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We study T = 0 spin-density-wave transitions in two-dimensional Fermi liquids in which the
ordering wave vector Q is such that the tangents to the Fermi line at the points connected by Q
are parallel (e.g. , Q = 2ps in a system with a circular Fermi line) and the Fermi line is not flat.
We show that the transition is first order if the ordering wave vector Q is not commensurate with a
reciprocal lattice vector C, i.e., Q g C/2. If Q is close to C/2 the transition is weakly first order
and an intermediate scaling regime exists; in this regime the 2@~ susceptibility and observables such
as the NMR rates Tq and T2 have scaling forms which we determine.

I. INTRODUCTION

Quantum phase transitions have attracted substantial
recent interest. Antiferromagnet-singlet transitions in
insulating magnets and ferromagnetic and antiferro-
magnetic transitions in Fermi liquids have been stud-
ied in detail, and the crossover between the insulating
and Fermi liquid critical points in two spatial dimensions
has also been studied. Here we consider an important
case which has not so far been discussed in the litera-
ture, namely, what we call the "2p~" spin- or charge-
density-wave transition of a fermion system. By "2p~"
we mean an ordering wave vector Q which connects two
points on the Fermi line with parallel tangents (see Fig.
1). For a circular Fermi line any vector Q of magni-
tude 2p~ connects two such points. In this paper we
consider explicitly the spin-density-wave case, but our
results can be applied with only minor modiGcations to
the charge-density-wave case. We assume that the Fermi
line is not straight. We also assume that Fermi liquid
theory adequately represents the noncritical properties
of the fermions. If it does not, our results do not ap-
ply. We brieBy discuss one non-Fermi-liquid scenario in
the conclusion. One important motivation for studying
the 2p~ case is the high T superconducting material
I a2 Sr Cu04, in which strong magnetic fluctuations
have been observed; the fluctuations are peaked at an
x-dependent wave vector Q(x) which is claimed to be a
"2@~" wave vector of the Fermi line calculated by stan-
dard band-structure techniques for this material. Our

results may also be relevant for quasi-two-dimensional
materials such as (TMTSF)2PFs.

In order to study critical phenomena analytically, one
expands about a mean Geld solution. If Fermi liquid the-
ory is a good starting point, then the appropriate mean
field theory is the random phase approximation (RPA),
in which the susceptibility y(io, cI) is given in terms of the
interaction constant g and the polarizability of noninter-

FIG. l. Sketch of Fermi line and important wave vectors.
The Fermi line shown here is similar to that claimed to be
appropriate to Lai sSro i4Cu04. The ordering wave vector Q
for spin Quctuations connects two points on the Fermi line.
It is assumed that the tangent to the Fermi line at one end
of the vector Q is parallel to the tangent to the Fermi line at
the other end. We have also shown a typical momentum of a
spin fluctuation g. We parametrize the vector k = cl —Q by
its Cartesian components kz and k~~ in the coordinate system
(shown by dashed lines) associated with the Fermi line at the
points connected by Q.
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acting fermions, Ile(w, q), by y(a, q) = IIO(w, q)/[1—
g IIO(tu, q)]. The transition occurs at the wave vector Q
as g is increased to the point at which g IIO(0, Q) = 1. In
three spatial diinensions, Ilo(0, q) is not maximal at any
2py wave vector; moreover, dIIo(O, q)/dq is logarithmi-
cally divergent as q ~ 2p~. Therefore a "2@~"transition
is impossible in d = 3 and so we focus on d = 2 in this
paper.

In the two-dimensional case, IIO(O, q) is so strongly
peaked at q = 2@~ that it is natural to assume that the
spin-density instability happens at "2p~." The "2p~"
case is difFicult to treat by the methods used previously
to study phase transitions at other momenta. ' In these
works the fermions are "integrated out" and the problem
is reduced to a model of interacting bosonic spin fluctu-
ations. In the "2p~" case the action functional obtained
by integrating out the fermions has coefIicients which are
singular and nonanalytic because the fermion response
functions are nonanalytic for Q = 2p~. These nonana-
lyticities lead to divergences in the action as T —+ 0 and
make it difricult to apply the conventional approach. '

Instead, in this paper we apply a perturbative renormal-
ization group technique to a model which includes both
spin fluctuations and. fermions.

Our perturbation parameter is 1/K, the fermion spin
degeneracy. The leading order of the perturbation theory
is the familiar RPA approximation. The next order is a
theory of electrons interacting by exchanging RPA fluc-
tuations. We show that this theory is in&ared divergent.
We sum the leading in&ared divergent contributions us-
ing the renormalization group.

The behavior of spin fluctuations changes dramati-
cally if their wave vectors are close to half of a re-
ciprocal lattice vector C. The important parameter is
AG =

~ Q —G /2~. If 4G is sufficiently small we must dis-
tinguish two regimes in the renormalization group flow:
large momenta, where the in&ared cutoff is greater than
LG, and small momenta, where it is less. For large mo-
menta the divergences are logarithmic; the logarithms
may be summed by the renormalization group to power
laws and we use the 1/K expansion to find the exponents.
Although the physical value of % = 2, the small value
of the numerical coeKcients in &ont of these logarithms
suggests that the exponents obtained in the first order
in 1/N are close to their exact values at K = 2. For
small momenta, the divergences are much stronger and,
we show, drive the transition first order as soon as the
regime of small momenta is reached.

The outline of this paper is as follows. In Sec. II we
define the model, derive the RPA theory, and make a con-
venient scaling of variables. In Sec. III we analyze the
fluctuation corrections and derive renormalization group
(RG) equations in the regime of large momenta. In Sec.
IV we derive analogous equations in the regime of small
momenta and show that they imply that the transition
is first order. In Sec. V we discuss the physical conse-
quences of our results. Section VI contains a summary of
the results, a discussion of their relation to previous work
on quantum critical phenomena and correlated electrons,
a note on the extension of our results to a charge-density-
wave transition, and a conclusion.

II. MODEL AND RANDOM PHASE
AP PROXIMATION

Our starting point is a Hamiltonian H describing
fermions moving in a lattice and interacting with each

h

other via a short range four-fermion interaction W:

II = ) c(p)c cp ~

t+W g c cp+q ~c ( pep& q p.
p)p iq)~)P

We assume that a T = 0 spin-density-wave transition to
a state with long range order at wave vector Q occurs
as W is increased to a critical value W . Because we
expect the physics in this region to be determined by the
exchange of spin-density fluctuations we use a Hubbard-
Stratonovich transformation to recast Eq. (1) as a theory
of fermions coupled to spin fluctuations Sz. The theory
is described by the action

A(c, S) = ) G '(e, p)ct „c„„,
pa

+) D (~, q)S ~S

+gb g C~ p ~OcxPCe+cu p+q Ps—cu —q

p)q)&)~

Here G(e, p) is the fermion Green function, D(w, q) is the
spin fluctuation propagator, and gb is a bare coupling
constant derived &om W. When Hubbard-Stratanovich
transformation is applied to Eq. (1), the result is
Ds(tu, q) = 1, g& ——W, and G~(e, p) is the noninteracting
fermion Green function, i.e.,

Gg(e, p) =
ie —e(p)' (3)

The interaction between spin fluctuations and fermions
changes the form of the fermion Green function and spin
fluctuation propagator. We assume that the effects of the
short scale fluctuations which do not become singular at
the critical point can be described by conventional Fermi
liquid renormalizations.

The action, Eq. (2), has two dimensionless parameters:
the number of spin components, n, and the fermion de-
generacy, ¹ In the physical situation n = 3 and % = 2.
We will expand about the limit n/K -+ 0. We will argue
that the expansion parameter is (n —2)/X and, moreover,
the numerical coefIicients of this expansion are small,
so that this expansion leads to a physically reasonably
results, even for n = 3 and N = 2. To formally jus-
tify our expansion we assign the fermions an extra index
a = 1, ..., M and assume that the fermions transform as
SU(2) xU(M) with % = 2M.

The action, Eq. (2), describes an O(3) vector field S
coupled to SU(2) symmetric fermions. Because it has
no natural small parameter, we will consider the the-
ory in the limit of large fermionic degeneracy. The sim-
plest possibility would be to consider an m-component
field S (m = 3 in the physical problem) coupled to k-
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fold degenerate fermions transforming as SU(k). How-
ever, the most natural generalization of Eq. (2) to SU(k)
fermions involves coupling them to n = k —1 degenerate
spin Geld S transforming as the vector representation of
SU(k). The combinatoric factors associated with loops
in this theory involve n/k, so a large k expansion is not
possible. Instead, we assign the fermions an additional
Bavor index a = 1, ..., M and assume that fermions trans-
form as SU(k) x SU(M). The total fermion degeneracy is
N = kM; S has n = k —1 components, and the large
M limit at fixed k generates an expansion. We argue
that this expansion provides useful information about the
physical case n = 3 (i.e. , k = 2), N = 2 (i.e., M = I)
because the renormalization of the charge of this theory
is controlled by (n —2)/1V and, moreover, the numerical
coeKcents are small. We will write our results in terms
of n and ¹,however, they are valid only for n = k —1
and N = kM.

The large N expansion is a loop expansion; the lead-
ing order of perturbation theory for the action (2) is
the random phase approximation (RPA) which takes
into account the renormalization of the spin propaga-
tor by the electron polarization bubble, Do (w, q)
Ds (~, q) —Ilo(~, q).

We shall be interested in momenta close to the mo-
mentum Q at which IIo(0, q) is maximal. For wave vec-
tors near Q the momentum and &equency dependences
of IIo(0, q) are nonanalytic and contr'oiled by Fermi line
singularities. Because the singular behavior of Ilo(w, q)
is controlled by the distance &om g to the Fermi line,
it will be convenient to parametrize the momentum g in
terms of the variables k~~ and k~ shown in Fig. 1.

The fermion polarizability Ilo(~, q) can be calculated
by summing all diagrams which are irreducible with re-
spect to the fermion-fermion interaction and have two
external S & legs. This generalizes the RPA by includ-
ing Fermi liquid corrections. This sum has contributions
&om short length scale processes which give Ilo(ur, q) an
analytic dependence on q and u and also contributions
&om Fermi line singularities, which lead to a nonana-
lytic dependence of IIo(~, q) on q and u. Thus we write
IIo(~, q) = II" (~, q)+ II""s(~,q); within Fermi liquid
theory singularities come &om the diagram shown in Fig.
2. The analytic expression corresponding to this diagram
is

for the fermion Green function

G(e, p) =
V 2

ZZE —Vy'Pt) +

LG m —1.
2p j'

In the new variables the action retains the general form
(2) but the Green function of the fermions changes to

1
G e, p

ized —
pll + p2~/2

while the bare spin fluctuation propagator becomes

QPOPF
Vy'

Evaluating the diagram shown in Fig. 2 yields the

0,

-0.2

Here v~ is the renormalized Fermi velocity, po is the ra-
dius of curvature of the Fermi line, pll (p~) are momen-
tum components normal (tangential) to the Fermi line
as measured &om the points +Q/2, and z is the quasi-
particle residue. Note that coordinates

p~~ and p~ are
compatible with the spin Huctuation coordinates kI~ and
kg.

All dominant infrared contributions come &om pro-
cesses in which an electron is scattered from one small re-
gion of fermion momenta around Q/2 to another around
—Q/2. It is convenient to introduce dimensionless mo-
menta parametrizing these regions and rescale all fields
so that the resulting action does not contain dimensioned
variables. We choose

—5/2 —1/2
P L ~ QPOPFP JICe,p ~-&F PF PO Ce,p &

—1/2 —3/2
Pll ~ PFPll & Sw, le ~ go Po PF S~,k, (6)

6 M V~py 6, go ~ 1.

After this transformation we may assume we are dealing
with a circular Fermi surface of unit radius but with an
upper cutofF on angular integrals of the order of pF/po
and an upper cutoK on radial integrals of the order of 1;
the dimensionless parameter controlling the incommen-
surability becomes

II""s(~,q) = —go ) G(e + ~,p + q) G(e, p),

where go represents the interaction constant renormal-
ized by Fermi liquid corrections. To obtain the form of
Fermi line singularities we expand the spectrum of the
fermions in the vicinity of the points +Q/2, obtaining

-0.4

-0.6

-0.8

-0.5 0.5 1.5

FIG. 2. Diagram yielding the nonanalytic momentum and
frequency dependence of the polarizability Ilo(w, q) in Fermi
liquid thecry. The solid lines are fermion propagators.

FIG. 3. The qualitative form of fermion polarization
II(0, k) in the RPA approximation. k = 0 corresponds to
the commensurate vector G/2; peaks occur at k correspond-
ing to q = Q and q = G —q. The inset shows the enlarged
structure of the double peak maximum.
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singular part of the fermion polarizability in d = 2:

N 2—II""s((d,q) = — Re kll + k& u
27rz 4

Here and below we are use Matsubara &equencies u =
2xrnT so that II(~, q) is purely real. II""s(ur, q) depends
only on the combination k~~ + 4k& because for a circular
Ferxni line II""s(~,q) is a function only of ~q~

—2p~.
For electrons on a lattice there are additional images

of II""s(ur, q) coming from fermion transitions with mo-
menta shifted by reciprocal lattice vectors. The most im-
portant of these is the transition with momentum C —q
which might also be close to Q in a typical situation.
Generally, we expect that the singular contribution to
fermion polarizability comes &om the transitions with
momenta transfer q and G —q:

II()(~, q) = II""s(ur, q) + II""s(~, C —q)
+II " '(~, q).

FIG. 5. Leading contribution to the vertex renormaliza-
tion. Solid lines denote fermions; wavy lines denote spin Quc-
tuations.

corrections xnay be organized in a 1/N expansion be-
cause the spin Buctuation propagator is proportional to
1/N and each fermion loop contains a factor of N. The
leading diagraxns in 1/N are the self-energy correction
shown in Fig. 4 and the vertex correction shown in Fig.
5. These diagrams are in&ared divergent; the divergence
is logarithmic if the external momentum is larger than
LG and power law if the external momentum is less than
LG. These two cases require separate discussions.

Here II " x(ur, q) is the analytical contribution to ferrnion
polarizability coming &om fermion momenta far &om
Q/2; its dependence on the momenta and frequency is
negligible relative to the strong dependence coming &om
the singular parts.

There are two regimes of q at T = 0. For k )) LG,
IIo ((u, q) has a symmetric square root peak at a wave
vector indistinguishable from C/2. At smaller scales,
k « LG, the peaks separate and each peak acquires
asymmetric form: II(0, k) —~k at k ) 0 and II(0, k)
—~k~/(AG)xl' at k ( 0. The qualitative form of II(0, k)
is shown in Fig. 3.

After RPA corrections are included, the spin Buctua-
tion propagator entering the action (2) becomes

(10)

gc =
gpop~il(0, 0)

For g = g„D(~,q) diverges as q -+ Q and (d ~ 0.
For g & g the divergence is cut off. It is convenient to
define a bare dimensionless cutoff L0 by

1
Do(o &) = ~ .

0

Within the RPA, L0 oc g —g.
Corrections to the RPA involve diagrams in which elec-

trons interact by exchange of spin fluctuations. These

FIG. 4. Leading contribution to the self-energy. Solid line
denotes fermion; wavy line denotes spin Huctuations.

Within the RPA, a second order phase transition occurs
when the interaction constant g0 controlling the value of
D0 is increased through the critical value

III. SCALING AT LARGE MOMENTA

At large momentum the small difference between the
Q and C/2 is unimportant and we may write

D(~, k)

Re27rz
~k~ ~k~+ 'LECT + k~I + ~ + 'EZ(d —

k~~ + 4

(12)

for the spin Buctuation propagator. We use this and the
fermion Green function (7) to calculate leading correc-
tions to the fermion self-energy, the fermion-spin Buc-
tuation vertex, and the spin Buctuation propagator. We
find that the fermion self-energy and fermion-spin fluctu-
ation vertex are logarithmically divergent, while the po-
larization bubble itself which controls spin fluctuations is
not divergent. We argue that these logarithms sum to a
power law and we calculate this power law to order 1/N.

We begin with the self-energy. The leading contribu-
tion is shown in Fig. 4 and corresponds to

E(e, p) = g' fG(e+ ~, p')D(~, p —p')d~d'p'. (l3)

The form of the fermion Green function implies that
the energy of the scattered electron is small ( e), so
the &equency transferred to the spin Buctuations is small
and the scattered electron remains near the Fermi line.
Although p and p' must both be near the Fermi line,
the angle between them may be large; thus it will be
convenient to parametrize the momenta p and p' by their
polar coordinates p, 8, p', and O'. Moreover, since the
momentum p —p' transferred to the spin fluctuation is
large, we may neglect the &equency dependence of the
spin propagator except as a lower cutoff and estimate the
large momentum p —p' neglecting the small difFerences

)p~
—1 and ~p'~ —1. For electrons near the Fermi line

the difFerence p —p' is always smaller than 2, so the
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main contribution to the spin fluctuation propagator (10)
comes from the term II""s(u, C —q) in (9), yielding

4vrz
( ) (14)

The 1/!8'! dependence of D(ur, p —p') at large 8' leads
to a logarithmic contribution to the self-energy and justi-
Bes our assumption that angular deviations are typically
large. The logarithm is cut off by A which is the largest
of ]e], p —1, and 8 . Substituting Eq. (14) into (13) we

get

Z(e, 8) = —izpe ln(1/A).3¹r
Here n = 3 is the number of spin components and zp
is the usual Fermi liquid wave-function renormalization.
We emphasize again that this expression is only correct
if the in&ared cutoff A is larger than LG.

Note that Z is a function only of energy and 0, so the
Fermi velocity is not renormalized and the structure (7)
that we assumed for the Green function is not changed.
Note also that the relative value of the renormalization
Z(e)/(ze) does not depend on the value of the coupling
constant g or indeed on any other parameter of the the-
ory except for the number of electron components N and
spin components n. Thus, even though g is renormalized
by the interaction, this renormalization is not important
for the calculation of Z(e) and we may expect that the
logarithms sum up to a power law and that the exponent
depends only on n and N. We express the renormaliza-
tion of the self-energy as a scale-dependent wave-function
renorinalization z(A) and find

z (1/A)

with o. = n/(N~Bvr) in the large N limit. Note that
even at N = 2 and n = 3 o. = 0.27 is a small number,
suggesting that the leading logarithm approximation is
reasonably accurate even in this case.

We now consider the renormalization of the interac-
tion vertex g. At leading order in 1/N this is given by
the diagram shown in Fig. 5. The evaluation proceeds
differently &om the evaluation of the self-energy because
the momenta of the particle and hole are on the oppo-
site sides of the Fermi line and the &equency of the spin
Quctuation ~ is not small. It is convenient to use the
Cartesian coordinates pi~ and p~, introduced in (7) and
Fig. 1. The expression corresponding to Fig. 5 is

bg

g

2m. (2 —ri) dedp~~ dp~ 1 1
2 2

pll 2 ~~+ pll

2i~+ 4 +PII +
2i~+ ~4+Pll

—= a ln(1/A)
g Nvr

(i7)

This integral is logarithmic. The coeKcient of the log-
arithm may be obtained by scaling ~ and pll by p& and
evaluating the integral over the rescaled e and pll numer-
ically. We 6nd

FIG. 6. Leading contribution to the mass, A, renormal-
ization. Solid line denotes fermion, wavy lines denote spin
fiuctuations. Heavy dot denotes mass operator A.

with a 0.75. As in the case of the self-energy this
expression exponentiates, leading to

g(A) = (1/A)~go (is)
with P = a ~, which in the physically relevant case
n = 3 and N = 2 becomes P = 0.08, so the correctioiis
to the vertex are very small and we may assume that
the one-loop approximation of the vertex corrections is
reasonably accurate in the physical situation.

Note that both exponents o. and P depend only on
n and N but not on any other parameter. This can
also be seen directly from the action (2) because one
can always scale away the interaction constant g and the
wave-function renormalization z changing the scales of
the S 6elds and &equencies. This shows that the effec-
tive charge controlling the RG How depends only on the
parameters n and N and is not renormalized.

We 6nally consider the renormalization of the spin
fluctuation propagator D(~, q). To order 1/N there
are two diagrams; a self-energy and a vertex correc-
tion. Power counting shows that the &equency- and
momentum-dependent terms in II(u, q) acquire no ad-
ditional renormalization beyond the one imposed by the
momentum-dependent z and g, so D(ur, q) is given by Eq.
(12) with z and g replaced by their running values. How-
ever, there are logarithmic contributions to the mass Lp.
These come &om the diagrams shown in Fig. 6.

The analytic expression corresponding to the diagram
in Fig 6(a) is

bL
G(e, p+ Q)G(e, p)'

d pd gdldde
x G(e —u, p —q) D (u, q) . (19)

The self-energy part of this diagram [second line in (19)j
has an ultraviolet divergence which leads to a trivial shift
of the fermion chemical potential, which we subtract, and
a logarithmic divergence which we obtain by performing
the integrations in the following order. We integrate first
over pll, then over ~, and finally over p~, obtaining an
integral over u, k~, and kll. We then 6nd that k~ can be
scaled out of the integrals, leading to

bh n dk~ n
N !ki! N

= ——c = ——c ln(l/A) . (20)

Here the coeKcient
dxd&

C = 'll'
2

Re 4 + x+i~+ 4
—x+iu

x Im!
'sgn(~)

(2iu —2x + gsgn~)
0.20,
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where g = /4i~ —4x —1.
The contribution of the diagram shown in Fig. 6(b)

may be evaluated similarly, but in this case no subtrac-
tion is necessary. We find ultimately a logarithmic di-
vergence &om the last q~ integral. As was the case for
the diagram shown in Fig. 6(a), the coefficient of the
logarithm is independent of g and z:

bL n —2
cb ln(1/A) (22)

with cg 0.45. By combining the results of these two
diagrams and integrating the resulting scaling equation
we find

b, (A) = AoA" (23)

with exponent g = 2
" ~" + O(1/N2). Evaluating

this formula at N = 2 gives g 0.15. The formula for
A(A) implies that the mass term becomes important at
a scale set by equating the renormalized kinetic terxn to
the renormalized mass term, i.e. , at

g (A) Qz(A)A = ADA".
1

(24)

Solving for the scale A we get
2

~ 1+m —4P
p (25)

IV. SCALING AT SMALL MOMENTA

For small energy and momentum the splitting LG be-
tween the peaks in II(0, q) becomes important. To treat
this regime it is convenient to expand II(0, q) for mo-
menta small compared to LG. It is also convenient to
measure parallel momenta in the units of LG and &e-
quencies in the units of z(AG)AG. In these units the
spin fluctuation propagator

D(~, q) =
k2 k2N Re kll + ~4 +ice —b kll ~4 +

(27)

contains a new parameter b, which, as we show below,
controls the renormalization group flow and which itself
is renorxnalized. In our units the initial value of b is 1/2.

We analyze the model in the same way as in the pre-
vious section. The spin Quctuation propagator is more

A:singular in the region of large and negative kll + ~4 when
the real part of the square root in Eq. (27) is small. The
more singular propagator leads to in&ared divergences
which are stronger than logarithmic, and, we shall show,

This result is meaningful only if A~ ) AG. At energy
smaller than A the in&ared divergences are absent and
the renormalization flow stops. One expects that Lp is
linear in some external control parameter such as pres-
sure (which would vary the interaction constant); thus if
p —p, ) AG we would expect that y(0, Q) would vary
with pressure as

(26)

FIG. 7. Leading contribution to the renormalization of the
spin Buctuation propagator. Solid lines denote fermions; wavy
lines denote spin Quctuations.

The leading correction to b comes &om the diagram
shown in Fig. 7 and may be evaluated similarly. We
obtain

Sb 3'/'n
b 10%(2b)'&s A'&s (30)

Equation (29) implies that A decreases exponentially as
A is decreased. This means that it is not possible to find
a self-consistent solution along the lines of Eq. (25) for
A less than a number of order 1.

Arguments originally developed by Brazovskii in a
slightly diferent context show that the minimal value of
A implies a first order transition. The physical reason
is that fluctuations lead to such a large increase in the
energy of the critical state that at some point it is favor-
able to discontinuously open a gap, gaining condensation
energy and suppressing Buctuations. In the present prob-
lem, the Huctuations are so strong that for physical values
of n, W, and b the first order transition happens almost

to a first order transition.
As before, we may consider the renormalization of the

electron self-energy, the interaction constant, and the po-
larization bubble. Also as before, the- renormalization
of the self-energy does not acct the renormalization of
other quantities; we do not discuss it further. Unlike the
situation at large momenta, there is no renormalization
of the interaction constant in the leading order in 1/N
because in the diagram of Fig. 5 it is not possible to
put all fermion lines on the Fermi line and simultane-
ously have the wavy line carry momentum close to Q.
The leading corrections to both L and b thus come only
&om the self-energy insertion in the polarization bubble,
as shown in Fig. 6(a).

The dominant scattering processes contributing to the
electron self-energy are those in which the electron mo-
mentum remains close to the Fermi line. Note that
for such processes the momentum transfer is such that

kll + ~2 —0, so the spin propagator is large. To dis-
cuss these processes it is convenient to use the radial and
angle coordinates used in the discussion of the electron
self-energy in the previous section. It further develops
that the dominant contribution comes &om processes in
which the angle 8 pertaining to initial momentum p is
small relative to the angle 0' pertaining to p'. In this
limit we may approximate

D(cu, q) =— (»)
l~'I

Using this expression for D(ur, q) and evaluating the di-
agraxn shown in Fig. 6(a) gives

6'A 2n 1 ln(l/A)
27~~ b P&/2

29
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V. PHYSICAL CONSEQUENCES

In this section we describe the implications of our re-
sults for observables. We focus on the intermediate scal-
ing regime discussed in Sec. III. The observables are
determined by the spin susceptibility which is, restoring
units,

—2
g0

g2 (A) [II(~,q) + II((u, Q —q)] + 4 ' (31)

immediately as the scale LG is reached and we expect
that the discontinuities in physical quantities are on the
scale set by LG.

ImII((u, q)
w —+0

Npo g'(T)
4~vx'(Iql —2p~) i~'

We may now calculate the relaxation rates by combining
the results above with the general relation of the real and
imaginary parts of the susceptibility to the polarization
operator

go2 [g2ReII(0, q) + 6] '

y" ((u, q) . g'Imil(ur, q)
~~o ~go' [g'ReII(0, q) + b,]'

and inserting the results into the general expressions for
relaxation rates

II((u, q) = Reuouz
2vrz(A) vp

]q~
—2@~ iz(A)ur+
PF VFPP

(32) x (»q)
Aq hm )T1T ~ ~m0

q

Here g (A) and z(A) are slow power law functions of mo-
mentum and energy; explicit formulas are given in Eqs.
(16) and (18). We emphasize that these formulas only
apply at scales larger than the peak splitting LG. This
form for y(ur, q) is essentially the RPA form with small
modi6cations due to the momentum and frequency de-
pendence of g2 and z. The Eq. (31) is written in Mat-
subara frequencies. The imaginary part of the analytic
continuation of y(u, q) is measurable in neutron scatter-
ing experiments. The actual form of this imaginary part
is somewhat complicated, due to the structure associ-
ated with the boundaries of the particle-hole continuum,
so we do not write it here. We do discuss in more de-
tail the predictions for NMR relaxation rates 1/Ti and
1/T2, which involve the low-frequency limits of the real
and imaginary parts of y(u, q), respectively.

The static limit of the real part of II(u, q) is easily
obtained &om Eq. (32) and is

) [X,~'(0, q)]',

=A —BT +
T2

(36)

or, using our previous results n = 0.27, P = 0.08,

BT0.05

T2

Of course, our estimates for n and P come from a 1/N
expansion, so for the N = 2 case we may conclude that
the 1/T2 rate is either weakly divergent or nondivergent
but with anomalously rapid T dependence at low tem-
peratures. Evaluating 1/TiT similarly we find

where Aq is determined by hyperfine couplings. We see
that the T2 rate behaves as

ReII(0, q) = NV'S'oS'& R Iql
—2p~

2mz(T)v~ py T—
2 n+2p ~T—0.25

T1T (37)

There are difFerent regimes for the imaginary part of
II(ur, q) at small frequency ~ (( T. We find it more con-
venient to evaluate ImII directly &om the diagram shown
in Fig. 2 using renormalized Green functions and vertices
than to analytically continue Eq. (32). The general ex-
pression

Imll(~, q)lim
~—+0 QJ

ImG~ ~, p+ q ImG~ ~) p
d'pdeg'(e, p)

(2~)s2Tcosh [e/(2T)]

y~ = lim g(0, k) = ) B(A, , v)D(v, q), (38)

where the coefBcient B is given by the diagrams in Fig.

i.e. , we expect the 1/TiT rate to be weakly divergent
assuming (as was found at large N) n ) 4p/3.

Proximity to the antiferromagnetic transition also has
an efFect on the uniform susceptibility. We have shown
elsewhereis that the leading low Tbehavior of y-(q, 0) in
the limit q —+ 0 is given by

is obviously dominated by &equencies of the order of T
and momenta T/v~ so for this calculation we can use
g2(A) and z(A) evaluated at A = T. If vy (~q~

—2ps) &
z(T)T we get L J

Imll(, g)l1m
ur -+0 CtJ 2vrz'~'(T) v' T'~' (34)

where ci 0.23. If vy (]q~ —2py) ) z(T)T the integral is
cut oK by the external momentum and is

I'"IG. 8. Leading contributions to the renormalization of the
uniform susceptibility. Solid lines denote fermions; wavy lines
denote spin fiuctuations, and solid dot denotes coupling g to
the external magnetic 6eld.
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8, in which the fermion mediates interaction between the
spin fluctuations and the external magnetic Geld. We
denote the bare vertex coupling fermions to the external
magnetic field by g .

In order to calculate B we use renormalized fermion
Green functions and renormalized fermion spin fluctua-
tion vertices g. The coupling to the uniform external field
is not renormalized; this follows mathematically &om the
fact that in any vertex correction diagram the poles in the
Green function lines are in the same half plane, so in the
limit of vanishing external &equency the low-energy con-
tribution vanishes. Alternatively, one can show that the
absence of logarithmic g, renormalization follows from
the fact that the logarithmic renormalization given in
(16) does not affect the fermion density of states. Esti-
mating the diagrams in Fig. 8 we get

B - z ~ (e)g (e)e

Combining this with our result for D(w, g) gives

1+ cx

+U ~Ci+C2T (4o)

Finally, we note that this scaling regime only exists for
energy, temperature, and momenta cutofF greater than
AG. As soon as the relevant scales fall below LG, the
T = 0 transition becomes first order. This transition
happens at some value Lo of the controlling parameter

At small but nonzero temperatures the transition
remains first order but it occurs at a somewhat diferent
value of A(T). We may estimate this transition line from
the argument that if L ( Ao then the ordered phase
has lower energy than the disordered phase, so AE =
Eo(AO —Ao). However, the disordered phase has greater
entropy, because there is no gap on the Fermi line; thus
LE = —T So. Equating the two gives

T,g ——To(Ao —E)'~ . (41)

We expect that at scales greater than AG the line of
first order transitions terminates at a critical point T .
We estimate T,(T /E~) v~AG.

VI. CONCLUSION

We have presented arguments suggesting that the 2p~
density-wave transition is first order in d = 2 spatial di-
mensions. By way of conclusion we place our results in
the context of quantum critical phenomena and of the-
ories of strongly correlated electrons, and discuss some
implications of our conclusions for the physics of high-T
sup erconductors.

One may divide quantum critical phenomena in met-
als into two classes: those in which fluctuations of the
order parameter are strongly coupled to the particle-hole
continuum (and in particular may decay into a particle-
hole pair) and those in which the coupling to fermions
is irrelevant. If the coupling to fermions is irrelevant,
then the critical phenomena are described by a theory
of propagating bosons which may be studied by conven-
tional methods. ' ' If decay into a particle-hole pair is

possible, then in most cases it is still possible to describe
the critical phenomena by a theory of bosons, albeit with
overdamped dynamics. The description in terms of
a purely bosonic theory is possible in these cases because
the efFect of the critical fluctuations on the fermions is
small enough so renormalization of the fermions does not
feed back into the properties of critical fluctuations.

The one exceptional case is the two-dimensional 2@~
transition. Here the large phase volume available for
scattering across the Fermi hne implies that the critical
fluctuations have a strong efFect on the electrons; further,
the 2p~ singularities in electron response functions mean
that electrons near the Fermi line, which are strongly af-
fected by critical scattering, have a large efFect on the
critical fluctuations. This physics leads to apparently in-
tractable diKculties in the bosonic model generated by
formally integrating out the electrons. Specifically, in the
resulting bosonic model nonlinear terms of all orders have
divergent coeKcients and are all relevant in the renormal-
ization group sense. Therefore we used a model in which
both electrons and spin fluctuations are retained. We
assumed that the bare propagators and the susceptibili-
ties have the Fermi liquid form and that the Fermi line
is not straight near the points connected by the ordering
wave vector Q. The structure of the 2@~ singularities
enabled us to construct a renormalization group trans-
formation under which we could treat fermions and spin
fluctuations on the same footing.

The solution of the resulting renormalization group
equations implies that the transition is generically Grst
order, because the critical fluctuations are so strong that
they completely suppress the second order transition.
There is one special case where the transition is not first
order. If twice the ordering vector Q is commensurate
with a reciprocal lattice vector C, i.e. , 2Q = G, then
the spin fluctuation propagator is less singular, the fluc-
tuations are weaker, and the transition turns out to be
second order and characterized by the exponents which
we calculate in a 1/K expansion. If ~2Q —C~ is small,
the T = 0 transition is ultimately first order but a broad
scaling regime exists.

Our explicit calculations were performed for a model
of a spin-density-wave (SDW) transition. Most of our
results carry over to the charge-density-wave case, if the
number of spin components, n, is set to 1. There is one
important caveat. If the system is suKciently symmetric,
e.g. , if the Fermi line is circular, cubic terms (forbidden
in the SDW case by time reversal) may exist in the Lan-
dau free energy. Cubic terms lead also to a first order
transition but their presence would also complicate the
analysis given above.

We now place our results in the context of theories of
interacting electrons in two spatial dimensions. To pro-
duce a quantum phase transition one must increase an in-
teraction parameter to a critical value which is generally
large. One must therefore consider the effect of the in-
teraction on the noncritical state of the electrons. There
are two possibilities: One is Fermi liquid theory in which
it is assumed that perturbation theory may be resummed
to all orders. Within this assumption one may show that
away &orn any critical point the low-energy properties are
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not qualitatively changed from those of &ee electrons, so
the transition takes place against a Fermi liquid back-
ground and one may use the theory given here to calcu-
late the extra effects due to criticality.

An alternative possibility is that Fermi liquid. theory
is not a correct description of the low-energy properties
even far from criticality. For example, it has been argued
that in strongly correlated two-dimensional models the
spin degrees of &eedom form a "spin liquid. " ' A spin
liquid possesses a Fermi surface, spin I/2 fermionic ex-
citations with constant density of states at low energies,
and a particle-hole continuum, but the fermions inter-
act via a singular interaction which, among other things,
changes substantially 2@~ singularities. The singular
interaction causes anomalous temperature dependence of
susceptibility and NMR relaxation rates even away &om
the criticality and. changes the critical properties. The
spin-liquid to antiferromagnet transition has been stud-
ied elsewhere.

The high-temperature superconductors are quasi-two-
dimensional materials with spin dynamics which have
been claimed to be controlled by a quantum critical fixed
point. It is still controversial whether Fermi liquid the-
ory is the correct starting point for a description of the
low-energy electron physics. It is therefore interesting to
compare our theoretical results to the known magnetic
properties of high-T materials.

For a two-dimensional Fermi liquid the bare polar-
izability is so strongly peaked at 2p~ that it is most
natural to assume that the transition occurs at Q
2@~. This is consistent with neutron scattering data
on La2 Sr Cu04, in which strong and temperature-
dependent peaks were observed. These peaks are cen-
tered at z-dependent wave vectors Q(x) which are
claimed to be 2p~ wave vectors of the local density
approximation (LDA) band structure. Therefore, if a
Fermi liquid picture is appropriate, it is natural to expect
our results to describe experiments on La2 Sr Cu04.

In fact, they do not. There is no sign of a first or-
der transition; the magnetic properties apparently evolve
smoothly with doping. It is conceivable that disorder

due to random positions of the Sr dopants masks the
first order transition. However, for all Sr concentrations
including x = 0.14 there is a wide temperature regime
in which the NMR relaxation rates and uniform sus-
ceptibility vary with temperature. Roughly, the copper
I/(Tj T) and I/Tz are inversely proportional to I/T, zo'2~

while yU A+ BT. These temperature dependences
are not consistent with our results, Eqs. (37), (36),
and (40). We conclude that the magnetic properties of
La~ Sr Cu04 are not well described within a Fermi liq-
uid approach. Two alternatives have been proposed: one
is that the fermions are in the "spin-liquid" regime de-
scribed above; another is that the critical behavior is
due to propagating spin waves only weakly coupled to
the electrons. '

Another class of materials to which our results
might be relevant are the low-dimensional organic s
such as (TMTSF)2PFs. These materials have strongly
anisotropic transfer integrals t )) tb )) t, leading
typically to an open Fermi line, but with nonnegligi-
ble curvature. The curvature implies that the physics
of these materials is not strictly one dimensional and
makes it possible that the theory developed here is rele-
vant and explains the experimental observation that the
spin-density-wave transition produced by lowering the
temperature is weakly first order.

We recently received unpublished results &om
Chubukov analyzing the spin-d. ensity-wave transition
with Q = C/2 but Q g 2@~. He found a logarith-
mic renormalization very similar to the one we found in
the intermediate scaling regime discussed in Sec. III and
showed that this implies that the exponents characteriz-
ing the critical point he analyzed dier from the expo-
nents characterizing the general case in which Q g G/2
and Q g 2@~ analyzed by previous authors. '
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