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We study the current transmission through a nonidal interface between two different metals. The ex-
act equations relating the electron distribution functions in the bulk of metals are obtained. These equa-
tions take into account the specular scattering of electrons from the contacting surface as well as the
diffusive scattering from defects at the interface. A specific resistance of contact is calculated. The ap-
proach makes it possible to take into account the nonideality of the inerface in a rigorous way.

I. INTRODUCTION

The transition of electric current through a contact of
two metals is a well-known problem of solid-state phys-
ics. ' The interest in this problem is growing now thanks
to recent studies of metallic superlattices. In particular, a
giant magnetoresistance (GMR) has been observed in
Fe/Cr and some other systems with alternating films of
ferromagnetic metal and nonmagnetic spacers.

Here we study a single interface between two metals in
current perpendicular to plane (CPP) geometry. As for
magnetic multilayers the CPP geometry has recently been
considered theoretically ' and experimentally. "'

All theories based on the Boltzmann equation ap-
proach have some difticulties in a formulation of the
boundary conditions at the interface. It is necessary to
take into consideration the nonideality of the interface
(roughness and impurity scattering of the electrons). For
this purpose one normally uses some kind of Fuchs-
Sondheimer boundary conditions' ' for electron distri-
bution functions. A specular parameter entering these
boundary conditions has been introduced phenomenolog-
ically as a constant ranging somewhere among 0 and 1.
The introduction of such a parameter does not take into
account the fact that the electrons can experience an in-
terface either as specular or diffusive depending on the re-
lation between an electron wavelength and a characteris-
tic dimension of roughness. Thus the specular parameter
should depend on the electron velocity. In a more con-
sistent theory developed by Falkovsky for a metal surface
(see the review article' ) the boundary conditions take
this feature into account quite naturally. They have been
derived from a 6tting condition for the electron wave
functions at a nonideal interface.

In the present paper the method' developed for the
electron rejecting from the metal surface is generalized
for the case of electrons transmitting through the contact
of two metals. As the interface nonideality we consider
the scattering of electrons from a random two-
dimensional potential which is located at the interface
and has a white-noise-like correlator. In this case there is
only one parameter describing the interface nonideality
that equals the mean-square fluctuation of a scattering

potential at the interface. All other parameters included
in the boundary conditions will be derived from micro-
scopic theory.

Bfof=fo —e Ei u, r, ,
E

(2)

where E
&

=jo/0 ] is the 6eld in bulk of metal
I( ~z

~

))l, ), and jo is the transport current density.
The analogous equation can be written for the distribu-

tion function g (z, v) in region 2 (z )0).
In both regions 1 and 2 we can introduce the distribu-

tion functions for electrons moving along the z axis (i.e.,
along E) f+, g+, (u, )0), and f,g, (u, (0) for elec-
trons moving in the opposite direction.

The solutions for these functions have the following
form:

II. MGDEI. AND KINETIC EQUATIGNS

Let us consider a contact of metals 1 and 2, laying in a
z =0 plane. The dispersion of electrons in these metals is
taken in the square approximation c,

&
=p /2m &,

'

cz =Eo+p /2m 2. The metals are characterized by bulk
conductivities o. , and 0.

2 and mean free paths l& and l2.
The external electric 6eld E is applied along the z axis.
Due to the different work functions of metals, a redistri-
bution of electrons takes place resulting in a nonuniform
electric field E(z). The characteristic inhomogeneity
length near the contact is of the order of screening
lengths I., 2 and is small compared to l, 2,
L1 =—L 2=L ((l1,2

In region l(z (0) the Boltzmann transport equation
for distribution function f (z, v) in the weak field can be
written in ~ approximation as

eE(z) ufo df f fo
n& BU Bz

where fo={I+exp[(Ei —E~, )/T]I ', e~, is the Fernii
energy; r, =li /uz, is the bulk relaxation time related to
the scattering from impurities in the bulk of metal 1, and
T is the temperature in energy units.

The boundary condition at z —+ —~ reads
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Bfof+=fo —e f E, (z')exp[(z' —z)lux, ]dz',

Bof =f()+e —C) exp(z/u-i)+ f Ei(z')exp[ —(z' —z) /uzi]dz'
Z

B,~J0 Z

g =fp e C2exp( —z/vs)+ E2(z')exp[(z' —z)Iv~2]dz'
BE 0

B 0
g =fo+e f E2(z')exp[ —(z' —z)/ur2]dz',

Z

where u —=~u, ~, Ci and C2 are some functions of v that will be calculated below using the boundary conditions at the in-
terface z =0, and Ei 2(z) is the electric field in regions 1 and 2.

III. ELECTRIC CURRENT AND VOLTAGE DROP AT THE CONTACT

Using the expression for the current density in region 1,

d kj,(z) =2e f v, (f+ f ), —
(u, &0) (2~)3

and after integrating over the moment in the contact plane, from (3) we obtain

2 2

j,(z) = f u dv f E, (z')exp[(z' —z)/u-, ]dz' —Ciexp(z/ur, ) —f E, (z')exp[(z —z')lur)]dz'

(4)

Taking E, (z) =Ei +5E, (z), we can find from equation j,(z) =jo that the distribution of the electric field at z &0 obeys

Flf u du exp( z/vr—i)f 5E)(z')exp(z'!Ur()dz' E(-u (erpx(z—/u i)r

0—Ciexp(z/ur, ) —exp(z/vr, ) 5E, (z')exp( —z'/ur, )dz' '=0.
Z

(6)

To estimate the integrals in Eq. (6), we assume that
5E,(z)=E,e', where E, is the field magnitude at the
interface. These integrals can be presented in the form

UFI=f vexp( —alvr)du
0
2a a

UF7

f v dv[C, (u)+ur, E, —U, ]=0,
0

where

(9)

Equation (6) holds for any z(0. The third term in (6)
can be neglected at ~z~»L, whereas the fourth one is a
constant proportional to the voltage drop U& in region 1.

Thus Eq. (6) takes the form (~z~ »L)

uF/2, a/VF
3

VFV a
exp

a UF7
a/UFr»1,

0
U, = f 5E, (z)dz.

After the integration, the final form of Eq. (9) is

Ci(U)U dU+)E)1ivFi+ —UFiUi 0 ~ (10)

where 1 (a, x) is the incomplete gamma function. '

Using (7) we have the following expressions for the
third and fourth integrals in (6):

f u du f 5E, (z')exp[ —(z —z') lv~, ]dz'
0 oo

E,uF, L exp(z/L)—,
(8)

f u dv f 5E, (z')exp[ —(z' —z)/ur(]dz'
0 Z

-=E,vF, L exp(z/I, )[1—exp(z/L)],

where l& =uF)7].

Using the equation j2(z)=jo for region 2, in an analo-
gous way, we obtain

f F2
2(v)Udv )E2 r2VF2+TUF2U2 —0

where

U2= f 5E2(z)dz

is the voltage drop in region 2 (z &0).
Equations (10) and (11) enable the determination of the

total voltage drops for regions 1 and 2, provided that the
coefficients C& and C2 are known.
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IV. BOUNDARY CONDITIONS
I'OR DISTRIBUTION FUNCTIONS

At the surface separating two metals, electrons are
scattered from defects located at the surface. The
scattering takes place either from impurities or the
roughness of the boundary. In this case the scattering is
supposed to be elastic.

The wave function in region 1 can be presented as a su-
perposition of plane waves on the isoenergetic surface

%,(E,z, r)= f dk, dka, (k„k)exp[i(k, z+k r)]

After performing the integration over k„we have

f dk exp(ik r)

X [a,kexp( —ik„z)+a,„exp(ik„z)], (13)

where A'ki, =(2miE —iii k )'~, vik=iiiki, /mi, and a ik—=a, (k, =+k„,k). In region 2 we obtain a similar ex-
pression:

exp(ik r) (0'2(E, z, r)= fdk- [a2kexp( ik—2,z)
U2k

iri (k, +k )
X6 c.—

2m

where r=(x,y) and k=(k„,k~ ).

(12)
+a 2k exp(ik2, z )],

where A'k2, = (2m 2m
—A' k )'~, and v2k =A'k2, /m2.

In order to write down Schrodinger equation at arbi-
trary z, it is convenient to use the Lagrangian

x'/ve, [' e'/ve, '
L= f dz dr [1—6(z)]—s/%',

/ [1—6(z)]+ 6(z) —e/ P
/

6(z)+5(z)W(r)/0'(O, r)/2m) 2m 2

where W(r)5(z) is a random field located at the interface,
6(z) is the step function, 'P(z (0)=%„%(z)0)=%'2,
and %'= 4i =%2 at z =0. Making a variation of (15) over4, we obtain the Schrodinger equation

bution functions and factors a ), we obtain

(20)

g2
V, [1—6(z)]V,e, — V, e(z)V, e,2m 1 2m 2

+5(z) W(r)e =em, [ I —e(z) ]+so,e(z).

(16)

d%'1

2m
&

dz

d%'2
+ W(r)% =0,

2m 2 dz

5~+0 . (17)

Substituting (13) and (14) in (17), we have

a1k a lk+a2k a2k

2i 2 W(q) ) +a i'k—
U1V —q

where

W(r) = f W(q)exp(iq r)d q .1

2~

(18)

The second equation follows from the continuity condi-
tion %', (z =O, r) =%2(z =O, r)

1 ) ( 1ik+a ik ) ( 2k +a 2k )
02k

(19)

Now, taking into account' the relation between distri-

After integrating Eq. (16) over an infinitely small
neighborhood of z =0, we obtain the following condition
for the wave functions at the interface:

If the contacting surface is an ideal plane [i.e.,
W(r) =0], then from Eqs. (18) and (19) we can find

f =Rf++ Tg

( W(r) ) =0, ( W(r) W(r') ) =y5(r —r'), (21)

so that the correlations of higher orders are absent.
Hence the iterations of (18) can be cut off at terms pro-
portional to y.

As a result, .from (18)—(20) we obtain the boundary
conditions at the z =0 plane:

where R =(u, k
—

v2k ) /(u, k+u2k ) and T =1 Rar—e the
reAection and transmission coeffIcients, respectively. If
one sets m, =m2 and substitutes in R and T the values
ki 2=(2mEi 2

—fi k~sin 6)', then the refiection and
transmission coefficients will take the form used by Hood
and Falicov for the ideal interface (here 6 is the angle of
incidence).

Excluding the factors a1k and a2k in turn from Eq.
(19), with the help of (18) we can find the relation between
other a factors at the interface. After that, formulating
the expressions for distribution functions (20), and mak-
ing use of the iterations in W(r), we come to the bound-
ary conditions for distribution functions. They should be
averaged over the realizations of random fields W(r).
We consider the distribution of random fields W(r ) to be
Gaussian,
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fk =fk+ R—16ui„(vi„—u2k) y f d q

(u 1k+ V2k ) ~ v lq "2q3 2

pF1 )pF2. There exists an interval of velocities
0 (V1 (U1;„,in which u2 =0, and

' 1/2

32U1k U2k y d2q
+gk

(Ulk+V2k )

m2
U =U

1 min F1
m1

Ep m1+
m2

(26)

16u1k
d

(vi. +V2. ) ~ (Vlq+V2q )

16U1k U1

(U lk+V2k ) R ( lq 2q)

+ (22)

It corresponds to the complete quantum reAection for a
portion of electrons at the current transmission through
the contact, which should be taken into account when in-
tegrating over u, . In Sec. V the coefficients C, and C2
determining the distribution functions (3) will be calculat-
ed from boundary conditions (22) and (23).

16V2k(U2k Ulk ) P f d q
gk gk R

(V 1k+ V2k )'

1
d

k
( V lk +V2k ) ~ V lq +"2q3 2 J

16U2k+
(vlk+v2k ) I (Ul„+V2

+
( U 1 k +V 2k ) A ( U lq + U 2q )

(23)

2 1/2
m2 cp m2

1 — + +
m1 CF2 m1 UF2UF2

Here the z components of electron velocities U1k and U2k

are related by
1/2

V. DISTRIBUTION FUNCTIONS

To determine C1 and C2 we write the distribution
functions from Eq. (3) at the z =0 plane for I.«1, 2

..

Bfo Bfo
fk =fo (P—

i i+ 1» fk =fo
(27)

~fo dfo
gk+=fo e

~
C2 gk =fo+e

~
(E2 U2r2+U2) .

Substituting (27) in boundary conditions (22) and (23), we
obtain the equations from which we can calculate
coefficients C, and C2. The result reads

16V1 Vm 1UF1
2

C, R=(E
1 v 1 rl+ Ul ) 1 —

4 2 2 I,
ill'(u, —u2)

U2k

m2

1/2
m11—

2 1/2
Ep m1 v1k+,(24)

m2 UF1

8rm2UF2—T(E2"v2r2+ U2) 1— I2
ill ( u 1 + u 2 )

2
sF1,2 m 1,2VF1, 2 ~2

Equations (22) and (23) give us effective transmission
and reAection coefficients for the nonideal interface that
are exact if a random field W(r) is Gaussian. If the field
W'(r) is not Gaussian these coefficients have the same
form within the second order approximation in the field
8'(r). For m, =m2 an effective transmission coefficient
from the square brackets of (22) and (23) coincide with
those obtained by Barnas and Pert' and taken within the
second-order approximation in the impurity potential.

In Eqs. (22) and (23) both the potential step Eo&0 and
the difference of masses m, &m2 were taken into account
as two sources of the quantum reAection of electrons
against the interface.

We can go to the one-dimensional integration in Eqs.
(22) and (23) in the following way:

8Fm 1UF1
2

+ T 4 (E 1"UFlrlI3+ UlI5 )
A'U2

4+m 2vF2—T (E2
—
UF2q 2I4+ U2I6 ),

A V2

16U2ym 2vF2
2

C2= —R(E2 V2r2+U2) 1 —
4 2 2 I2

lri ( u 2
2—v 21 )

8ym, vF,+ T(E 1"v, r, + Ul ) 1— I1
ill ( u, + u 2 )

4/m 2UF2
2

(E2 VF2r2I4+ U2I6)
fl U1

4/m 1UF1
2

+ T 4 (E 1"UF, r,I3+ U, I5 ),
A U1

(28)

2&m 1fd g'''~
2 fUldvlg2

f 27Tm 2
2 2U dv

(25)

where

v 1 min 1 f "FiI1= +
UF1 VF1 1 min U1+U2

in regions 1 and 2, respectively. In the course of integra-
tion over the variable v, (u2) the value of u2 (u, ) should
be considered as a function of u, (u2 ) according to (24).

In our treatment the Fermi surfaces may have different
sizes in regions 1 and 2. For definiteness, we take

"PP V2dU2I =
2

UF2 0 U1+ U2

U1 min 1 +& V 1~U1+
~

2VF1 uF1 "i min (Ul+V2)
(29)
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1 vF2
3

I4 =
UF2 o U1+ U2

V1 min 1 Fl U 1uU1

2Ut min (vi+u2)

1 y'F2 vzdvz2

I6=
UFp 0 (v, +u2)

2U ym I

jp A4O-

where l is the bulk mean free path of metal.
(2) For the ideal interface (y =0),

U, =u~, (Ei"~,P, +E2" r2P, ),
U2 vF2(E 1 +1P2 +E2 r2P2 )

(33)

(34)

Now we shall consider some limiting cases.
(1) Nearly identical metals, i.e., u, = u2 = u, R =0,

T = 1) and 7 1=72=7:

where P, 2 and P1 2 are the following numerical
coefficients:

P — l 1I(1)+ 1I(2) +I(1)I(2)=1
2/m VF

C = —C = (E "u—r+U) 1 ——
1 2

A'V

(2) Ideal interface, y =0:

C, =(E iv, r+U, )Z (E—~™u,r, +U, )T,
C2= (E2"v2~—2+ U2)R+(E i u, r, + U, )T .

(30)

(31)

VF2—16 4 4
VF1

P- 1 4 F2I(1)+4 F2 I(1)I(2)
1 4 4 1D 3 UF1 VF1

+2I (1) 4I (1)I(2)

VI. KI.KCTRICAI. RESISTANCE GF THE CQNTACT

With the known coefficients C1 and C2, and using Eqs.
(10) and (11)we can find the voltage drops U„and Uz. It
can be done in the analytical form for the limiting cases
considered above.

(1) For nearly identical metals,

P = 1 4 'F1 I(2)+4 F1I(1)I(2)
2 4 1 4

VF2 VF2

+2I"'—4I' "I"'
3 2 3

E /Pl UFV
U1= U2= U= (32)

P = l l I(2) + 1I(1)+I(1)I(2)
D 6 & 1 3 2 2 1

The voltage drop at the contact is 2U. The specific resis-
tance of the contact is given by

and

I(2)I(1)
4

VF2

20
20

16

I 2
C4

'I0

8
C)

6
EL

14

1 2
C4

E10

C)

6
CL

0—1.0 —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4
0. 1 0.2 0.3 0.4 0.5

FIG. 1. Dependence of the Cr-Fe contact resistance on co for
various values of y. FIG. 2. The same for Cu-Fe contact resistance.
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6
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cp is shown in Figs. 1 —3. The bulk properties of metals
were taken for Cr/Fe, Cu/Fe, and Co/Cu magnetic mul-
tilayers. To estimate the potential steps one can use the
known Fermi energies V„V, and V~ for the nonmag-
netic metal, minority, and majority carriers, respectively.
The sheet resistances for the minority and majority elec-
trons can be determined from Figs. 1 —3 if one takes for Ep
the values Ep1 = ( V, —V ) and ept =( V, —VM ), respective-
ly. This gives Ep /E~, =0.036 and Ep /eF] 0.33 for
Cu/Fe, Ept/EF, = —0.43 and Ep1/E„, =0.007 for Cr/Fe,
and E~, = V, . For Co/Cu multilayers we have used'
Ep /Ep. ~

=0.4 and Ep /Ey ~
=0.03. We have taken the equal

masses m1=m2=4mp, and the bulk conductivities'
o.F,=1.16X10 Q ' cm ', oc,=7.09X 104 Q ' cm
oc 6 45X10 Q 'cm ', and o.co 1 80X10
0 ' cm '(T =300 K).

VII. CONCLUSIONS

FIG. 3. The same for Cu-Co contact resistance.

D = 161~ ~l~ ~+ '(1~~~+1~2~ ) —1~&~1~2~
4 4 2 2 2 2 2

vF1 F1I(1)—
1 Rvdv I' =

1 1~ 2 Rv dv1 1
uF1

F1 (1) 1 Fl
I3 =

3 Tv1u2du»I4 =
2 Tv1du1 ~

4vF1 4vF1 P

(35)

The integrals I ' are given by the same expressions (3S)
with the replacements u, ~v2, uF &+-+uF2. We should keep
in mind that u2 =0 at u1 & u1

The final expression for the specific resistance in case
of y=Ois

R =R(' +R (36)

where

R (1,2) 2l12 1,2 2, 1 F1,2 p
o. l u

1,2 1,22, 1 ~1,2 uF2, 1

In case of different metals (v~, Av~z) and the nonideal
contacting surface (yAO), the resistance can be obtained
from the general formulas by numerical calculations.
The contact resistance as a function of the potential step

In this paper we have presented the solution of the
problem of the contact resistance for the interface
modeled by a two-dimensional random potential. Such a
treatment corresponds to the sharp and Rat separating
surfaces. As a result, the contact resistance is determined
by the macroscopic parameters of metals and the correla-
tor of random fields. The dimensionless parameter of the
interface nonideality is ymp/A' ~ We believe that our
model can describe correctly the contacts fabricated by
MBE technology.

Note that in the case of scattering from short-ranged
impurity centers at the interface the roughness parameter
y can be presented as y =X;8'p, where lV, is the planar
concentration of impurities and 8'p is the Fourier trans-
form of the 5-like potential.

The explicit dependence of the specific contact resis-
tance upon the nonideality parameter makes it possible to
estimate quantitatively the eA'ects of the interface
nonideality on the contact resistance of two metals. In
contrast to the Fuchs-Sondheimer approach, in which the
specular parameters were introduced phenomenological-
ly, in our treatment the nonideality is taken into account
with the help of the boundary conditions for electron
wave functions.
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