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We study the delocalization transition for spin-polarized and spin-degenerate noninteracting
electrons in the lowest Landau level. We perform finite-size scaling calculations of the Thouless
number for varying amounts of potential and spin-orbit scattering. For spin-polarized electrons,
we obtain a one-parameter scaling function for the Thouless number that fits scaled experimental
data for the longitudinal resistivity. For spin-degenerate electrons with spin-orbit scattering, the
Thouless number is peaked away from the band center by an amount proportional to the strength
of the spin-orbit scattering. The universality class of the delocalization transition for noninteracting
spin-degenerate electrons in the quantum Hall regime is found to be the same as for spin-polarized
electrons. We also study the density of states and Thouless number for the model of pure spin-orbit
scattering studied by Hikami, Shirai, and Wegner [Nucl. Phys. B 408, 415 (1993)],which represents
a different universality class.

I. INTRODUCTION

In the quantum Hall effect, changes in the quan-
tized value of the Hall conductivity 0 „asthe mag-
netic field or particle density are varied due to a series of
metal-insulator transitions. 2 The insulating phase oc-
curs when the chemical potential lies in a region of local-
ized states. In the insulating regime, o.

& is quantized to
an integer multiple of e /h to a very high degree of accu-
racy over a finite range of field values, and the longitudi-
nal conductivity o vanishes. Near the critical points,
o~ is nonzero and 0 „nolonger remains constant. The
widths of the quasimetallic regimes become smaller as the
temperature is reduced. A theoretical phase diagram
for the integer quantum Hall effect (I@HE) has recently
been proposed for the transition between insulating
and quantum Hall regimes.

Metal-insulator transitions are usually described us-
ing scaling theories. In the absence of a magnetic field,
scaling arguments indicate that in two dimensions, all
states are localized in the thermodynamic limit, leading
to an insu)ating state. In three dimensions, there can
exist a range of chemical potential for which the sys-
tern is a metal, separated by a mobility edge from an
insulating state. The situation is qualitatively difFerent
in two dimensions in the presence of a strong perpen-
dicular magnetic field. Semiclassically, the trajectory of
a charged particle in a magnetic field can be separated
into a drift motion along equipotential contours, together
with small gyrations about the drift motion. In the limit
of smoothly varying disorder, there is a single energy at
which equipotential contours percolate through a systexn.

This corresponds to an extended state. ' Scaling the-
ories of the metal-insulator transition in the quantum
Hall regime have been developed, consistent with the idea
that the conductivity depends on disorder and chemical
potential. ' For the I@HE, random potential scattering
broadens the Landau-level peaks in the density of states.
However, it is known that the regions of extended states
are not broadened in energy. There is a discrete set of
energies (E,j, corresponding (for weak disorder) to the
Landau-level energies (n + z)ku„at which the localiza-
tion length ( diverges as ( ~E —E,

~

The localization exponent v has been measured di-
rectly in experiments by varying the width of Hall bars
and determining the scaling behavior of the longitudi-
nal resistivity p in the metallic regime, at very low
temperatures. It was found that v = 2.3. The scal-
ing behavior of the I@HE delocalization transition has
also been measured by studying the resistivity tensor as
a function of temperature. The reciprocal of the width
LB of the transition region of p between Hall plateaux,
and the maximum slope of the Hall resistivity in the tran-
sition region, dp v/dB, both diverge with the same ex-
ponent ~:

ccT".

The scaling exponent v is related to the localization expo-
nent v by a third exponent p, according to e = /2pv.

~ s

The exponent p describes how the inelastic scattering
length I;„ocT ", which determines the efFective sample
size, diverges as a function of temperature. For spin-
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polarized electrons, experiments yield K 0.42. When
combined with the experimentally obtained value v —2.3
&om Ref. 16, this implies p —2. The value of p has been
measured by independent means on the same sample in
Ref. 18, and p = 2 is also found.

It should be noted that there are other scenarios for
explaining the value of K. From the point of view of
dynamical scaling, r. = 1/zv, where z is the dynami-
cal scaling exponent. ' The value z —1 is consistent
with Coulomb interactions controlling the dynamics.
Polyakov and Shklovskii have argued that hopping
transport is responsible for the broadening of the p
peaks. Sondhi and Kivelson equate temperature scal-
ing to (imaginary) time or frequency scaling, and propose
that the result r = 1/v is due to the scaling behavior of
the time scale (rather than the length scale /,„).Re-
cently, the microwave frequency dependence of o in
the I@HE was measured, and the width AB of u was
found to scale with the &equency w like LB oc u~, where

p = 0.41+ 0.04 for spin-split peaks. In this work, we
explicitly perform length rescaling to obtain v, and do
not directly calculate the temperature scaling of the con-
ductivity.

It has also been demonstrated experimentally that
higher derivatives of p „scaleaccording to

d p~y
(

~ nK
dBn (2)

where B, denotes the center of transition region (where
p has a local maximum), and n = 1, 2, 3.2s Assum-
ing that Eq. (2) also holds for all higher derivatives,
it follows that in the metallic region, the resistivity
Ap „=p(B,) —p(B) near B, is a scaling function of
a dimensionless length scale, (//;„; i.e., of the ratio of the
localization length to the effective system size.

A substantial body of numerical work using Gnite-
size scaling shows that, for noninteracting spin-
polarized electrons, v = 2.3, ' in agreement with
experiment and with (nonrigorous) theoretical argu-
ments that v = 7/3. s2 However, for experiments with
lower mobility samples in smaller magnetic fields, the
disorder broadening can exceed the Zeeman splitting.
In this case there can occur a spin-unresolved quan-
turn Hall transition, with the Hall conductance chang-
ing by Ao „=2e /h between plateaux. For such effec-
tively spin-degenerate electrons, experiments Gnd that

0.21, which is half the size of the spin-polarized
exponent. ' In addition, the exponent of the frequency
dependence of the width AB of o is also halved for
spin-degenerate electrons: LB oc u~ with p = 0.20 +
0.05. There is experimental evidence that p is the same
for spin-polarized and spin-degenerate electrons in the
I@HE, which, taken at face value, suggests that v dou-
bles in the spin-degenerate case. A similar approximate
doubling of the exponent is seen in network model simu-
lations when the localization energy is assumed to diverge
at only one energy.

However, Khmelnitskii has argued that for the case
of two overlapped spin subbands, the extended states
should split, and indeed network model simulations of

spin-degenerate electrons are fit somewhat better by as-
suming that there is such a splitting. Polyakov and
Shklovskii have conjectured that for an extended state,
whose energy is split due to the SQ interaction by an
amount 2E &( I', where I' is the disorder broadening of
the Landau levels, the localization length has the form

p2

E2 E2

and that one recovers the usual value for v only very
close to the spin-split energies +E, at sufBciently low
temperature. Qtherwise, an apparent doubling of v is ob-
tained. Reference 31 has argued that in the limit of very
smooth disorder, spin-degenerate electrons diverge with
the same value of the localization exponent, v —2.3, but
at two separate energies. According to these arguments,
the erstwhile doubling of v seen in experiments is due to
the assumption that the localization length diverges at a
single energy rather than at two nearby energies.

We shall argue &om direct numerical calculations that,
in agreement with theoretical arguments and network
model studies, the localization length diverges at two
energies +E„that the localization exponent is v 2.3,
and that the value of the universal peak conductivity for
o. is the same as in the spin-polarized case. Our calcu-
lation of the Thouless number is done within a semireal-
istic microscopic model, and provides an alternate con-
firmation of the energy splitting produced by spin-orbit
scattering. We have also investigated the pure spin-orbit
scattering model of Hikami, Shirai, and Wegner, which
is believed to be in a diferent universality class.

II. COMPUTATIONAL METHOD

We have calculated the Thouless number for electrons
moving in the continuum, restricted to the lowest Lan-
dau level (LLL). In this calculation, a noninteracting
two-dimensional electron gas (2DEG) is subject to a per-
pendicular magnetic Geld B = V'xA, where A is the
vector potential. The results presented here were ob-
tained from finite-size calculations in the LLL, using a
basis of continuum states. For a continuum system with-
out disorder in the presence of total Aux 4, the den-
sity of states is a discrete sum of b functions at energies
E = (n + z)ku„where n = 0, 1, 2, ... is the Landau-
level index, and u, = eB/mc is the cyclotron frequency.
Each Landau level has a degeneracy of N = 4/Po, where
Po ——hc/e is the elementary Hux quantum.

In the Landau gauge A = Bey, the single-particl. e
wave functions are given by

( ) ky~ ((+ —&'( —( kl ) /2'-

gyy
where k = 2vrrn/K indexes the states within a given Lan-
dau level, H denote Hermite polynomials, and the unit
length is de6ned by the magnetic length /~ = ghc/eB.
The area L of the system is measured by the num-
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~
—Ir —r' I'/21,"'

V(r)V(r') = U
27r(2 (6)

where U gives the strength of the scalar disorder. The
limit g -+ 0 corresponds to uncorrelated white-noise dis-
order. As we discuss in detail further below, we take the
SO scattering to have the form of a random pseudoGeld
W coupled to the electronic spin o'.

ber of fIux quanta, N, that pass through the sample,
I = 2vrl&2¹ The Hamiltonian for the system in the
LLL may be written as

H —) ) lk s)(k sl(V + HsQ)lk s )(k s
k, s k', s'

where the basis set (lk, s)) are the n = 0 (LLL) eigen-
states in Eq. (3), with spin quantum number S, = hs,
where s = +1/2. The projected. Hamiltonian in Eq. (4)
consists of both a random Gaussian scalar potential V
and a spin-orbit scattering term Hso. The disorder cor-
relation lengths of V and Hs~ are taken to be the same,
and are denoted by (:

where bA is the vector potential for a solenoid carrying
flux P. Insertion of the flux P = $0/2 is equivalent to
changing the boundary conditions from periodic to an-
tiperiodic. In the absence of a magnetic Geld, the change
in energy AE is second order in bH, and LE may be
calculated Rom second-order perturbation theory in bH,
which, like the Kubo formula for the conductivity, has
matrix elements involving the square of the current op-
erator. Ando has argued that the derivation given by
Licciardello and Thouless relating the Thouless num-
ber in the absence of a magnetic Beld can also be applied
to the case of a system in a strong magnetic Beld, despite
the lack of time reversal symmetry.

Reference 38 assumed that the mean-square value of
the matrix elements of the current operator between two
states is not too sensitive to the difference in energy be-
tween the states, and that the energy levels are uncorre-
lated. The latter assumption is not true in the metallic
regime. Nonetheless, more recent work has extended
the Thouless formula to the metallic regime, and shown
that the dissipative (transport) conductance gg is pro-
portional to the level curvature g„deGned as

Hso =&W

where A is a phenomenological SO coupling constant, and g.(E) = D(E)
('&'El '
&~ ') y=o

(10)

e Ir —r'I /
W (r)Wp(r') = 8 pW

27r 2 (8)

8H = —— bA jdr,
C

where TV gives the strength of the random pseudoBeld,
and n, P = x, y, z.

Our numerical studies measure delocalization by cal-
culating the disorder-averaged Thouless number T(E),
which has been argued to be proportional to the disorder-
averaged longitudinal conductivity o (E). s The pro-
portionality of T(E) and 0(E) has be'en demonstrated,
in the absence of a magnetic Geld, in Ref. 39. In prac-
tice, we express the Hamiltonian as an N x N matrix,
which we diagonalize to obtain N energy eigenvalues. In
Ref. 38, T(E) is defined as the change AE in the energy
eigenvalue at energy E that results from changing bound-
ary conditions (e.g. , from periodic to antiperiodic), mul-
tiplied by the total density of states D(E). The Thou-
less number is small for localized states, because such
states do not extend to the boundaries. It is relatively
large for extended states, because they span the sample
to its boundaries and hence are sensitive to changes in the
boundary conditions. The width AE (e.g. , at half max-
imum) of T(E) measures the energy range over which
states are extended. The width is finite for Gnite-size
samples, but vanishes in the limit that the sample size
becomes inGnite, since the extended states for an infinite
sample occur at discrete energies, in the presence of a
strong magnetic Geld.

The eKect of changing the boundary conditions of wave
functions is equivalent to the gauge transformation that
results from adiabatically inserting fIux in a toroidal
geometry. This may be implemented via the pertur-
bation Hamiltonian,

In the presence of a magnetic Geld, it is also believed that
T(E) and o. (E) are proportional, although we know of
no proof of this. Differences appear when a magnetic Geld
is present; for example, the energy shifts due to changing
the boundary conditions are linear rather than quadratic
in P, due to the lack of time reversal invariance, and are
random in sign.

The localization exponent v is obtained by finite-size
scaling. We calculate the Thouless number for a range of
samples sizes I oc ~N In most o. f our calculations, we
have followed the approach of Ref. 38 and calculated the
energy shifts between periodic and antiperiodic boundary
conditions, studying 2b, E/P2 rather than 0 E/0$, with
P = $0/2. We expect that T(E) should have the same
scaling behavior as cr (E). For samples large enough
to be in the scaling regime, the Thouless number can be
written in terms of a scaling function of the ratio of the
localization length ( to the sample size L, f((/L) As-.
suming that the localization length diverges at the LLL
center as ( oc lEl ", we may write the Thouless number
as a scaling function of lElL ~":

T(E) = f(&/L) - fl(IEIL' )-"I-=f(IEIL' ) (»)
The area A(L) under the Thouless number curves, there-
fore, scales like I

Tl, (E)dE = L i" f(E)dE = foL
0

where T(0) = f (0) and fo are independent of system
size. T(E) should, therefore, have a half width AE oc

I / that narrows with increasing system size, and a
peak value T(0), corresponding to the peak conductivity
o = e2/2h, 42 that is independent of the system size
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I. We analyze our results by calculating A(I) for each
sample size I and we check that we are in the scaling
regime by ensuring that the Thouless number data all
scale onto a single curve when the energy E is rescaled to
E/A(L). The scaling exponent v can be obtained from
a log-log plot of A(L) versus L, which, in the scaling
regime, should approach a straight line with slope —1/v.
Studying the scaling behavior of A(I ) has the advantage
that A(L) is less noisy than T(E), since A(L) is obtained
by integrating T(E).

power law of the temperature, with associated exponent
K —0.42 + 0.04. Under rescaling of the magnetic Geld
with the temperature according to LB + LBT ", all
the longitudinal resistivity curves can be collapsed onto
a single curve.

Figure 2(b) shows that the scaled Thouless number

0.40 ——
(&)

III. SPIN-POLAR. IZED ELECTB.ONS

0.30

We Grst calculate the Thouless number for spin-
polarized electrons in the LLL, for white-noise disor-
der (( = 0). The Thouless number plots for 1V

20, 80, 300, 1000 are shown in Fig. 1(a). The half width
LE of the Thouless number shrinks with increasing sys-
tem size, while the peak value remains constant at about
0.32 1/vr. Ando's formula, o = (ez/4h)T(E), re-
lating the Thouless number to the conductivity for the
case of a 2DEG in a strong magnetic field, would im-

ply that T(0) 1/z corresponds to a peak conductivity
o' = ez/2h, consistent with the known value for this
model. However, it should be noted that the value of
the peak Thouless number depends on the details of the
method used to calculate the energy shift, and varies
slightly with the correlation length ( of the disorder.
Nevertheless, we expect the peak value of T(E) to be
independent of system size, and the shape of the scaling
function and the value of the localization exponent v to
be independent of the precise way the Thouless number
is defined.

We have checked that T(E) is in the scaling regime
by rescaling the Thouless number plots for different sys-
tem sizes onto a single curve, shown in Fig. 1(b), for
seven system sizes, &om N = 20 to 1000 Hux quanta.
The data is collapsed onto a single curve by rescaling
the energy according to E ~ E/A(I). A log-log plot
of A(L) versus L is given in Fig. 1(c). A least-squares
Gt to a straight line gives a slope that corresponds to
v = 2.36+ 0.02 for the spin-polarized LLL with white-
noise disorder. However, closer analysis shows that the
data deviate &om a straight line, presumably due to
finite-size corrections to scaling, and so we believe that
the error estimate for our numerically obtained value of v
should be sigiiificantly larger than 1%%. In any case, the
value we obtain of v = 2.4 is consistent with previous
numerical work that used different methods and sample
geometries.

We have compared our numerical data for the Thou-
less number to experimental longitudinal resistivity data,
taken &om data used in Ref. 23. Figure 2(a) shows the
experimental longitudinal resistivity data versus applied
magnetic field, for an In Gai As/InP heterostructure
at four temperatures, T = 40, 110, 305, 640 mK. The
symbols in Fig. 2(b) are the data of Fig. 2(a), centered,
normalized by the peak resistivity, and rescaled, for four
diB'erent temperatures. 4s The width of p (B) narrows
as the temperature becomes smaller. It does so as a
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FIG. 1. (a) Thouless number data for spin-polarized elec-
trons in the lowest Landau level, in the presence of white-noise
disorder (( = 0), for sample sizes of N=20, 80, 300, 1000
Hux quanta. The width of the Thouless number decreases
with increasing ¹ (b) The scaled Thouless number data
for spin-polarized electrons in the lowest Landau level, for
¹ 20, 40, 80, 160, 300, 600, 1000 Hux quanta, falls onto a
single curve. (c) I og-log plot of the integrated area under the
Thouless number curves versus the system size (L cc v N),
for ¹=20,40, 80, 160, 300, 600, 1000 Qux quanta. The slope
of the resulting line is —1/v, and yields u 2.4.
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data fits the scaled resistivity data. The fit between
the temperature-rescaled p data and the size-rescaled
T(E) curves is further evidence that the temperature
and length are related by an inelastic scattering expo-
nent value of p = 2, which has also been found in other
experiments. Figure 2(b) is the universal crossover
function describing the transition &om metal to insula-
tor. Reference 43 also used the network model to calcu-
late a crossover function as a function of the localization
length (, and obtained good agreement with the exper-
iments of Ref. 46, after correcting for the contribution
due to edge currents. Experiments of Hughes et al. Gnd
single-parameter scaling of 0 (H, T), with r = 0.42 and
o. well Bt by the model of Ref. 43. The experimental
data in Fig. 2 were obtained &om samples of width 600
p,m; we expect edge currents in these samples to be less
important than for the samples used in Ref. 46, which
were only 7 pm wide. If Coulomb interactions dominate,
one estimate for the sample size at which edge effects be-
come important is when the sample width is smaller than
the electron scattering length LT, where e2/elT ~ k~T.
For T=20 mK, this gives lT 50 pm.

IV. SPIN-UNRESOLVED
QUANTUM HALL TRANSITION

Reference 33 studied the scaling of the maximum slope
of the Hall resistivity as a function of temperature, for
spin-unresolved quantum Hall transitions. Recall that
for the spin-resolved Landau levels the scaling exponent
is K = 0.42; when the spin-splitting is not resolved, it
is found that p- = 0.21. ' This would correspond to
doubling the exponent v —2.3 to v —4.6, assuming that
the inelastic scattering length exponent p is unchanged.
Other experiments~ give evidence that p = 2 for both
the spin-resolved and spin-unresolved cases.

In practice, electrons can be spin-Hip scattered, even in
the absence of magnetic impurities, due to the spin-orbit
(SO) interaction. The SO interaction is a relativistic ef-
fect, and is therefore small in comparison to the random
potential scattering. Nonetheless such scattering could
be important when the spin levels are degenerate, and
is stronger for materials with scatterers of high atomic
number, such as the In Ga~ As samples used in Ref.
33.

SO scattering is due to the fact that an electron mov-
ing with velocity v in the presence of an electric field
E = —VV experiences in its rest kame an effective mag-
netic field B = —vXE, which couples to the electron
spin according to (eh/mc)B (z)o. The orbital motion
of an electron, therefore, gives rise to an effective mag-
netic field that couples to the spin. The SO interaction
is written as

&so = o. VVXII,
4m2c2 (13)

where II = —ihV'+ (e/c)A is the mechanical momentum
of the electron, whose spin is altered by the effect of the
Pauli matrices o' in Eq. (13).

The effect of Vso on the Bloch electrons of bulk III-
V compounds such as GaAs has been investigated in
Refs. 48, 49. In the vicinity of the I' point, the effec-
tive conduction band Hamiltonian becomes

0.8 h2k2
II,s = + po. .r,2m* (14)

0.6

.0.4
C5

0.2

0.0
-1.0 -0.5 0.0

(T/To)
'

[(B B )/B ]

0.5 1.0

FIG. 2. (a) Longitudinal resistivity (p ) data versus ap-
plied magnetic Geld for four temperatures, T=40, 110, 305,
640 mK, taken from Ref. 23. (b) Scaled, normalized exper-
imental data for p for T = 40, 110, 305, 640 mK, shown
by symbols. The solid lines are the scaled Thouless number
data for spin-polarized electrons in the lowest Landau level,
for N=20, 40, 80, 160, 300, 600, 1000 Qux quanta. This curve
represents the universal crossover function from metal to insu-
lator for noninteracting electrons in the quantum Hall regime.

where m* is the conduction band effective mass, K

A; (A;, —k„),and r& and r, are obtained from the ex-
pression for v by cyclic permutation. In a Inaterial that
lacks inversion symmetry, the SO interaction [Eq. (13)j
leads to a nonzero value of the constant P, and hence to
a splitting of the conduction band states, which is pro-
portional to the cube of the wave vector. Application of
Eq. (14) to inversion layers, developed in Refs. 50, 51,
leads to the following effective SO Hamiltonian:

The third term is identified as p{cr m), the expecta-
tion value of the effective conduction-band SO interac-
tion taken in the appropriate quantum-well bound state
(the interface is assumed normal to z). Khaetskii finds
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II2
Hp —— + PII o.2m' (16)

This is just Eq. (15) in the presence of a magnetic field,
and in the absence of the term proportional to n. [For
convenience, we have performed a m rotation about the x
axis in spin space to change —o& ~ o„in Eq. (15).j Hp
may be written as

Hp —Ru, (ata+ 1/2) + (ato. + ao.+),
2l~

where the lowering operator is defined as

(II. —'ll„),l~
25 (18)

the raising operator is the Hermitian conjugate of a, and
o~ ——cr + io.„.Hp can be diagonalized exactly, and has
eigenstates of the form

P 1.1 x 105 cm/s in GaAs, for an inversion layer density
of n = 2 x 10 cm . The second term arises due to the
asymmetry of the confining potential, which generates an
electric Geld in the inversion layer. Only rough estimates
of the constant a exist, ' with o. assumed to be in the
range 0.1P —P. In any case, for typical moinenta of size
5/l~, where l~ 100 A. , the SO energy scale is roughly
10 eV, or 0.1 —1.0 K.

The SO Hamiltonian in Eq. (15) produces random
scattering of the spin in the presence of ordinary ran-
dom scalar potential scattering. This is because scalar
scattering changes the momentum of the scattered elec-
tron, which by Eq. (15) is coupled to its spin. We esti-
mate direct SO scattering &om the slowly varying impu-
rity potentials in high mobility GaAs heterojunctions to
be extremely small and unlikely to have any significant
efFect. However, in the In Ga~ As samples studied in
Ref. 23 (which have a mobility of 35 000 cm2/V s), alloy
scattering &om short-range potential disorder produces
larger momentum transfers and hence larger spin-fiip am-
plitudes. In addition, the relatively large atomic number
of In may further enhance SO scattering. Nevertheless,
the SO energy scale is much smaller than that for scalar
potential disorder.

In the presence of an external magnetic field B
V'xA = Bz, one must add a Zeeman term Hz
—2gp~Bo, as well as make the substitution p —+ D =
—ihV'+ (e/c)A. We have included electron spin in our
Thouless number calculations, in the limit of zero Zee-
man splitting (g = 0), so that the spins are not resolved.
Since D is not a constant of motion for an electron mov-
ing along an equipotential contour of the random po-
tential V, we take, for simplicity, the SO coupling to
have the form of Eq. (7), a Zeeman coupling to a random
pseudofield W. In the absence of spin-orbit scattering,
the exponent v remains the same as for the spin-resolved
case, although T(E) doubles, reflecting the doubling of
the density of states due to the spin degeneracy.

The use of Eq. (7) as the SO interaction rather than
the more cumbersome Eq. (15) can be motivated by con-
sidering the Hamiltonian H = Hp + V, where V is a
random scalar potential, and

I+) = Io &) E+ ——0
I

—) = (1 —~'/2)lo &) —~11 &)
(20)

where p—:P/~2l~~, 10, and we measure the ener-
gies E~, with respect to ku, /2.

In the subspace of these states, it follows &om Eq. (19)
that the efFective scattering Hamiltonian can be rewrit-
ten, up to a constant term, as

H g ——V+AM -a.,

where V is just the scalar potential V projected onto the
LLL, and, to order p,

(~* ~v) = —»(Re(+IVI —) im(+I&I —)) (22)

is of order p2, but is not expected to change the
universality class of the delocalization transition in the
presence of the scalar potential V which, like a TV o.

term, produces scattering without Bipping the spin.
If SO scattering were a relevant perturbation (one that

changes the universality class of the transition), its efFects
would become large at sufBciently long length scales and
low enough temperatures. We check the relevance of SO
scattering by artificially increasing the strength of the SO
scattering, and then calculating the exponent v and the
peak value of the Thouless number T(0). When short-
range SO scattering is included, we find that the half
width LE of the Thouless number curve becomes larger
and has a scaling exponent of about v = 4.4 + 0.2, as-
suming that the localization length diverges only at the
band center, as for the spin-resolved case. This is illus-
trated in Fig. 3(a) by the Thouless number curves for
system sizes of N = 20, 80, and 500, which are peaked at
E = 0. Figure 3(b) shows a log-log plot of A(L) versus
L, as in Fig. 1(c). The apparent value of v is twice that
of the spin-resolved value, in agreement with the experi-
mental results of Ref. 33. The peak value of the Thouless
number, T(0), increases from 0.32 to roughly 0.4. This is
similar to the behavior seen in the experiments of Ref. 33
and in the numerical simulations of Ref. 36, when ( is as-
sumed to diverge at a single energy. This would seem
to suggest that SO scattering might belong to a difFerent
universality class than ordinary scalar potential scatter-
ing.

However, when the SO scattering potential is smoothed
(( = 2), we obtain very difFerent results. This is illus-
trated in Fig. 4(a), where we have plotted the Thouless
number for system sizes of 2V = 40, 160, and 500. The
Thouless number curves acquire two symmetrically dis-
placed peaks at +E (we show only one, for E, ) 0),

Ik+) = u+I2k, g) + v+I2k+ l, f),
)+~ I2k —1,g),

where In, s) denotes a state with Landau-level index n
and spin s (s =f, $). We have omitted the indices for the
N-fold degenerate states within each Landau level.

We now restrict our consideration to the energy eigen-
states of Hp, with the two lowest energies. The other
eigenstates are higher in energy by multiples of Lu, . The
lowest energy states are



52 EFFECT OF SPIN DEGENERACY ON SCALING IN THE. . . 5227

each with a peak value of approximately I/vr, just as for
the spin-resolved case in the absence of SO scattering.
If we assume that the Thouless number is the sum of
symmetrically displaced scaling functions, then a log-log
plot of A(L) versus L, shown in Fig. 4(b), yields v = 2.5,
much closer to the value for the spin-resolved exponent,
v = 2.3. The similarity of the peak height T(0) and the
exponent v to the case of spinless electrons is evidence
that the universality class of the delocalization transition
is the same for the spin-unresolved and spinless noninter-
acting electrons.

We have also varied the strength A of the SO scat-
tering to measure its e8'ect on the energy E at which
T(E) peaks. This is shown in Fig. 5(a), where we have
plotted T(E) versus E for % = 80 and ( = 2, with
A = 0, 2, 4, 6. We find that for this simple form of
SO scattering, E, oc (A~M'~), just as for Zeeman split-
ting. Figure 5(a) can be understood in terms of an ef-
fective Zeeman coupling generated by the smooth SO
scattering. Denoting the correlation length of the SO
scattering by (, and the average strength of the random
field by (~W~), it can be shown that when ( )) l~, so
that W is slowly varying, the SO Geld W acts like a
local constant magnetic Geld coupling to the spins and
generates an efFective Zeeman splitting that depends on
the magnitude (but not the direction) of VV. The slow

0.50
(a)

0.40

0.40

(a)

0.30

variation in the direction of V7 yields a Berry's phase
that acts like a weak random magnetic Geld, but this
does not change the universality class in the presence of a
strong external magnetic Geld. ' The net eKect, there-
fore, is to produce a splitting between +E of magnitude
EE = 2(AIW'~). This behavior is shown in Figs. 5(b) and
6(b).

It has been suggested that in some I@HE models, the
universality class of the metal-insulator transition for
white-noise disorder (( = 0) is difFerent than for smooth
disorder. In order to investigate whether this is the
case here, we have artificially increased the value of A

as in Fig. 5(a), except that we use white-noise disorder.
The results for N = 20, with A = 0, 2, 4, 6 are shown in
Fig. 6(a). It can be seen that, as in the case of smooth
disorder [Fig. 5(a)j, the peak of the Thouless number is
displaced away from zero (E, g 0). A log-log plot of
A(L) versus L, however, yields v = 4.4+ 0.2. We believe
this is due to the slow crossover to the scaling regime
when (/l~ ( I, as found by Huckestein, 2s but cannot
demonstrate this within the range of available sample
sizes.

Huckestein has studied numerically Gnite-size correc-
tions to scaling in the center of Landau levels. Although
the value of v = 2.3 is obtained for the lowest (n = 0)

0.30
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L J. .. ~
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FIG. 3. (a) Thouless number data with spin-orbit scat-
tering, white-noise disorder (( = 0), and sample sizes of
%=20,80,500 Qux quanta. The width of the Thouless num-
ber decreases with increasing N. (b) Log-log plot of the in-
tegrated area under the Thouless number curves versus the
system size. The slope of the resulting line yields v 4.4.

FIG. 4. (a) Thouless number data for smooth spin-orbit
scattering, for smooth (( = 2) disorder, and sample sizes of
%=40, 160, 500 Bux quanta. Note that the data are peaked
away from zero energy, at the same energy E . The width of
the Thouless number decreases with increasing N. (b) Log-log
plot of the integrated area under the Thouless number curves
versus the system size. The slope of the resulting line yields
v ~ 2.5.
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LL, independent of the correlation length ( of the disor-
der potential, this is not the case for the second (n = 1)
LL. For n = 1, v —2.3 is observed only when ( ) l~.
For ( ( l~, no universal scaling behavior was observed.
Following Chalker and Eastmond, Huckestein showed
that deviations from finite-size scaling themselves scaled
with size, so that, in effect, Eq. (10) is modified to

(23)

where I;„is a length scale that is a function of (/lii. The
exponent y;„-0.38 + 0.04 obtained by Huckestein
agrees with the value obtained in Ref. 55 for network
model simulations. Of great practical importance is the
fact that the size of the length scale l;„is 10 times longer
for ( = 0 than for g = 0.8l~. This makes it diKcult to
observe scaling behavior for n = 1 when ( = 0. It is
possible that the apparent dependence of v on ( that we
find in the spin-degenerate case may have a similar ori-
gin to the diKculties encountered in reaching the scaling
regime when n = 1.

V. ISA MDDEL

Hikami, Shirai, and Wegner (HSW) have consid-
ered a special model for Anderson localization of spin-

degenerate noninteracting electrons. They study the
case when only scattering between one spin state and
a different spin state is allowed. This corresponds to
taking the pseudo6eld % to lie in the xy plane, and
completely suppressing ordinary scalar potential scatter-
ing. Although it excludes important scattering processes
present in real samples, it is the simplest model of spin-
orbit scattering in the quantum Hall regime, and has the
great advantage of being analytically tractable for the
case of a Gaussian white-noise random distribution of
scatterers.

The model of HSW exhibits difFerent behavior near the
band center (E = 0). The conductivity at E = 0 is given
exactly by e /mh, and the DOS diverges at the band
center. s~'ss HSW used a I/S expansion, where S is essen-
tially the electron spin (physically, S = 1/2), to calculate
the DOS to order I/S . They found a I/S enhancement
of the DOS at E = 0 of the form (1/S ) ln (~E/VRMs~).
Using an effective field theory describing the IQHE and
projecting on to the LLL, Gade finds that the DOS
diverges instead as a power law, D(E) oc lE~ ~, near
E = 0. We also note that Ludwig et a/. have studied
a class of IQHE models, which respect symmetries anal-
ogous to those of the HSW model, and that they also
obtain a DOS that diverges as a power law near E = 0.

We have calculated the DOS and Thouless number for
the HSW model, and we find that both quantities van-
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FIG. 5. (a) Thouless number data for smooth spin-orbit
scattering (C' = 2), for spin-orbit coupling values of A=O, 2, 4,
6. The Thouless number is peaked at E oc (A~W~). (b) R
versus A, for A=O, 1, 2, 3, 4, 5, 6.

FIG. 6. (a) Thouless number data for strong spin-orbit
scattering (A{~%V~) VaMs) and white-noise disorder (C' = 0),
for spin-orbit coupling values of A=O, 2, 4, 6. (b) E, versus
A, for A=O, 1, 2, 3, 4, 5, 6.
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ish at E = 0, for finite-size samples. Figure 7(a) shows
the DOS of the HSW model as a function of energy for
the small system size of N=10 Aux quanta. The system
sizes of N=20, 40,80,160 also show the same behavior;
namely, a DOS with two strong peaks near E = E0,
due to the energy level spacing in a finite sample, where

Eo oc VRMs/K, corresponding to the average level spac-
ing between energy eigenvalues. In addition, the DOS
vanishes linearly as E ~ 0, for E ( E0. We find that
the peak DOS at E = E0 increases with N. The HSW
Hamiltonian may be written in the form

HHS~ = TV~a~ + W&0» (24)
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where W denotes the components of the pseudofield W',
projected onto the LI L, and the o. are Pauli matri-
ces. Note that o, (HHsw)o', = —HHsw, so that for every
eigenstate Ig) of energy E, o', Ig) is also an eigenvalue,
with energy —E. The energy spectrum of HHS~, there-
fore, possesses a re8ection symmetry about E = 0. The
reduction of the DOS near E = 0 is due to the combined
efFects of the re8ection symmetry of the eigenvalue spec-
trum, plus the usual level repulsion of eigenvalues. It
is, therefore, a finite-size efFect. We note that when the
disorder is smoothed (( & 0), the DOS becomes more
strongly peaked near E = 0, and that the downturn
moves closer to E = 0 (Eo becomes smaller). This is il-
lustrated in Fig. 7(b), where we have plotted the DOS for
a sample of size N = 80, for disorder correlation lengths
(=0,1,2 (in units of the magnetic length). The case of
smooth disorder was studied. in Ref. 58.

In order to observe a divergence in the DOS near
E = 0, one must study energies small enough that
the HSW correction can be observed, but large enough
(E & VRMs/N) that the vanishing of the DOS due to
eigenvalue repulsion does not interfere. Given our nu-
merical limitations on the maximum size (N „-500)
of our samples, we were unable to isolate any divergent
contribution to the DOS at small E. To better under-
stand the behavior of the HSW model near E = 0, we
studied a random-matrix problem with the same sym-
metry as the HSW Hamiltonian, namely, the eigenvalue
spectrum for matrices with the same form as the HSW
Hamiltonian,

I(0 WI
(Wt 0) '

where TV is a Gaussian random complex matrix:. When
the elements TV;~ all have the same variance, so that

0.00
0.0 0.5 1.0

Energy (V„,)
1.5 2.0

FIG. 7. (a) Density of states D(E) for pure spin-orbit
scattering model of Hikame, Shirai, and Wegner (HSW)
(Ref. 37), for systein size N=10 flux quanta. For finite N,
D(E = 0) = 0. D(E) exhibits a strong peak at an en-
ergy Eo oc 1/N, close to E' = 0, w'ith a peak height that
grows slowly with N. (b) Density of states for HSW model,
for fixed N =80, and varying disorder correlation lengths

0, 1, 2. The peak DOS near E = 0 increases with (.
(c) Thouless number T(E) for HSW model, for system sizes
N = 10, 40, 160, showing two delocalization transition. s, at

0.7VRMs and E = 0. For finite N, T(E = 0) = 0. The
Thouless number decreases with increasing N, except near
the 6xed points E +0.7VRMs.

one obtains the exponential ensemble of random matri-
ces, studied by Bronk. The joint probability distribu-
tion function for the eigenvalues is

(27)

Using a mathematical identity for sums of the product of
two Laguerre polynomials, one can show that the DOS
for the exponential ensemble is given by
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D(E, ) = fde. ..f dE~P[Eg . .. E+)

oc ~Ei~ L~,(~)le, (~) —I~",(~)1~ (*)

where x = Ei/2o' and the I denote associated La-
guerre polynomials. The DOS is proportional to ~Ei~

+2 2
near Ei ——0, and vanishes like e &/ for large Ei,
which is the behavior seen in Fig. 7(a) for the HSW
DOS. However, Bronk's calculation of the asymptotic
(N -+ oo) random-inatrix DOS may be invoked to show
that the usual semicircle law for the DOS holds, so that
the random-matrix model gives no divergent contribu-
tions to the DOS. Not surprisingly, the HSW model and
the exponential ensemble have very difFerent behavior
even near E = 0, despite the similar symmetries of the
Hamiltonians. The random-matrix theory is expected to
apply in metallic phases, but not at critical points.

Figure 7(c) shows the Thouless number for the
HSW model as a function of energy for system sizes
%=10,40, 160. It can be seen from Fig. 7(c) that there
are two delocalization transitions, one at E 0.7VRMs,
and the other at E = 0. The transition at E, 0.7V~MS
is reininiscent of the transition at E A~W'~ studied in
Sec. IV, for strong SO scattering. As the system size
increases, it is clearly seen that the peak in T(E) at
E = E 0.7VRMs becomes narrower and more pro-
nounced. We also find that the peak value, T(E,), for the
HSW model is close (only 10%%uo smaller) to that for spin-
less electrons, T(0). The transition at E = 0 is more dif-
ficult to characterize, since the width of the peak in T(E)
near E = 0 seems to scale like the energy eigenvalue spac-
ing, i.e., AE oc 1/% oc I, rather than AE oc I,
(near E,). The delocalization transition near E = 0 also
difI'ers from the one at E in that the peak Thouless num-
ber is seen to (slowly) decrease with increasing system
size. These difFerences in the behavior of T(E) are evi-
dence that the universality class of the two delocalization
transitions in the HSW model are difFerent.

VI. CONCLUSlONS

Using a continuum LLL model, we find, in agreement
with previous numerical work, that for spin-polarized
electrons in the LLL, the localization exponent has the
value v 2.4, and that the peak value of the Thou-
less number is constant, independent of the sample size.
We find that the scaled Thouless-number data fits the
scaled experimental resistivity data of Ref. 45, which is
the universal crossover function for the quantum Hall
metal-insulator transition.

For short-range SO scattering, we find, as in the exper-
iments of Ref. 33, a seemingly doubled exponent, v 4.4,
when we assume that the Thouless number is peaked at
a single energy. This value of v reverts to close to the
usual non-SO value of v 2.3, and the peak value of the
Thouless number approximates the spin-polarized value,
when the SO scattering potential is smoothed and made

sufFiciently large. We conclude that the universality class
of the metal-insulator transition for noninteracting spin-
degenerate electrons in the quantum Hall regime is the
same as for spin-polarized electrons.

It is possible that the experiments leading to an ap-
parently difIerent value of the temperature exponent v.

may not be in the scaling regime, especially for nearly
white-noise scattering, which is the situation for the In-
doped GaAs samples used in Ref. 33. The experiments of
Ref. 33 required temperatures T ) 50 mK; otherwise, the
spin-splitting between the Landau levels was resolved,
and the putative spin degeneracy was lost. It could be
that the efFective sample size l;„ocT " was too short to
reach the scaling regime, even at the low temperatures
used in the experiments.

It is not known whether Coulomb interactions change
the value of K, for spin-degenerate electrons, e.g. , by
changing the inelastic scattering length exponent p (or
the dynamical exponent z) from its value for noninter-
acting electrons. It is believed that for dirty boson sys-
tems, the dynamical exponent depends on the form of the
interparticle potential. Certainly a peak value of the
longitudinal conductivity less than the universal value
o' = e2/2h for noninteracting electrons is seen in exper-
iments, and perhaps this is due to Coulomb interactions.
The importance of Coulomb interactions even for the
spin-polarized case is underscored by the large exchange
enhancement of the electron g factor relative to its bare
value, which has been studied in numerous experiments
and calculations. Recent work has developed a new pic-
ture of the nature of spin excitations in the quantum
Hall regime, in the presence of Coulomb interactions.
In principle, the 1/r nature of the Coulomb interaction
in a 2DEG could be purposely modified by specially gat-
ing a heterojunction with a metallic overlayer, so as to
screen the Coulomb interaction and induce 1/r dipole-
dipole interparticle interactions. This has been carried
out for the insulating regime, where hopping dominates
the transport.

We also studied the model of Hikami, Shirai, and
Wegner, and calculated the DOS and Thouless num-
ber for a range of system sizes. We found that the DOS
and T(E) both vanish linearly at E = 0 for finite-size
samples, contrary to the naive expectation that the DOS
should increase and T(E) become constant at E = 0.
The difFerent scaling behavior of the Thouless number at
the two energies are evidence that the two delocalization
transitions are in diferent universality classes.
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