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The resistance of wires consisting of 1-3 atoms connecting two semi-infinite metallic electrodes is cal-
culated for both small and large bias. The wires discussed consist of Al atoms, with one of the Al atoms
substituted by S in certain cases. The resistances obtained are in the range 7—~30 kQ. For the three-
atom wire, the value of the resistance when the S atom is present depends on the order of the atoms in
the wire. When the S is an end atom, the resistance at larger bias also shows a dependence on polarity
(diode behavior). These studies involve a self-consistent calculation of the electron density distribution

for the entire electrode/wire system.

I. INTRODUCTION

The development of the scanning tunneling microscope
has brought with it the possibility of constructing (and
measuring the resistance of) wires consisting of just
several atoms that connect two macroscopic electrodes.!
An early example of such a configuration (with the wire
consisting of just one atom), was given by Gimzewski and
Moller,? and was analyzed theoretically by Lang.>* The
theoretical calculation was done fully self-consistently,
with electron-electron interactions included. The present
paper extends this analysis to cases with more than one
atom, which requires use of a different computational ap-
proach from that employed earlier.

The general aspects of the “‘constriction” resistance as-
sociated with the linking of two reservoirs by a very nar-
row channel have been discussed by Landauer,’ Imry,®
and Biittiker.””® For an ideal one-dimensional channel
(i.e., a channel with unit transmission probability that is
narrow enough to have only one transverse state occu-
pied) connecting two incoherent electron reservoirs, the
resistance is 7#i/e2>=12900 Q. The resistance considered
here is given by the voltage difference between the reser-
voirs (electrochemical potential difference divided by
electron charge) divided by the current through the chan-
nel. We will see to what extent such a channel represents
the properties of our atomic wires.

There are a number of recent studies of the resistance
of constrictions that have a mesoscopic rather than atom-
ic scale. The system usually considered is a two-
dimensional electron gas in a semiconductor heterostruc-
ture with the constriction defined electrostatically by a
split gate on top of the heterostructure.!®!! This
configuration permits studying, e.g., resistance as a func-
tion of constriction width (which is controlled by varying
the voltage on the gate). Somewhat closer to the present
problem are studies of the resistance of the neck that
forms when a scanning tunneling microscope tip, after in-
denting a metal surface, is withdrawn, narrowing the
neck until the contact is broken.!? Simulations suggest
that such necks show a gradual transition in width as
their length is traversed,'? rather than the abrupt transi-
tion envisioned in the present paper between the elec-
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trodes with flat, extended surfaces and the connecting
wire consisting of a single line of atoms. (The former is
closer to the adiabatic case as discussed by Glazman
et al.'') More closely related to the present work are
studies of microscopic wires connecting two reservoirs
done using the tight-binding approximation.!* These,
however, are not self-consistent calculations: energy lev-
els and coupling matrix elements are represented by sim-
ple parameters whose values are not calculated; and
electron-electron interactions are either not taken into ac-
count, or are again included in a parametrized fashion.
(The lack of electrostatic self-consistency in these treat-
ments would also make it difficult to extend them to cases
of large bias voltage, in which there can be substantial
rearrangements of the electron distribution.)

II. GENERAL APPROACH

References 3, 14, and 15 calculated the current flow be-
tween two planar metallic electrodes, represented using
the uniform-background (jellium) model,!® with one atom
in the region between them. The solution proceeded in
the following way: First, within the framework of the
density-functional formalism, the single-particle wave
functions and self-consistent density distribution were
found for the pair of bare metallic electrodes, assuming
them for simplicity to be identical, in the presence of the
bias voltage. Next, corresponding to each of these wave
functions, a Lippmann-Schwinger equation involving a
Green’s function for the biased bimetallic junction was
solved to obtain a single-particle wave function for the to-
tal system, consisting of the two electrodes plus the atom.
From these wave functions, the density distribution for
the total system was obtained, and the problem solved
self-consistently using a modified iterative procedure.
This same general approach is used here, except that the
single atom is replaced by a group of atoms.

In the earlier treatments, each single-particle equation
for the total system was solved within a large sphere cen-
tered on the atom by integrating an equivalent set of cou-
pled radial equations outward from the origin. Each of
these equations corresponded to a different Y, (Q) to
which the solution was taken to be proportional at the
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origin. This method is not practical when there is more
than one atom, and we instead take the approach of
representing the wave functions, within a box that in-
cludes the group of atoms, as a linear combination of
plane waves that are periodic over the box, with the box
made large enough to include the region where the poten-
tial is perturbed by the presence of the atoms. The
behavior of the plane-wave representation outside of the
box will be of no interest to us (we only want it to be good
inside); and we will avoid the most important effects that
would correspond to a periodic repetition of the group of
atoms. In particular, we will use the Hockney method!’
for the Fourier-transform solution of Poisson’s equation
for isolated systems. The term ‘‘isolated” means that the
only boundary condition is that the potential decays to
zero correctly at infinity (as r ~! for a system with a net
charge).!® Thus, for example, if the group of atoms has a
net dipole moment, we will not have as part of our com-
puted electrostatic potential within the box the potential
due to periodic repetitions of this dipole outside the box.
We note also that the change in wave function induced by
the presence of the group of atoms decays with distance,
and so we will choose a box of sufficient size that the
periodicity of the wave function at the box boundaries
due to the representation does not have a significant
effect on the quantities of interest.

III. THE EQUATIONS AND THEIR SOLUTION

A. Equations

As noted above, the analysis is based on the density-
functional theory of many-electron systems, which re-
quires the solution of effective one-electron Schrodinger-
like equations.!” These equations are here put into
Lippmann-Schwinger form:2%2!

WMAD)=M(r)+ [ d’ " GMr,r)

X8V (r', ' )WMA(r") . (3.1)

The superscripts M and M A refer, respectively, to the
pair of bare biased metal electrodes, and to the complete
system consisting of the metal electrodes and the group
of atoms between them. This equation embodies the
motion that electrons in states of the electrodes impinge
on and are scattered elastically by the potential 8V (r,r’),
which describes the difference in potential between the
complete system and the bare electrodes. It can be writ-
ten

3V (r,1r')=vp(r,1)

+ (v, (M) v, (nM(r))
+ [ 28 sy G2
[r—r"|
We use atomic wunits here (and below), with

lel=m =#=1. The term v,s(r,1') is the sum of the (non-
local) pseudopotentials representing the atomic cores,
V,.(n(r)) is the local-density approximation to the
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exchange-correlation potential,”? n™(r) is the electron
number density for the pair of biased metal electrodes,
nMA4(r) is the density for the complete system, and
dn(r)=nM4(r)—nM(r). We will use the atomic pseudo-
potentials introduced by Hamann, Schliiter, and Chi-
ang.??

The nature of the wave functions W™ has been dis-
cussed in Ref. 15. It will be recalled that ¥™(r) has the

form e' I ugg (z), where R is the coordinate parallel to

the surfaces and z the coordinate normal to them. Deep
in the positively biased electrode (which we will take
henceforth to be the left electrode), u EK'(z) has the form

of a linear combination of left-moving and right-moving
plane waves with wave vector k. Here
1k? =E-—%|K”|2—vé‘,’f(— ), where E is the energy ei-
genvalue in the single-particle equations for the pair of
biased electrodes and where v(z) is the total effective
potential (electrostatic plus exchange correlation) in these
equations.

The character of u EK”(Z) (whether propagating or

standing wave) depends, as discussed in Ref. 15, on the
value of k; : whether 1k} is greater than or less than the
potential step across the barrier, v (00 )—vM(— ). We
will specify this character by an additional subscript a:
uUpk o FOr propagating states, we will replace a either

by “+,” which will correspond to a wave incident from
the left (together with its reflected and transmitted parts)
or by “—,” which will correspond to a wave incident
from the right. Thus, e.g.,

wf,;‘,(“_(r)=e"Kn"‘uEK“_(z) , (3.3)

where

—ikpz ikpz
Rt 4e ®, z>5o ,

—iky z

uEK"_(z)=(27r)_3/2k,(1/2><
y Z—> 00 .

(3.4

Here kg is as defined before and
Lk} =E—-%|K“|2—vﬁff( o), and the coefficient has been
chosen to accord with the continuum normalization
which we will impose on the wave functions W™, specified
by

fd%[ngl,la(r)]*ng”a(r)=5<E —E)8(K,—K]) .

(3.5)

The continuum wave functions ¥4 for the complete
system, which are solutions to the Lippmann-Schwinger
equation (3.1) will, via that equation, have the same label-
ing (E,K,a) as the ¥¥, even though of course K, no
longer refers to a conserved quantity. These solutions
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will also have the same normalization as the ¥* (see Ref.
20), a fact that facilitates the calculation of the electron
density distribution and the current. In the present pa-
per, we will not be considering systems that have discrete
states, and so, even though the treatment of such states is
straightforward, we will not discuss them here. We note
again that for Ep; <E < Epg, where Ep; is the Fermi lev-
el in the left electrode and Epg =Eg; +<V is the Fermi
level in the right electrode (bias V' taken positive), we oc-
cupy only states correspondmg to a wave incident from
the right, i.e., only ¥¥¢ _ and not \I/EK‘ + just as is done

by McCann and Brown.?*

The electron number density is given by the sum of
squares of the occupied states WX  with a factor 2 in-
cluded for spin degeneracy (we take the system to be un-
polarized). The electric current density in the full system
is given by
|

Err
8/==2[, "dE [d’K, [d*RIm (¥ _(1)]*

+8\I'EK _(r)—

where the integration range for K, is the same as in Eq.
(3.6).

B. Calculation in plane-wave representation

We enclose the group of atoms introduced between the
electrodes in a cubic box of side 2L. The box is taken
large enough that 8§V, the potential appearing in Eq.
(3.1), is negligible outside the box.”> We then represent,
e.g., ¥(r) within the box as

W(r)=3 ¥,e ", (3.9)

where n=(n,,n,,n,) and k,=mn/L. The n; (with i =x,
y, or z) are integers, and the sum extends over the ranges

specified by —N <n; < N. Similarly, e.g., we write

8V(r,r)= e Tty e T (3.10)
n, n’
With this representation, Eq. (3.1) becomes
%CEMI\II%@“M, = \P%’K"an , (3.11)
where
Cron =0mm— (3.12)

(2L)°S GM. . 8V oy

(8, is a Kronecker delta). Now the Green’s function

satisfies the equation
[E +1V2—oM(2)]1GY(r,r')=8(r—1') (3.13)

and can be put in the form

S\IIEK“ (r)+8\I’EK"__(r) d

S‘IJEK”__(T)
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'MA(

j4(r)

E
=—2fE:dEfd2K” Im{[W} _(0]* V¥ ()}
(3.6)

(recall that we are setting |e| =1), where the integral over
K, is restricted by |K | < V2[E—v¥(x)]. Now let j¥
be the current density for the pair of biased electrodes in
the absence of the group of atoms. Then the quantity of
interest to us is

8J= [d*Rz-[M4r)—jM], (3.7)
which is independent of z since our system has no current
sources or sinks. Here 2 is the unit vector pointing to the
right and perpendicular to the surfaces of the electrodes.
If we write YMA=WYM 4 §¥ then

EK"—-(r)

(3.8)
[
1 = iK,(R—R’)
M, Y — 2
GM(r,r )—ﬁfd Kje'!
u"éﬁu(z< )u’i}iu(z> :
X , (3.14)
WEK"
where z _ (z. ) is the lesser (greater) of z and z’. Here (as
above)
1 d? 1=
E+5;—2— EIK”P—U%‘(Z) ugin(z)=0 , (3.15)

where B=L or R, with

uls (z)xcexp(—ik;z) asz— — o,
EK, L

uEKi(z.)“exp(thz) as z—o0 ,

where
1k} +oM(— o)=Lk} +v¥(0)=E—1|K||*;

ie, GM is an outgoing-wave Green’s function (often

denoted G*). The quantity WEE“ in Eq. (3.14) is the

Wronskian (which is z independent):

WEi"=u£‘K" (Z)E;HERK" (Z)_'ugﬁu (Z)E—Z—ué’ill (Z) .
(3.16)

(The wave functions denoted u” here, unlike the similarly
defined u, discussed earlier, are not normalized.) The
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plane-wave representation for G is given in Appendix
A.

We will in the present paper take the atom positions to
be given by chemical bond lengths obtained from data on
crystals, rather than by a minimization of the total sys-
tem energy. Our results for resistance are found to be not
very sensitive to the exact values of these bond lengths.
We will typically start our calculation with a trial &n(r)
consisting of a superposition of atomic densities. From
this we obtain 8V, (with use of Poisson’s equation as
discussed in Sec. II), and then W¥¢  from Eq. (3.11).

These wave functions give a new electron density, and the
cycle is repeated using a modified iterative procedure un-
til a self-consistent solution is obtained. The calculations
were done using the IBM 9076 SP2 parallel computer.

nan

C. Obtaining the current

We now discuss the calculation of the current. We
might consider term-by-term differentiation of the plane-
wave representation (3.9) for the wave function, in order
to evaluate the current from Eq. (3.8), but this is not in
fact a good procedure, because the differentiated series
has very poor convergence properties. This poor conver-
gence should not be surprising; the reader can easily un-
derstand the problem by evaluating in this way the
current associated, e.g., with a simple plane wave of arbi-
trary wave vector. Convergence factors® can be used to
produce some improvement in this procedure, but the re-
sults are still not adequate for values of N feasible to use
in the present study. We employ instead a different ap-
proach, not involving term-by-term differentiation of the
plane-wave expansion of the wave function.

The expression for O6W(r) that will instead be
differentiated is that given by the Lippmann-Schwinger
equation (3.1). If we substitute the plane-wave expan-
sions for 8§V (r,r') and ¥YM4(r) into the integrand in Eq.
(3.1), we obtain

= iK;‘R
8k, ()= [d’K e S, Frg o2 8Vor VI o
n,n

(3.17)
where
() 16L° sin(K L —mn, )sin(K,L —mn,)
— z = — —
EXyn w? (R,L—mn,)(K,L—mn,)
ik, z'
X 1_ dez'e z ullfiu( <) gK"(Z>)
EK
(3.18)

When this is substituted into Eq. (3.8) for the current, the
derivative with respect to z can be done numerically on
the u 1/231? (z), which are known to essentially arbitrary ac-

curacy.?
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IV. SELECTED RESULTS

A. One-, two-, and three-atom aluminum wires

We now consider the conductance of Al wires consist-
ing of a small number of atoms connecting our pair of
semi-infinite electrodes.?® This conductance 8G is given
by 8G =8J /V, with the bias YV as specified above and 8§J
as given in Egs. (3.7) and (3.8). For purposes of discus-
sion, we will express this conductance in terms of a resis-
tance R =1/8G.

We first consider wires of one, two, and three Al atoms
(with the two- and three-atom wires perpendicular to the
surfaces).”? For now we take a small bias 9 =0.01 V,
which means that it is only the states close to the Fermi
level that lead to a net current. The self-consistent elec-
tronic charge distribution for the three-atom case is
shown in Fig. 1. The calculated resistances are given by
the first three entries in Table I. It will be recalled in
connection with this table that the ideal one-dimensional
channel discussed in the Introduction has a resistance of
12.9 kQ. If such a channel supports M independent
transverse states instead of just one, with no interchannel
scattering, the resistance is 12.9/M k().

The various states of the Al atom that lie at the Fermi
level in our problem correspond in some loose sense to
these channels. It is the partially occupied 3p states of
this atom that are cut by the Fermi level when the atom
(as here) is bonded to a high-density metal; thus if there
were really a true correspondence between this set of

w

oOe0e])
— T T

VA

FIG. 1. Contours of constant electronic charge density for a
three-atom straight Al wire perpendicular to a pair of biased
semi-infinite electrodes that are represented using the uniform-
background model (r,=2 bohrs). Contours are shown in a
plane through the Al nuclei (black dots); the values are selected
to be visually informative. The contours along the wire bound-
ary and those surrounding the nuclei have a value of 0.014
electrons/bohr®; the others have a value of 0.028
electrons/bohr®. Bias V'=0.01 V (left electrode positive). The
nearest-neighbor Al separation is 5.4 bohrs, and the distance be-
tween the positive-background edge of each electrode (indicated
by a dashed line) and the nucleus of the Al bonded to it is 2.6
bohrs. (1bohr=0.529 A.)
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TABLE 1. Resistances R associated with one- to three-atom
straight Al and Al/S wires, which are perpendicular to the elec-
trode surfaces, at low bias (v=0.01 V). The string of element
symbols in the first column indicates the ordering of the atoms
starting at the left electrode; e.g., S-Al-Al means a chain with a
sulfur atom bonded to the left electrode, an aluminum at the
center, and an aluminum bonded to the right electrode. Num-
ber of plane waves in computation is given by N =6. (In cases
including S, the cubic box was replaced by a rectangular box as
described in Ref. 25 and the N value for the z direction was in-
creased to 7, while being reduced to 4 for the x and y direc-
tions.)

Composition R (kQ)
Al 6.6
Al-Al 9.0
Al-Al-Al 8.3
S-Al-Al 19
Al-S-Al 32

three orbital states (the two spin states are already taken
into account in the ideal value of 12.9 k(}), we would ex-
pect a wire resistance of 4.3 k. Of course there is not
such a close correspondence, which is why none of the
values for Al wires in Table I is equal to this. (Also our
geometry does not have the ideal “adiabatic” character
mentioned in the Introduction.)

To understand one of the ways in which this
correspondence is imperfect, we recall a calculation of
Kalmeyer and Laughlin.>® These authors consider a very
wide square barrier between two semi-infinite regions of
constant potential (corresponding to our electrodes).
Within this barrier is a spherical well which by itself
would support one discrete state. In the presence of the
semi-infinite constant-potential regions, this discrete state
broadens into a Lorentzian resonance (taking the
discrete-state energy to be above the constant potential).
For the energy at the center of the resonance, and for the
well midway in the barrier, it is shown that the conduc-
tance of the barrier is e? /77 (taking spin degeneracy into
account), but off resonance, this conductance is decreased
by the ratio of the value of the Lorentzian state density at
the energy of interest to the peak value.

The Fermi level will not, in general, cut the atomic res-
onances in a calculation such as ours at their peak. As an
illustration of this point, we show in Fig. 2 the additional
state density due to the presence of an Al atom adsorbed
just on a single metal surface (identical to one of our elec-
trodes); note that the Fermi level cuts the 3p,, state den-
sity resonance substantially down from its peak value (p,
states have their lobes perpendicular to the surface and
Dxy States have them parallel).

We expect that the 3p,, states of an adsorbed Al atom
have a greater total overlap with the states of the metal
on which it is adsorbed than with those of an adjacent
single Al atom (such as with those of the center atom in
the three-atom wire). Thus, quite apart from questions of
the resonance position, we expect the 3p,, orbitals to
form effective conduction channels between the elec-
trodes when there is one Al atom, but to form less
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FIG. 2. Difference in eigenstate density between a single met-
al surface (uniform-background model, », =2 bohrs) with an Al
atom bonded to it, and the same metal surface without the
atom. Components with azimuthal quantum numbers m =0
and 1 are shown separately. The Al is at the calculated equilib-
rium distance for this configuration of 2.6 bohrs (measured be-
tween nucleus and positive-background edge). Peaks are labeled
by the atomic state from which they arise. This calculation uses
the procedure of Ref. 21.

effective channels when there are three atoms (or
two),’132 which is in accord with the results for Al wires
given in Table I.

B. Wires consisting of two aluminum atoms
and one sulfur atom

If we replace one of the end Al atoms in the three-atom
wire by a sulfur atom,** the low-bias resistance increases
by a factor of ~2, as seen in Table I. This is understand-
able in view of the fact that since sulfur is electronega-
tive, the 3p resonance is mostly filled and thus well below
the Fermi level, with only a small tail at the Fermi level.
This is illustrated by the curve of the density of states for
S adsorbed just on a single surface, shown in Fig. 3.
Sulfur thus forms a low-density-of-states bottleneck to
the conduction.

If we change the position of the S atom from the end of
the chain to the center, the resistance increases yet fur-
ther, to a factor of ~4 relative to that of the Al chain.

= 1.6 T T v T
; _,: all m
& u>J| m=0
@ 1.2 4 -— m=1 |
= s
= ol
» el
) 08 | -
= i
2 I
=
& 04 ! :
w I
=
@9 00 - b

-10 -8 -6 -4 -2 0

ENERGY RELATIVE TO VACUUM (eV)

FIG. 3. Eigenstate density difference for S atom bonded to a
metal surface. Details are the same as given in the caption of
Fig. 2, except the metal-adatom distance is 1.9 bohrs.
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TABLE II. Polarity dependence of the resistance R associat-
ed with the S-Al-Al chain. The sign of the bias YV gives the po-
larity of the left electrode (i.e., the electrode bonded to the
sulfer atom). Number of plane waves in computation is given in
the caption of Table I.

YV (V) R (kQ)
+2 21
—2 15

When the S atom is not in direct contact with the metal
but only with an Al on each side, its 3p resonance be-
comes narrower, pulling the tail away from the Fermi
level. It is for reasons such as this that we should expect
the resistance of atomic wires composed of more than one
kind of atom to depend on the order of these atoms in the
chain.

Because of the asymmetry of the S density of states
about the Fermi level,* we would expect the resistance at
larger bias to be dependent on the polarity. This is seen

J

’ ’
n +ny+nx+ny

_(=1
272L*

M
GE nn’
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in Table II for the S-Al-Al chain with a bias of +2 V.
For +2 V (see table caption for the sign convention),
electrons are injected from the Al part of the chain into S
states above the Fermi level, whose density is relatively
small (cf. Fig. 3). A negative bias polarity involves in-
stead the higher density of filled S states in the conduc-
tion process.
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APPENDIX A

The Green’s function G in the plane-wave representa-
tion is given by

© /2 . . .
fo tdt gEnznz,(t/L)f0 d ¢ sin’(t cos¢) sin’(¢ sing)

2 ’ . ’
X (t%cos’p+m?n, ny )(t’sin’p+m*n,n;)
X [(t*cos’p—m*n?)(t’cos’p—m*n,?)

X (t%sin’p—m?n2)(tsin’p—mn)?)] !,

where

_— 1 L ~iknzz
85 n" K, )= ———~—WEE” f_Ldz e

z

Z
z n L n
X uERE”(Z)f_LdZ'ué‘K“(Z’)e z +uELE" (Z)fz dz’u;}i”(Z')e z

ik

’
”

’

ik ,z
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