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Simulations of surface smoothing (healing) by Langevin dynamics in large systems are reported.
The surface model is described by a two-dimensional discrete sine-Gordon (solid-on-solid) equation.
We study how initially circular terraces decay in time for both zero and finite temperatures and
we compare the results of our simulations with various analytical predictions. We then apply this
knowledge to the smoothing of a rough surface obtained by heating an initially flat surface above
the roughening temperature and then quenching it. We identify three regimes in terms of their
time evolution, which we are able to associate with the resulting terrace morphology. The regimes
consists of a short initial stage, during which small scale fluctuations disappear; an intermediate,
longer time interval, when evolution can be understood in terms of terraces and their interaction;
and a final situation in which almost all terraces have been suppressed. We discuss the implications

of our results for modeling rough surfaces.

I. INTRODUCTION

The study of the morphology of growing surfaces
is very important from both fundamental and applied
viewpoints.>2 Since the pioneering work of Burton, Cabr-
era, and Frank,® it has been clearly established that
the surface of a crystal at equilibrium is macroscopically
flat at low temperature and rough above some temper-
ature Tgr, the “roughening temperature.”* For the case
of a growing surface, i.e., a nonequilibrium situation, the
roughening temperature is only slightly reduced with re-
spect to the equilibrium case (see, e.g., Ref. 5 and ref-
erences therein). In view of this, the question arises
as to whether an initially rough surface (i.e., in equi-
librium above T, or growing at temperatures close to
it) smooths when quenched below Tg, and if so what
are the relevant time scales, and what rough features are
preserved in the final structure. Posed as the study of
the relaxation of a grooved surface, this problem was al-
ready discussed more than thirty years ago by Mullins,®
under the assumption that all surface properties were
independent of the orientation. However, Mullins’s the-
ory fails below Tg, because the anisotropic surface en-
ergy displays cusps at particular angles. This difficulty
was addressed by Martin and Perraillon” and by Lancon
and Villain,® who showed how step structure could be
taken into account. Additionally, Monte Carlo simula-
tions showed that the atomistic structure of the surface
leads to a number of new subtleties in the smoothing pro-
cess (see Ref. 9 and references therein). These studies led
to a good understanding of the smoothing process of a si-
nusoidal profile above the roughening temperature (Tr),
although the situation is less clear as regards smoothing
below Tg.°
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Our purpose here is to move a step further and ad-
dress the problem of the smoothing of a rough surface
instead of that of an artificially grooved profile. The case
of such a rough surface has not received much attention.
Villain!® phrased the question as follows: For tempera-
tures T' > Tgr, the surface of a crystal is rough, and the
fluctuations of the height h(r) diverge at long distances,

C(r) = ([h(r' +r) = h(x')]*) ~ C(T) Inr, (1)

where C(T') is a temperature-dependent constant, r and
r’ are two-dimensional (2D) vectors giving the position
at which height is measured, and » = |r|. If now the
crystal is cooled down, from T" > Tg to T << T&g, it is
still rough. How does the roughness decrease with time
t? From the theoretical analysis in Ref. 10, there were
two main conclusions: On the one hand, smaller terraces
disappear first, and after a time ¢ the minimum terrace
size R3, ~ t exp(—FEo/T)/T (disregarding a few small
terraces due to shrinkage of large ones); on the other
hand, for an infinite surface C(r) is still given by the
same expression as above, and only at short distances
is the height difference much smaller. The prediction
about R, was in contradiction with the results in Ref.
6 (R:, ~ t) and in Ref. 7 (R%, ~ t), and therefore,
as noted by Villain in Ref. 10, there are subtleties in the
theoretical treatment of the problem.

Motivated by this unclear situation of sinusoidal pro-
file smoothing below Tg,? and by the lack of any exper-
imental or numerical result on smoothing of fully rough
surfaces, in this work we undertook the study of this
problem by means of Langevin dynamics simulations of
a 2D discrete sine-Gordon (~ solid-on-solid) model. We
report on our results as follows. In Sec. II we present our
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model and simulation procedure. In Sec. III we study the
decay of a single circular terrace, i.e., precisely the situ-
ation studied analytically in Ref. 10. We present results
for both zero and finite temperatures and compare them
to the theoretical predictions of Ref. 10. We describe
several characteristics of the decay and show how mea-
surable quantities like C(r) or roughness can be used to
follow the surface evolution. In Sec. IV we turn to rough
surface decay, and show how the results on single terraces
can be used to understand this more complex situation.
We identify the three main stages of the decay, namely
decay of small fluctuations, rounding and fusion of ter-
races, and decay of terraces, again both at zero and finite
temperature. Finally, in Sec. V, we summarize our con-
clusions, and discuss smoothing of rough surfaces from
a general viewpoint connecting our simulations and Vil-
lain’s conjectures. We finish with a discussion of possible
consequences of our work.

II. MODEL AND SIMULATION PROCEDURE

The model we study to describe surface growth phe-
nomena is given by the following 2D sine-Gordon-like po-
tential introduced in Ref. 11:

V= %Z(@—d’j)z—ZCOS@, (2)
(i,3) K

with ¢; being a continuous variable on a discrete square
lattice. The first term describes the interaction energy
between a column at site 7 and its nearest neighbors,
representing surface tension, and the second term favors
¢; to be 2mn (so we can make the identification ¢ = 2mh,
h being the height) and is directly related to periodic
pinning effects of the lattice. This model is a faithful rep-
resentation of the discrete Gaussian solid-on-solid model
of surface growth. The equilibrium roughening temper-
ature was determined in Refs. 11 and 12 and found to
be in very good agreement with renormalization group
predictions!'® (see also Ref. 4 and references therein).
More recently, the roughening transition has also been
studied in the nonequilibrium case, and it was found that
the equilibrium transition splits into two rapid crossovers
or transitions separating very different growth regimes.®
Furthermore, recent experiments'* on growth of GaAs
by metalorganic vapor phase epitaxy (MOVPE) exhibit
morphologies very similar to those obtained with model
(2), as reported in Ref. 11. These data suggest that this
model indeed captures much of the essential physics of
surface growth phenomena.

We study model (2) by means of Langevin dynamics
simulations, integrating the overdamped Langevin equa-
tions of motion for ¢ with interaction given by Eq. (2),
which read

$i =D (b5 — bi) +sing; + &(2), (3)
(4,4)
where the overdot means time derivative and &;(t) is a
Gaussian white noise of mean and variance

(€i(t)) = 0, (&()&;(t)) = 2aT 6;;6(t — t') (4)
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in units such that kg = 1. Owur numerical proce-
dure is a fast!® implementation of a stochastic Runge-
Kutta method,'® which allows the study of lattices up
to 1024 x 1024 sites on workstations, without resorting
to a massively parallel computer as in Ref. 11. These
computational advances make Langevin dynamics an at-
tractive method for nonequilibrium statistical mechanics
problems such as surface growth or Josephson junction

arrays.”

III. SMOOTHING OF SINGLE TERRACES

We begin our study of the decay of rough surfaces from
the same starting point as in Ref. 10, where it was as-
sumed that the surface consisted of broad terraces par-
allel to the equilibrium surface direction and separated
by steps. The analysis of the decay of these terraces
proceeded under the constraint that they remain circu-
lar. Following the same approach, we have carried out
a number of simulations with initial condition given by
a circular terrace concentric with our simulation lattice,
i.e., if the system size has N = L x L sites,

oy J 2w if vy — /2| <R,
¢:(0) = { 0 otherwise.

It is clear that the constraint R < L/2 has to be kept
in mind. We have performed Langevin dynamics simula-
tions of the evolution of these initial data under Egs. (3)
for both zero and finite temperature, and we collect our
results for these two cases below. Before beginning the
report, we stress that this initial condition is rather arti-
ficial, and that the purpose of such a study is not to com-
pare it directly to actual growth phenomena. Rather, we
intend to verify Villain’s results'® as well as to learn from
this simpler smoothing process how to interpret more
complex ones later.

(5)

A. Zero temperature

At zero temperature the evolution of the terrace is
purely deterministic. In addition, there are no fluctu-
ations which can mask the evolution of the terrace, and
therefore results related to terrace extinction times as
well as other quantities of interest are easily obtained
from the raw simulation data. The behavior of the ter-
race is as expected: its area steadily diminishes until it
eventually vanishes, leaving a completely flat surface. We
have monitored this process by means of several mea-
sures: global quantities, such as mean height (¢;) or
mean roughness w? = {(¢? — (#;)?)), and functions like
C(r), already introduced, or w(r), defined as the mean
roughness computed over regions of size r. All these data
were of course complemented by direct analysis of surface
plots, which allowed us to relate the evolution of those
quantities to the evolution of the surface.

We begin by discussing global data, an example of
which is shown in Fig. 1: All the quantities in this plot
are seen to behave linearly with time, or almost linearly
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in the case of the terrace area. This last quantity is
defined as the number of lattice points whose height is
greater than or equal to 2. We stress that in the par-
ticular case of Fig. 1 the base terrace (i.e., the whole
lattice) had 256x256 sites, but we have verified that
larger sizes, as well as larger upper terraces, give the
same results. The plot of the cross section of the ter-
race in Fig. 1(d) confirms what one expects. The terrace
evolves smoothly, until it vanishes, this last stage of the
process being somewhat faster. The circular shape of the
terrace is preserved throughout. In view of all these in-
dicators, the time at which the terrace is adsorbed into
the substrate is easily determined; in the case of the ex-
ample in Fig. 1, it is around 470 in our units. Note
that the terrace area vanishes prior to the time at which
mean height and roughness do, this being a trivial con-
sequence of the definition of the area as the number of
points with ¢; < 27: points with 0 < ¢; < 27 still con-
tribute to mean height and roughness but contribute zero
to the area. This introduces some freedom in assigning
the terrace extinction time: unless explicitly stated oth-
erwise, when giving these times we will be referring to
the vanishing of the area. We thus are in a position to
make a first attempt at verifying Villain’s result'® about
Rpnin, by simulating the decay of terraces of 2D differ-
ent sizes. The results are shown in Fig. 2. They show
clearly that at zero temperature Ry, ~ t'/2 (the expo-
nent is 0.495+ 0.005 as obtained from the fit), instead
of the predicted exponent, 1/3. This is a sensible result
in view of the structure of the equations of our model,
which in the absence of temperature (noise) are just a set
of diffusion-type equations. In addition such behavior is
consistent with the use of this model as an evaporation-
condensation mechanism for growth.®

The data for zero temperature evolution are also use-
ful to relate the changes in the correlation function C(r)
or in the roughness w(r) to the terrace decay. This is
important because it is one of the best ways to charac-

terize the structure of the surface, and the hope is that it
will provide insight when dealing with fully rough initial
data. Figure 3 shows a sequence of correlation functions
C(r) obtained at different times, which turns out to be a
good indicator of the terrace radius. This is clearly seen
from the beginning of the constant plateau, which occurs
precisely at the diameter of the terrace, being nontrivial
for smaller distances. To understand this conclusion, it
is important to notice that C(r) is the height-difference
correlation function, so that sites separated by more than
the diameter of the terrace must have the same value of
this function everywhere. Figure 4 shows how the rough-
ness behaves while the terrace is shrinking. In this case,
it can be seen from its definition (taking into account
that the regions to compute the value of w? are chosen
to be squares of side r) that its peak also coincides with
the terrace size, and therefore the information this func-
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FIG. 2. Log-log plot of the radius of the initial terrace vs
its survival time, i.e., the elapsed time until the surface has
height ¢; < 27 everywhere. Fitted data are a least-squares
straight line.
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FIG. 3. Log-normal plot of C(r) at different times during
the simulation in Fig. 1.

tion provides is another confirmation of the picture we:

have described.

B. Finite temperature

Having considered how terraces decay at zero tem-
perature, we can move a step forward and consider the
smoothing problem at small, but finite temperatures. As
in the previous subsection, we begin by studying how
global quantities evolve; an example of the behavior of
these data is shown in Fig. 5 for T = 5. The choice of
the temperature value is rather arbitrary, and in principle
the only constraint for Villain’s theory!® to be applica-
ble is T' <« Tgr with Tr ~ 27 in our units.> Note that
the plots in Fig. 5 correspond to the evolution of one
specific terrace and that for the moment we postpone
the discussion of mean terrace behavior. At first sight,
the conclusion that can be drawn from this simulation
is that the results for T' = 5 are basically the same as
those obtained at T' = 0, the main difference being a
more noisy appearance which evidently comes from ther-
mal fluctuations. Probing deeper into the details of the

10

Inr

FIG. 4. Log-normal plot of w?(r) at different times during
the simulation in Fig. 1.
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plots, another feature arises due to temperature. Thus,
in Figs. 5(a) and 5(c), it can be observed that the time
for the terrace to disappear, about ¢t = 600, is larger than
the survival time at T = 0 [cf. Figs. 1(a) and 1(c)]; how-
ever, after the terrace disappears the height fluctuates
around ¢ = 0 as in the previous case. This does not
occur with roughness: After the terrace dies out, rough-
ness asymptotes to a nonzero constant value. The shape
of the terrace, although not exactly circular, remains ap-
proximately circular throughout the evolution and the
terrace itself is always a separate entity, distinguishable
from the background [see Fig. 5(d)]. As in the case
of zero temperature, both the correlation function C(r)
(Fig. 6) and the roughness w?(r) (Fig. 7) confirm the
evolution and the determination of the survival time ob-
tained from global quantities. Note that there is a jump
in C(r) from its shape at t = 0 to those at ¢ > 0. This
jump is a consequence of the time elapsed between the
first and the second snapshot, during which the C(r) pro-
file corresponding to 7' = 5 and due to thermally induced
correlations is established.®

In the preceding paragraph, we have argued that at
finite temperature, specifically at T = 5, the evolution
of a single terrace is rather similar to what takes place
at T = 0. However, this assertion is somewhat simplistic
and deserves further consideration. In the first place,
upon increasing temperature, the evolution of the terrace
is more and more blurred by the thermal fluctuations of
its surroundings, and to pinpoint a survival time becomes
subjective. An example is given in Fig. 8, where we plot
the mean height [Fig. 8(a)] and the terrace area [Fig.
8(b)] for T' = 10 and T = 15. Whereas for the first value
one can still conclude that the terrace disappears around
t = 400, in the second case it is difficult to learn anything
at all (as well as from the other indicators we have used).
Of course, the value of the temperature above which it is
impossible to follow the evolution of the terrace depends
in part on its initial size: For larger terraces the initial
values of mean height and area are larger and in the
beginning they decrease more or less linearly. This is
consistent with the coarse-graining picture of different
scales involved. However, eventually these quantities fall
below their corresponding thermal values and one loses
track of the terrace evolution. Due to this problem, in
our simulations we have not been able to obtain accurate
values for terrace decay times above T' = 10, and other
indicators will be needed for smoothing so close to Tg.

Another question we have considered is the mean be-
havior of terraces of a given size. From our simulations,
for the same initial condition different evolutions yield
large discrepancies in the survival time. We illustrate
this point in Fig. 9, where we show an average over ten
evolutions of the same initial condition, namely, a terrace
with radius R = 25. In this plot, the error bars are ob-
tained as the mean square root of the dispersion and, as
can be seen, they span a wide interval around the mean
height behavior. Once again, other quantities depend on
time in much the same way as this example. From a
linear fit to the mean height evolution, it is found that
the survival time is ¢ ~ 380, but if fluctuations around
the mean are included then the result should be given
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as t = 380 + 50, which introduces an uncertainty above
10%. A similar value can be estimated from terrace area
analyses. Larger ensembles would be necessary to clarify
or improve this bound, but those would consume much
CPU time, and we believe that this band will not be
much narrowed, the dispersion of different realizations
being a natural consequence of thermal fluctuations. In
any event, if one relies on the survival time so extrapo-
lated from this kind of ensemble averages, the results are
not very conclusive, as can be understood from Fig. 10,
where we show the same kind of plot as Fig. 4, namely,
terrace initial radius vs survival time but for our finite
temperature data. We see that the simulations for T' = 5
still yield an approximate straight line in our log-log plot,
giving an exponent of about 0.44+ 0.01. This is clearly
smaller than the 1/2 exponent found at zero tempera-
ture, a fact which might indicate that finite temperature
introduces corrections to the exponent. Nevertheless, we
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FIG. 6. Log-normal plot of C(r) at different times during
the simulation at 7" = 5 in Fig. 5.
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FIG. 5. As in Fig. 1 but for
time temperature 7' = 5. In plot (d),
snapshots are taken every 250
units to clarify the graph.

lattice point

also show a few points obtained at 7" = 10. We observe
that in this case the dispersion is even larger, as should
be expected, and as a consequence our values are less
reliable. These are further compromised by the already
mentioned difficulties in pinpointing the precise time at
which the terrace dies out. Therefore, the exponent ob-
tained from this fit, a bit larger than 1/2, is also not
very reliable. Our conclusion for those and larger values
of the temperature is that significantly larger ensembles
are necessary.

We conclude this section by introducing an additional
measure, namely the fractal dimension of the terrace. We
obtain this quantity as follows. As in the case of the
area, we regard points at which the height of the sur-
face is above 27 as belonging to the terrace. With that
definition, we then compute the fractal dimension of the
terrace surface according to the standard box-counting
procedure.'® We have used the smooth evolution occur-

Inr

FIG. 7. Log-normal plot of w?(r) at different times during
the simulation at 7' = 5 in Fig. 5.
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FIG. 8. Decay of a single terrace at T = 10 and T' = 15

as seen through the evolution of its mean height (a) and its

area (b). Initial radius is Ro = 30 and the lattice consists of
256 <256 sites.

ring at zero temperature, where the terrace is always flat
at its top, to check our computation procedure with sat-
isfactory results. An example of the results for large ter-
races at finite temperature is given in Fig. 11. Figure
11(a) shows the evolution in time of the box-counting di-
mension, leading to the conclusion that it consists of a
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FIG. 9. Average decay of single terraces at T' = 5. Initial
radius is Ro = 25 and the lattice consists of 256 x256 sites.
The mean height is shown for an ensemble of ten realizations.
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its extinction time at T' = 5 and T' = 10. Fitted data are a
least-squares straight line. The fit of data for 7' = 10 is not
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FIG. 11. (a) Box-counting dimension of the terrace, com-
puted taking into account the points which are above 2w, vs
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sists of 256x256 sites, and the temperature is T' = 5. (b)
Box-counting scalings from which the dimension is computed
for the case Ro = 50. Note that the power-law regime neces-
sary for the dimension to be meaningful is very well verified.
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rapid decay phase, followed by a plateau which comprises
most of the terrace lifetime, and a final smooth but fast
-decay. The first and third stages have a duration which is
mostly independent of the initial terrace size, this being
the reason why we show data for terraces twice as large
as the ones considered so far: the early transient and the
final phase of the evolution span the lifetime of smaller
terraces, making it impossible to notice the intermediate
plateau. This plateau has a deep significance: it reflects
the fact that during its shrinking the terrace remains a
separate object with the same statistical structure. This
is confirmed by Fig. 11(b), which proves the existence
of a sufficiently large scaling regime in the box-counting
dimension computation to consider the terrace surface
a fractal in its own right. We do not show results for
larger temperatures because in that case, as discussed
above, there are many points of the lattice with ¢; > 2«
which do not belong to the terrace, therefore preventing
the possibility of identifying it and computing its fractal
dimension.

IV. SMOOTHING OF ROUGH SURFACES

We now turn to the study of how actual rough sur-
faces behave when quenched well below the roughening
temperature. For these simulations, initial conditions
are produced by starting from a perfectly flat (¢; = 0
for all sites) lattice and letting the system evolve at
T > Tr ~ 27 long enough for roughness to be estab-
lished. It is clear that these kinds of initial data are
much closer to real growth processes than the terraces
we have been considering so far, and consequently under-
standing how these rough surfaces evolve should be our
main objective. As we will summarize below, it turns out
that most of the evolution can be interpreted in terms of
what we have learned in the single terrace studies. We
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will again present our results in separate subsections for
zero and finite temperatures.

A. Zero temperature

We begin the discussion of the results for T = 0 by
presenting the behavior of the same quantities we used
to describe the evolution of single terraces. This is con-
tained in Fig. 12, where the main differences between ter-
race and rough surface decay can be readily appreciated.
The mean height is a nonmonotonic function of time [see
Fig. 12(a)]: Upon quenching (at ¢ = 100 the tempera-
ture is set to T' = 0), the mean height increases, reaches
a maximum, and then decreases, crossing zero and behav-
ing piecewise linearly afterwards. Interestingly, there are
two intervals during which the mean height remains con-
stant. We will return to this point once we have under-
stood the structure of the surface. The next measure, the
mean roughness, is seen from Fig. 12(b) to behave mono-
tonically, steadily decreasing in a way that is reasonably
approximated as a stretched exponential as indicated in
the plot. However, the last part of the evolution may as
well be linear, and at this point we cannot reach a definite
conclusion. The other global quantity analyzed is the ter-
race area, shown in Fig. 12(c), which was defined as the
number of points in the lattice having height ¢; > 2.
In the problem we deal with now, as the initial condi-
tion does not contain a single terrace, we cannot asso-
ciate this quantity directly with a terrace area, although
we will still retain that name for it. However, it is still
useful, as the information it provides complements that
of the mean height. Thus both quantities behave simi-
larly initially, increasing and simultaneously reaching a
maximum, but afterwards the terrace area monotonically
decreases and its evolution seems to be linear. Finally,
the last plot in Fig. 12 again shows a cross section of the
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surface, through a lattice column that is seen to intersect zones being the ones with largest positive (negative)
two terraces. This figure suggests that the structure of  heights [the convention can always be checked by com-
the smoothing surface consists of terraces and motivates paring these contour plots with the cross sections in
us to take a closer look at its profile. Fig. 12(d) taken through column 15]. The surface sit-

The evolution of the surface as it smooths is depicted  uation exactly before the quench from 7" = 30 to T = 0
via contour plots in Fig. 13. Heights are coded as is plotted in Fig. 13(a). Thermal fluctuations give an ap-
grayscale tones, points corresponding to white (black) proximately homogeneous aspect to the surface, although
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FIG. 13. Contour plots of the shape of the surface at times immediately before quenching (a), t=5 after the quench (b),
t=10 after the quench (c), t=50 after the quench (d), and t=100 after the quench (e). The grayscale codes height such that
lighter areas correspond to points with larger height. Axes simply indicate the coordinates of the lattice node, and periodic
boundary conditions must be kept in mind. The evolution is the same as in Fig. 12.
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there are higher (in mean) zones [e.g., around points
(30,180) or (100,40)] as well as deeper (in mean) zones
le.g., around points (140,140) and (10,220)]. Of course, as
we are above the roughening temperature, larger lattices
would show points with even higher heights: the maxi-
mum of this simulation is around |¢;| = 10. Those higher
or deeper regions serve as nucleation centers as soon as
the surface is quenched, as can be seen from Fig. 13(b).
This contour plot implies that there is a first, rapid stage
of the evolution during which all small scale fluctuations
die away, in accordance with the fact that in 5 time units
the surface has become clearly inhomogeneous, consisting
of terraces (or wells) on an otherwise flat surface. Such a
stage is seen also in the global quantities (Fig. 12) in their
initial abrupt decay. Thus, 5 time units after the quench
the surface structure can already be described in terms
of terraces, which have formed above or below the initial
condition with approximately equal probability, leading
to a mean height close to zero.

Once the terrace structure has been built up from the
initial condition, a second stage of the evolution begins.
At this moment, the largest terraces, which had ramified
shapes as a consequence of their origin in the quenching
of fluctuations, start rounding out, engulfing lower zones
which were embedded within them [cf. Fig. 13(c), the
well close to the lattice center, or the terrace centered
around (120,40)]. Also, neighboring terraces interact,
and in some cases the larger one absorbs the smaller one
[see Fig. 13(c), the terraces near (220,70)]. These kinds
of processes are the ones leading to an increase of the
mean height and terrace area (see Fig. 12). During such
rearranging, the smallest terraces are already disappear-
ing, as predicted by Villain’s power-law relationship'®
between terrace radii and survival times: An example
appears in Fig. 13(b), which shows two small terraces
around (235,195) that are absent already in Fig. 13(c).

This second stage lasts some 50 time units, in fact until
the mean height and area reach their maxima; the status
of the surface at that moment is shown in Fig. 13(d). The
surface consists now of large terraces, with only a few
arising from shrinking steps of radius R < Rn;, ~ 20.
This is just the picture proposed in Ref. 10. We are now
in the third and final stage, governed by the superposi-
tion of the decay of the different terraces, which no longer
interact. At ¢ = 100 after the quench, only three terraces
and two wells remain, with approximately the same size
[see Fig. 13(e)].

It is now easy to interpret the behavior of the mean
height [Fig. 12(a)]: during the first plateau, all terraces
are decreasing, but they are still rather large; hence, they
decay at a very similar rate, and thus terraces and wells
compensate each other’s contribution to the mean height,
which remains practically constant. Finally, one of the
wells is small enough, its shrinking becomes faster, and
as a consequence the mean height increases, becoming
positive although closer to zero. At this point only the
two terraces shown in Fig. 12(d) survive. Similar reason-
ing accounts for the following plateau and the final decay
to zero, as well as for the area (which only includes ter-
races with positive height, this being the reason for its
monotonic decay). We can also now provide an explana-
tion for the stretched exponential shape of the roughness
[see Fig. 12(b)]. This quantity has to decrease as the
surface becomes more and more uniform, uniform mean-
ing not only flat but with the terraces being similar or
approximately of the same size. This decreasing takes
place of course as, first, small fluctuations are quenched,
followed by the slower decay of larger fluctuations (not
large enough to nucleate a terrace) and the first, smallest
terraces. Clearly, this is a many scale process, as there
are shrinking terraces of very many sizes (more sizes if
larger systems are considered). The stretched exponen-
tial behavior should be understood as arising from this
many scale (glassylike) process.

It remains to be discussed how the above process and
the interpretation we have provided in terms of three
stages are reflected in the height-height correlation func-
tion and in the roughness. These two functions are shown
in Figs. 14 and 15, and offer basically the same informa-
tion as in the case of single terraces. Focusing on the
correlation function C(r) depicted in Fig. 14, we notice
the rapid suppression of small fluctuations in the fast,
global drop of the values of this function as a whole (com-
pare the two uppermost curves in the plot). The second
stage is somewhat more difficult to observe, although it
does appear in that the point at which the curve reaches
the asymptotic plateau moves to higher r values. Re-
calling our discussion of the preceding section (that this
point indicates the size of the terrace), it is readily no-
ticed that this value of r is now associated with the size
of the largest terraces present in the surface. Also, the
disappearance of the smallest terraces is seen through
C(r) in the small r limit. The flattening of the curve in
this region comes from the fact that there are no features
of that scale, i.e., no small radius terraces. Finally, the
remainder of the evolution, which is the third stage un-
derstandable in terms of single terrace decay, coincides
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FIG. 14. Log-normal plot of C(r) at the same times given
in Fig. 13.

with what we argued in the previous section. As for
the roughness behavior, the plot of w?(r) in Fig. 15 is
amenable to the same interpretation, even if in this case
the data for the surface before the quenching do not have
a definite shape. There is again a rapid drop, after which
curves start taking a shape close to that of single ter-
races. This is somewhat blurred as there are terraces of
different sizes, reflected in the fact that the peak is now
much broader than, e.g., in Fig. 4, its limits being the
smaller and the larger terrace sizes. For the remainder,
everything can be explained in terms of the picture we
are providing. In view of all this, we can conclude that
the smoothing process we are reporting and its interpre-
tation are fully consistent with all the simulation data.

B. Finite temperature

In the previous subsection we were to identify the rel-
evant features in the smoothing process at zero temper-
ature. We now consider finite temperature effects. We
propose that our simulations confirm the conclusion al-
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FIG. 15. Log-normal plot of w?(r) at the same times given
in Fig. 13.
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ready obtained from the analysis of single terraces: For
finite but low temperatures, everything occurs as in the
T = 0 case, whereas above a temperature around 7' ~ 10
in our units, thermal fluctuations mask the process and
make it impossible to faithfully monitor the smoothing.
We have verified this by following the evolution of the
same initial data for both zero and finite temperatures.
As an example, Fig. 16 summarizes the behavior of global
quantities for the same initial data in Fig. 12, but now
quenched to T' = 5. As is apparent from this figure, even
if there is some thermal blurring, the process is basically
the same as we discussed in the previous paragraphs. The
only major difference is that now the terraces also show
stretched exponential behavior. This is due to the fluctu-
ations of the tops of the terraces, which now contribute to
this value, while its contribution decreases with the size
of the terraces. Therefore the evolution of this quantity
is also a many scale process resulting in its functional
shape. The rest of our indicators behave as explained,
and terraces even nucleate around the same places (at
least the not too small ones), and survive more or less for
the same time [see Fig. 16(d) and compare to Fig. 12].
Hence our earlier conclusion that temperature, below a
certain value, introduces nothing new but a blurring of
the process and, to some extent, an extension of the life-
time of the surface.

V. CONCLUSIONS

In summary, we have used a 2D discrete sine-Gordon
model to study how an initially rough surface becomes
smoother when quenched below the roughening temper-
ature. We approached this problem in the same spirit as
Ref. 10. We began by analyzing the evolution of an arti-
ficially produced circular terrace at finite (but below Tgr)
temperature. We found that, in our model, the relation-
ship between the terrace radius and the time it takes to
disappear is R ~ t? at zero temperature, instead of the
prediction in Ref. 10 of R ~ t3, and closer to the results of
Ref. 7 for sinusoidal grooves. If the temperature at which
the surface is quenched is small but nonzero, this expo-
nent is modified, its value being around 2.27 for T = 5.
However, finite temperature effects include a large dis-
persion between different numerical realizations, which
calls for much more statistics that we can achieve with
our current computational capabilities. We can only con-

clude that if T < 0.1Tg, the exponent is 2.05 £ 0.05 (for
our model). This suggests that the analytical treatment
in Ref. 10 may not be complete, as indeed the author sug-
gests. On the other hand, even if these predictions do not
match our results for single terrace decay, we stress that
our simulations of smoothing of a rough surface provide
a qualitative picture that is very close to that of Ref. 10,
and we can confirm the validity of the conjectures therein,
particularly Fig. 4, which is the same as our Fig. 14 for
the height-difference correlation function C(r).

We identified the existence of three stages in the
smoothing process: decay of the smallest fluctuations,
reshaping of the largest terraces, and individual decay
of each terrace. Therefore our results are consistent



52 SMOOTHING OF ROUGH SURFACES

5443

FIG. 16. Decay of a rough
surface at ' = 5. The initial

560 data are as in Fig. 12. Shown
are the mean height (a), the
mean roughness (b), the mean

area of the terrace as given by
the surface area above 27 (c),
and the evolution of a cross
section (through column 15) as
given by three snapshots taken
at the indicated times (d).
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with Villain’s approach!® in that, after a transient, the
smoothing process is understandable to a good approxi-
mation in terms of non-interacting terrace dynamics. In-
terestingly, we have also provided evidence that such a
superposition of independent evolutions leads to glassy-
like dynamics, as it involves many different length scales
(the larger the rough surface, the larger the number of
scales involved). In connection with this point, we note
that experiments designed to test these ideas are possi-
ble with currently available techniques: Thus roughness
can be measured by means of scanning tunneling mi-
croscopy (STM), reflection high energy electron diffrac-
tion (RHEED), or other spectroscopic methods.®!® It
would be most interesting to address this question exper-
imentally to verify whether smoothing is indeed a glas-
sylike process.

We close with a few comments regarding open ques-
tions and extensions of our work. As an immediate un-
solved issue, the problem of the exponent of the radius-
survival time relationship remains open; the predicted
appearance of glassy dynamics in smoothing is now a
question for experiments to verify. There are two other
interesting extensions of this work, namely, the search
for indicators (e.g., coarse-graining, image analysis) to
study smoothing at higher temperatures (of the order
of half the roughening temperature) and the analysis of
smoothing in the presence of a driving force (e.g., chemi-
cal potential difference, for instance; see Ref. 5 for a dis-
cussion of this term), which would be relevant to thin film
and other surface growth problems and their technologi-

60 120
lattice point

180

cal applications. We also note two factors that should be
included in our model that can significantly modify our
current conclusions. The first of these is disorder. The
presence of foreign atoms or vacancies in the substrate
is a crucial factor, as they can act as pinning centers for
the shrinking terraces, halting their decay and leaving
the surface in a stable, or metastable nonflat final condi-
tion. Such a rough shape can be desirable or undesirable
depending on the application one has in mind, and there-
fore it may be interesting to fabricate disordered or very
clean substrates, as well as to learn the consequences of
any unavoidable amount of imperfections. The other fac-
tor relevant to actual growth processes is chemistry. It
is evident that in very many film fabrication techniques
chemical reactions play a crucial role in determining the
final surface texture. This is absent in our model, which
at most incorporates chemical effects through the driv-
ing force term. It would be very interesting to identify
another “canonical” (in the same sense as our model)
reaction-diffusion equation to couple to our sine-Gordon
model accounting for chemical reactions. A more quan-
titative comparison of our predictions with many real
processes would then be possible.
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FIG. 13. Contour plots of the shape of the surface at times immediately before quenching (a), t=5 after the quench (b),
t=10 after the quench (c), t=50 after the quench (d), and t=100 after the quench (e). The grayscale codes height such that
lighter areas correspond to points with larger height. Axes simply indicate the coordinates of the lattice node, and periodic
boundary conditions must be kept in mind. The evolution is the same as in Fig. 12.
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