
(i2)

S & is the zeroth-order contribution in b and. is given by

Q2
sz ——ivPL — )ndetGD (k, w)I (13)

8mAtp

(14)

follows immediately fI'om

in the thermodynamic limit, and the dimensionless
electron-phonon coupling constant A is defined by

Nn /2mKtp, th. e chemical potential p = 0 at
the half-filling case. The electronic spectrum EA,

+Q(2tp sink)2 + A2, the electronic gap is 2A.
The mean-field gap equation

0.0
0.0 0.5 1.0

0/2A
1.5 2.0

FIG. 1. The dependence of the optical-phonon frequency
O(0) on the ionic mass M. up is defined in the text. The
dashed line is the adiabatic result Q(0) = wp. In the antiadi-
abatic limit, M = 0, up ——oo, and O(0) = 2A.

which applies to all values of the halogen ionic mass rang-
ing from the M = 0 (antiadiabatic limit) to the M = oo
(adiabatic case) limit, and p)p2 = 2Ap)&2. The calculation
of the function f (q, O) could be done in a straightfor-
ward way with the help of the mean-field gap equation
(14), the result shown as a function of a single variable

)l = +4tpq2 + Oz/2b„, that is, f (q, O) = F(rI), with the
function I" (rl) as

E(il) = )l (1+)l ) ) sinh g. (19)
where A is the integral cutofF. The first-order term 8,&
vanishes since S,& is obtained from the saddle point ap-
proximation. It can be seen that the solution Eq. (14)
becomes exact in the limit of the spin degree of freedom
N —+ oo since the zeroth-order action is proportional to
¹

B. The phonon excitations

Actually, Eq. (18) is a self-consistent equation for the
phonon excitations. Since we used a real temperature
variable r in the Fourier transformation in Eq. (4), the
renormalized optical-phonon &equency O(q) should be
related with O in Eq. (18) by O(q) = iO, with which
we can get a real &equency O(q) by solving Eq. (18).
Looking at the case q = 0, the phonon excitation energies
are determined by the self-consistent equation

The second-order contribution to the efFective phonon
action is

(20)

S(~l ——) b~(O)b q( —O)[2MO + Ksin (q/2)
q, A

+2KA f (q, O) cos (q/2)], (16)

where the function f (q, O) is defined as

dkdcof (q, O) = I/2A + 2~to
27r 2

x Tr [Gp (k —q, (u —O) o iGp(k, (u) vari].

where ( = O(0)/2b, and g = ~p/2A. The numerical
result is given in Fig. 1. It can be seen that the adia-
batic approximation (the dashed line in Fig. 1) is good
for wp/2A ( 0.4 and the phonon excitation energies O(0)
are always lower than that of electronic exitations. In the
limit of M = 0, O(0) = 2A, the gap of optical phonons
equals that of electronic excitations.

IV. THE PHONON ORDER PARAMETER

O + (u~ sin (q/2) + ~p f (q, O) cos (q/2) = 0, (18)

The fI'equencies of optical phonons are determined by
the vanish of the coefFicients in Eq. (16), that is, the
equation for the optical-phonon excitations is

A. One-loop approximation

By performing the integration in Eq. (9) over the fluc-
tuations b to the second-order term, we have
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(21) 1.0

r[z ] = r, [z ] + r, [z ], (22)

the re[A] = S,& /PL is the zeroth-order contribution,
and the one-loop contribution rq[A] is given by

1
Ig[A] =— in[2MB + Ksin (q/2)

27r 2

+21Kf (q, 0) cos (q/2)]

where the free energy density r[A] is composed of two
parts,

0.8
&I
DC

~ 0.6

~ 0.4

& 0.2

0.0
0.0 0.1 0.2 0.3 0.4

ELECTRON-PHONON COUPLING g
in the zero-temperature and thermodynamic limit. The
equation for the phonon order parameter L is determined
by clr[A]/cIA = 0. Within the one-loop approximation,
we have

dkdc0 1

(2~)' ~'+ E„'

(u2+(u~2sin (k/2) f(k ~)
4NA uo f'(k, tu) cos2(k/2) f'(k, w)

+
—1

. (24)

The derivation of the function f (k, w) with the phonon
order parameter can be obtained by Eq. (17). It is
f'(k, w) = 44f(k, w)/(u2+4to2kz+4A2). Then the elec-
tronic gap A satisfies the equation

dkdM 1

(2') (u2 + 4tok

1 1
Nd(u +d 4t A: +44

1 = SvrAto

(25)

where we have used the abbreviations

d1 =1+ 2
Cd()

4L2
2A(4t, )'

(26)

d1 describes the eKects of the finite ionic mass while d2
is caused by the lattice elastic energies. By performing
the integral of Eq. (25), we get the electronic gap

FIG. 2. The dependence of the gap parameter A on the
electron-phonon coupling A. The solid line is for M ~ oo and
the dashed line is for M = 0. The dot-dashed line is for the
system with an intermediate ionic mass M (ug = 0.2). tp is
taken as unit.

and 3. Figure 2 gives the dependence of the gap
parameter L on the electron-phonon coupling A for
both the adiabatic and the antiadiabatic limits and for
an intermediate ionic mass M. The behavior of the
system for an intermediate ionic mass M is interest-
ing. For a weak electron-phonon interaction, the elec-
tronic gap L is extremely close to the value of that
in the antiadiabatic limit, i.e. , the quantum Huctua-
tion reaches its maximum. This result is in agreement
with the renormalization-group analysis. However, for
a stronger electron-phonon coupling A, A becomes close
to L g, i.e., the quantum Huctuation is suppressed by
the electron-phonon interaction. This behavior could be
understood because we know that the electron-phonon
interaction will induce the electronic cloud around the
ions and then the e8'ective mass of the polaron formed
by an ion with its surrounding electronic cloud becomes
very large for a strong electron-phonon interaction. It is

1.0

0.8

2Aln2)a = Aexp
Ndgd2

2Ai1—
Ndgd2)

(28)

w 0.6
CI

+0.4

It can be seen that in the adiabatic limit (M -+ oo)
d1 ~ oo, the quantum fluctuation is completely sup-
pressed, and b, = A g is the mean-field result (14). In
the antiadiabatic limit (M = 0) dq ——1, although d2 ) 1,
the behavior of Eq. (28) should be similar to d2 ——1 in
the weak electron-phonon interaction since it is governed.
by the M = 0 limit as shown by the renormalization-
group arguments. The numerical calculations also show
it.

We show the numerical results of Eq. (28) in Figs. 2

0.2

0.0
0.0 0.5 1.0

~q/&ad
1.5 2.0

FIG. 3. The dependence of the phonon order parameter
on the ionic mass M (equivalently on the bare phonon

frequency wg) for different electron-phonon couplings A. A z
is the value in the adiabatic limit.
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easy to see that the quantum Buctuations are suppressed
for the system with a large ionic mass. Figure 3 shows
the dependence of the gap parameter A on the ionic mass
M (or equivalently on the phonon frequency ~g, which
is proportional to I/v M) for different electron-phonon
couplings A. It can be seen that for a weak electron-
phonon coupling, such as A = 0.1, the gap parameter A
decreases with the increase of the phonon frequency ug,
and at a critical point (it is wg/A g = 0.68 for A = 0.1)
there is a sudden jump and then 4 becomes the value at
the M = 0 limit. ID. other words, at a large region of the
ionic mass &om zero, the quantum fluctuation is impor-
tant and the gap parameter L is reduced to a very small
value, however when the ionic mass increases to a critical
value, the quantum Huctuation is mostly suppressed and
then 4 has a jump. For a stronger electron-phonon in-
teraction, A decreases smoothly with the increase of the
phonon frequency ug. The parameter region, where the
behavior of the system is governed by the antiadiabatic
limit, decreases with the increase of the electron-phonon
coupling A.

04

~0.3
Cl

~ 0.2Q

0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5

ELECTRON-PHONON COUPLING

FIG. 4. The dependence of the charge-density wave Ap on
the electron-phonon coupling A. The solid line is for M ~ oo
and the dashed line is for M = 0. The dot-dashed line is for
the system with an intermediate ionic mass M (&ug = 0.2). to
is taken as unit.

B. The charge-density wave

The CDW parameter A p, which is de6ned by

(P, c&,cI, ) = 1 —(—1) Ap, on the metal ions can be
calculated as follows:

NQp= 4' Atp
(30)

The dependence of the charge-density wave Lp on the
electron-phonon coupling A is shown in Fig. 4, from which
a similar behavior with the gap parameter 6 can be seen.

where the electronic partition function Z is defined by
Z = Z, Zy, and Zy = exp( —NPLA2/8vrAto) is the parti-
tion function caused by the elastic energies of the lattice.
By using the equation BI'[Aj/BA = 0 for the determina-
ton of the phonon order parameter A, we have the charge
disproportion

functional integral approach. Both the phonon order pa-
rameter and the phonon excitations for any value of the
ionic mass M are obtained. The calculation is performed
by first integrating out the electronic variables and then
expanding the effective action to the quadratic terms in
the phonon variables. The equations for the phonon
excitations are derived by vanishing the coefFicients of
the quadratic term of the effective action. Our results
show that the phonon excitation has the electronic gap
as its maximum in the antiadiabatic limit. The equation
for the phonon order parameter (also the charge-density
wave) is obtained by integrating the phonon variables up
to the quadratic terms. For the system with an interme-
diate ionic mass the low-energy behavior is governed by
the antiadiabatic (M = 0) limit, which is in agreement
with the renormalization-group analysis of Fradkin and
Hirsch. However, for a stronger electron-phonon interac-
tion, the quantum lattice fluctuation is suppressed and
the system's behavior is governed by the adiabatic limit.
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