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A quasi-three-dimensional (3D) simulation of a quantum waveguide coupler has been performed,
computing the self-consistent transverse potential along the electron waveguides and then solving the
transport problem with a modified recursive Green’s-function method. Results have been obtained
for the tunneling conductance between the two waveguides as a function of coupling length and gate
biases. A clear structure of conductance peaks is observed, strongly dependent on both the drain and
the source biases. Such dependence has been investigated in greater detail for an idealized model,
allowing a fast numerical simulation. A ridgelike conductance pattern has been obtained, which
can be interpreted as a characteristic signature to be looked for when searching for the evidence of

1D-to-1D tunneling in experimental data.

I. INTRODUCTION

The availability of advanced nanolithographic tech-
niques has allowed the fabrication of microstructures in
which the wave nature of electrons becomes important,
and new device functionalities based on quantum effects
can be achieved. A particularly interesting idea is the
one of the quantum field-effect directional coupler pro-
posed by del Alamo and Eugster.! It is substantially the
electronic equivalent of the directional couplers that have
been developed and are being used in the field of in-
tegrated optics. Two electron waveguides obtained by
lateral confinement with metallic gates on top of a het-
erostructure, which provides the vertical confinement are
brought into close proximity, so that tunneling between
them is made possible. The height and width of the po-
tential barrier between the two waveguides depends on
the bias applied to a central gate, which can, therefore,
be used to modulate the amount of coupling between the
two channels. The widespread interest in such a device
is motivated both by the potential for applications as a
switching element in digital circuits and by the fabrica-
tion and simulation challenges it poses.

Theoretical investigations of simple? ™ and more
elaborate® 7 models have been performed, and several
parameters, such as the transfer length and the tun-
neling conductance have been computed. At the same
time, important experimental results have been achieved,
with the clear observation of a one-dimensional-to—two-
dimensional (1D-to-2D) tunneling current® '° and the
possible detection of 1D-to-1D tunneling.?

In Ref. 3, 1D-to-2D tunneling has been modeled for a
leaky electron waveguide, while Refs. 2 and 4 deal with
1D-to-1D tunneling between two electron waveguides,
each in the single-mode regime. Coupling between the
waveguides is assumed to be constant along their whole,
infinite length. A structure closer to those fabricated by
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Eugster and del Alamo'®!! is investigated in Refs. 6 and

7, where two symmetric multimode waveguides coupled
for a finite length are considered. In Ref. 5, a simplified
coupler structure was studied in the monomode regime
at 4.2 K, using realistic potentials obtained from a self-
consistent solution for 2D slices.

We have been interested in a detailed simulation of
the earlier structure studied by Eugster and del Alamo,°
with the purpose of understanding why 1D-to-1D tunnel-
ing could not be observed in this case and of determining
the main features that should reveal it in experimental re-
sults. The gate geometry that we study has been slightly
modified with respect to the one of the actual device, in
order to simplify the numerical simulation. Our model
is quasi-three-dimensional in the sense that we subdivide
the structure into a number of slices perpendicular to the
direction of current flow, then a 2D Schrodinger and Pois-
son problem is solved in each slice and, finally, transport
properties are evaluated by means of a modified recursive
Green’s-function formalism. Our approach represents a
good approximation, as long as the variation of the po-
tential landscape along the longitudinal direction, per-
pendicular to the slices, is slow enough (quasiadiabatic).
In this way, we retain most of the relevant features of the
real structure, while making the problem computation-
ally manageable.

Even in the quasiadiabatic approximation, the amount
of computational work is still very large: simulations in
which the bias voltage of only one electrode is swept over
a range of values are feasible, but simultaneous variation
of two parameters, such as drain and source bias, would
require too much CPU time. For this reason, we have
also studied an idealized model, which retains most of
the relevant features, including some of the gate bias ef-
fects. Numerical calculations for a range of source and
drain values show an interesting pattern for the tunneling
conductance. We believe that a similar pattern should be
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the typical signature of 1D-to-1D tunneling to be looked
for in experimental results.

In Sec. II, we present a detailed description of the
device models that we have used in our simulation, in-
cluding a discussion of the techniques applied for the self-
consistent solution of the 2D Schrédinger-Poisson prob-
lem. The idealized model is also presented in this section.
The modified recursive Green’s-function technique is pre-
sented in Sec. III, with an emphasis on the differences
with respect to the standard procedure. Finally, numer-
ical results are reported and discussed in Sec. IV, both
for the realistic and the idealized models.

II. DEVICE MODELS

We have modeled the heterostructure used in the ex-
periments of Ref. 8. The layer arrangement is shown in
Fig. 1: a thick layer of intrinsic GaAs is grown on top of
an undoped GaAs substrate, followed by a 7.5 nm spacer
layer of undoped Al,Ga;_,As. Then a 42 nm layer of
n doped Al,Ga;_,As (the actual dopant concentration
will be discussed later in this section) follows, capped by a
5 nm layer of GaAs. The dashed lines at the surface of the
heterostructure indicate the presence of surface charge,
whose density must be determined, while the dashed line
near the intrinsic Al,Ga;_,As-GaAs interface represents
the 2D electron gas formed by modulation doping.

Three metal gates have been indicated on top of the
heterostructure. The sizes and relative distances re-
ported in the figure correspond to those in the coupling
region, where tunneling between the two waveguides can
take place. The central gate, which controls the height
and width of the potential barrier separating the wave-
guides, has been labeled with G and will be referred to in
the following as “central gate.” One of the lateral gates
has been labeled S (source) and the other one D (drain),
in analogy with the terminology used for MOS devices.
The geometry of the gates in the plane parallel to the
heterostructure surface is shown in Fig. 2(a), where all
the measures are expressed in micrometers. The shaded
areas represent the actual gate geometries. The geome-
try of the central gate of our model is exactly correspon-
dent to that of the real device, while for the lateral gates
we have chosen a slightly different shape, indicated by
the dashed lines. In this way, we have kept unaltered
the central 0.45 ym long region, where most of the cou-
pling takes place, and limited the number of modes in

200nm 30nm 200 nm
S TG 1 D

_____________ Yoo
A 5 nm GaAs
42 nm n doped AlGaAs
________________________ LL
2DEG GaAs 7.5 nm AlGaAs

FIG. 1. Layer arrangement of the simulated heterostructure.
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FIG. 2. (a) Gate layout for the actual device (shaded ar-
eas) and modified layout used in the simulations. (b) View of
a cross section of the device: the dark-shaded regions corre-
spond to the quantum wires.

the outer regions, which would have become unmanage-
able if we had chosen to model the full transition to the
2D electron gas. A 3D view of the device is shown in
Fig. 2(b), where the dark-shaded areas correspond to the
cross sections of the electron waveguides.

Coupling between the two quantum wires in the re-
gions with a 0.2 pym central gate is negligible, thus the
wires, far from the central region, become independent
and are assumed to be connected with electron reser-
voirs characterized by a well defined chemical potential.
If a very small potential difference is applied between
any two reservoirs, the conductance between them can
be evaluated using the Landauer-Biittiker formulal213
(in the hypothesis of purely ballistic transport),

2e?
G =2 T 1)
©J

where e is the electron charge, h Planck’s constant, and
T;; the square modulus of the transmission coefficient
from mode 7 to mode j. At finite temperatures, this
result must be averaged over energy, with the derivative
of the Fermi function as a weighing factor:14

G = [o G(E)%(EE—)dE. 2)

In order to compute the transmission coefficients, we
must solve a scattering problem across this structure.
For such purpose, we need to know the 3D potential
landscape. We subdivide the structure into a number of
transverse slices (transverse with respect to the direction
of current flow), within which the potential can be con-
sidered longitudinally constant. As already mentioned in
the introduction, we make the simplifying hypothesis of
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quasiadiabatic potential variation in the longitudinal di-
rection, so that the solution of the combined Schrédinger
and Poisson equations in each section reduces to that
of a 2D problem, corresponding to an infinite quantum
wire.1®

As in Ref. 16, the resolution of the transverse modes
in each slice is an iteration to self-consistency of the
Schrodinger equation for the wave functions and the non-
linear Poisson equation for the electrostatic potential.

The 2D self-consistent problem consists, in the effective
mass approximation, of the Schrédinger equation

hz
=9 [ V] + 1V = B = 0 3)
and the Poisson equation

~V[eVe] = p, 4)

where the unknowns are the wave functions and energy
eigenvalues (1, E;) for states in the quantum region, and
the 2D electrostatic potential ¢. Here, m* is the electron
effective mass, € is the dielectric permittivity, # is the
reduced Planck constant, and p is the charge density. V

represents the conduction band potential energy, given
by

V= —€¢ + Vh + ch(n)a (5)

where V}, is a step function representing the effective
potential energy associated with the heterojunction dis-
continuity, and Vi.(n) is a correction for exchange-
correlation effects, which depends on the electron density
n confined in the quantum well under the heterojunc-
tion and is treated here following a simple local density
function approximation.'”'® Contributions of the image
potential are negligible in this material system.

The charge density p in Eq. (4) is expressed in terms of
the electron density n, the hole density p, and the total
density of ionized dopants N g — N, as

p=elp—n+Np —NJ]|. (6)

The electron density in the conduction channel is ob-
tained from the wave functions v, calculated from Eq. (3)
as

n=>Y N (7)
=1

The occupancy N of the lth eigenstate for the 1D elec-
tron gas is expressed in terms of the Fermi level Er, the
Boltzmann constant kg, and the temperature T, through
the Fermi-Dirac integral of order —1/2, which for GaAs
gives

1 [ 2m*kpT\? Ep — E
Nl = ; (—hz—) F_1/2 (kBiT . (8)

The Fermi-Dirac integrals in Eq. (8) are evaluated by an
efficient rational function approximation.!®

The partial differential equations (3) and (4) are
discretized on a nonuniform rectangular grid using a
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five-point finite difference scheme based on the box-
integration method.?° This results in sparse symmet-
ric pentadiagonal matrices for both equations. The re-
sulting standard eigenvalue problem for the discretized
Schrédinger equation, on the fine grids necessary to re-
solve the wave functions, has a matrix which is too large
for dense solvers such as in EISPACK, but can be ef-
fectively solved with projection methods?' that target
only the energy eigenvalues corresponding to significant
occupancy N;. For these calculations, we employ the
Chebyshev-Arnoldi method?? that was originally devel-
oped for nonsymmetric eigenvalue problems associated
with dielectric waveguides. In this approach, a Cheby-
shev preconditioning?? is used to amplify the desired part
of the eigenvalue spectrum for faster convergence of the
Arnoldi solution method.?! The Chebyshev precondition-
ing is particularly efficient because it is implemented by
applying a simple three-term recursion.?? Another effec-
tive approach for the solution of the eigenvalue problem
is the Ritz iteration procedure RITZIT (Ref. 23) that was
applied earlier to quantum wire calculations.®

The Poisson equation (4) is highly nonlinear, because
the classical densities of holes and ionized impurities
are nonlinear functions of the electrostatic potential ¢.
In the structures under consideration, the n-type layers
are practically depleted of carriers and the nonlinearity
mainly occurs in the p-type substrate. The ionized ac-
ceptor density in the substrate is modeled, under the as-
sumption of quasiequilibrium, using the classical statis-
tics as given in Ref. 24,

Na (9)
__e¢+Vh——Eg+Ea——EF)’

Ny =

1+4exp( T
B

where E, is the energy band gap and F, is the accep-
tor ionization energy. Because of this nonlinear expres-
sion, the transition from depletion layer to neutral region
deep in the GaAs substrate must be adequately resolved
by a local mesh refinement, since the overall solution is
strongly affected by the extent of the depletion layer.
This problem is particularly acute at the low operation
temperature 7' = 1.6 K considered here. Regarding the
electron density 7 in the quantum channel, no closed form
expression is available, so n is held constant in the Pois-
son equation, and is updated only after the Schrodinger
equation has been solved.

The nonlinear Poisson equation is solved using a New-
ton method. At each iteration step a Jacobian linear sys-
tem is obtained and is solved using an efficient variant of
the conjugate gradient method with a red-black reorder-
ing as described in Ref. 15. The solution domain for the
Poisson equation is extended into the vacuum above the
semiconductor, in order to resolve the surface boundaries
of the top semiconductor layer. A Schottky barrier of 0.9
eV is considered for the metal contacts.

The  iteration  procedure for the coupled
Schrédinger /Poisson problem is modified depending on
how close we are to the solution. Initially, we use a sim-
ple fixed-point iteration, where the equations are solved
in succession in a decoupled fashion, and an adaptive
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underrelaxation is used to stabilize the iteration. We ap-
ply the relaxation to the electron density n in the quan-
tum channel, which is fixed in the Poisson equation, but
can change dramatically after the Schrodinger equation
is solved, and hence is the quantity with the highest sen-
sitivity to variations of the solution. It was found that
direct relaxation of the electron density n, rather than of
the quantity In(n) as done in Ref. 15, is more effective.
The convergence of the underrelaxation scheme becomes
inefficient when the solution is approached, and the pro-
cedure switches to a Newton iteration to accelerate the
speed of convergence to self-consistency. We adopt a
version of Newton’s method which is Jacobian-free and
based on the generalized minimum residual method.2?

Considerable difficulties in relating simulations to mea-
surements are due to the uncertainty in determining
the actual doping of the semiconductor layers of the
sample, and the amount of surface charge which accu-
mulates at the semiconductor-vacuum interface, which
strongly depends on the fabrication process. The nu-
merical model was, therefore, calibrated using indirect
measurement information. We first adjusted the uni-
form Al,Ga;_,As donor doping concentration, so that
the threshold for formation of the 2D electron gas un-
der the source contact was Vg = —0.6 V as noted in the
experiments (Vs is the source electrode voltage). This
was done with a 1D self-consistent calculation along a
direction perpendicular to the heterojunction under the
source. Then, a uniform surface charge density was in-
troduced so that, with the doping selected above, the
model reproduced the experimental threshold for the for-
mation of the 1D electron gas in the quantum wires at
Vs =Vp = -2V, and Vg = —0.85 V, Vp and Vg be-
ing the drain and the gate electrode voltages, respec-
tively. Assuming a typical background (unintentional)
acceptor doping of N4 = 5 x 10 cm~?2 throughout the
sample, we determined an Al,Ga;_,As donor doping of
Np = 10'® cm~3 and a surface charge density equivalent
to —3.3 x 10'? cm™2.

We use a nonuniform grid for the solution of the
Schrédinger and Poisson problem in each section, finer
in the regions of higher electron density, where most of
the oscillations of the wave functions take place. Thus,
we have a different grid in each section, which repre-
sents a problem from the point of view of calculating
the eigenfunction overlap integrals needed in the appli-
cation of the recursive Green’s-function method. Inter-
polation of the wave functions on a common grid leads
to loss of orthonormality, which in turn leads to a seri-
ous degradation in the precision of the calculated trans-
mission coefficients. In order to avoid this problem,
once self-consistency of the Schréodinger-Poisson solution
is reached, the resulting potential is interpolated over a
finer grid, and the Schrodinger equation is solved again
on this new grid, which is common to all slices. The
values of the overlap integrals at each interface, together
with the eigenvalues in each section, are passed to the
code performing the calculation of the transmission coef-
ficients.

For the idealized model, we have considered a simpli-
fied 2D potential landscape formed by an input section,
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FIG. 3. Transverse potential profile for the ideal model out-
side the coupling region (a) and in the coupling region (b).

a coupling section and an output section. The input and
output sections are mirror symmetric and contain two in-
dependent waveguides with hard-wall lateral confinement
and tilted straight bottom [Fig. 3(a)]. The coupling sec-
tion is also made up of two waveguides, but the potential
wall separating them is of finite height [Fig. 3(b)].

We assume the Fermi level as the potential reference
and set the potential values at the left edge of the source
waveguide and at the right edge of the drain wave-
guide. The potential at intermediate points is obtained
through linear interpolation, except for the barrier re-
gion, where the barrier height is added to the result of
the interpolation. Transverse eigenmodes and eigenval-
ues in all sections are readily obtained by discretizing the
1D Schrédinger equation (this is a globally 2D model,
therefore, we have 1D transverse eigenmodes), with a fi-
nite differences scheme and computing the eigenvectors
and eigenvalues of the resulting tridiagonal matrix with
an optimized algorithm.?® Then the eigenmode overlap
integrals and the eigenvalues are passed to the Green’s-
function code for the calculation of the transmission co-
efficients, in the same way as for the realistic model.

III. MODIFIED RECURSIVE
GREEN’S-FUNCTION METHOD

Our modified recursive Green’s-function method is
based on the standard tight-binding recursive Green’s-
function technique often used in the literature for the
study of mesoscopic structures.2”"2° In the standard
method,?® the structure to be investigated is filled with
a tight-binding square (or cubic, in 3D) lattice with cou-
pling between nearest neighbors. The structure being in-
vestigated is subdivided into sections with longitudinally
constant transverse potential profile, and the Green’s
functions for each section are evaluated independently,
assuming it closed with hard walls at its ends. Then,
coupling between each pair of neighboring sections can
be introduced as a perturbation V' of the Hamiltonian
H, of the uncoupled sections. The total Hamiltonian
will be
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H=H,+V. (10)

Once the Green’s function GO of the unperturbed Hamil-
tonian is known, the one G of the perturbed Hamiltonian
can be obtained via the Dyson equation,

G=G"+GVa. (11)

Let us briefly summarize the procedure used to solve this
implicit equation.?® We choose a mixed representation of
the operators G and V': on the space of lattice sites along
the longitudinal direction and on the space of transverse
eigenmodes for the transverse directions. This choice will
result particularly convenient, as we shall see in the fol-
lowing. )

In our representation, a generic operator A has ma-
trix elements (j, s|A|t, k), where j and k are transverse
modes, and s and t are longitudinal lattice locations. For
our purposes, we need the Green’s functions and the per-
turbing coupling potential between pairs of lattice loca-
tions along the longitudinal direction. They can be repre-
sented with M x M matrices, M being the total number
of transverse modes considered. We shall use the nota-
tion A,; to indicate such matrices.

Let us consider two isolated sections, one going from
lattice location a to lattice location b, and the other from
c to d. From Dyson’s equation, we can write

(alGld) = (alG°ld) + (alG°VGla)
= <a|é0|d>
+1§ <a|é°|m> <m|ff|n> <n|é|d> . (12)

)

Since the perturbation V acts exclusively between the
sites b and ¢, there are only two nonzero terms in the
sum over m, n:

<a|é0vé|d> = <a[é’°|b> <b|V|c> <c|G”|d>
+ <a|é°|c> <c|f/|b> <b|G‘|d>, (13)

and, observing that <a|é°|c> = 0, Eq. (12) can be writ-
ten

(alGld) = (alG®)d) + (alG°) (BIVIc) (clGld). (19)

By using the previously defined matrix notation and ex-
tending the same line of reasoning to the lattice location
pairs ¢,d and b, d, we obtain

Gaa= Gy + G%VscGea (15)
Gea= G% + GO V. Gia (16)
Gra= Goyg + G%VecGea. (17)

Substituting Eq. (17) into Eq. (16) and Eq. (16) into
Eq. (15), and noticing that G2, = G, = 0, we get

ch = ng + GSCV;;ngbechd, (18)

from which we finally obtain the explicit expression
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Geda = (1 — G2.VesGEpVie) ' Gy (19)

The matrix G,, can be obtained with a completely anal-
ogous procedure.?® Thus, starting from one end of the
device, we recursively add one section at a time, consid-
ering its addition as a further perturbation, until we reach
the other end and obtain the Green’s functions across the
whole structure.

The transmission coefficients can then be obtained
from the Green’s functions through straightforward
relations.2%:3% If the transverse potential profile in each
section is constant, there is no mode admixture within
its length, and the related Green’s-function matrix is
diagonal. Each diagonal matrix element represents the
Green’s function for a single 1D tight-binding chain at the
energy available for longitudinal motion in the relative
subband, and can be derived with some simple algebra2®
both for the finite-length intermediate sections and the
semi-infinite sections corresponding to the leads.

In other words, our initial 3D (or 2D, in the case of
the idealized model) transport problem has been reduced
down to a collection of 1D problems, with interaction
between different modes only at the interfaces between
different sections.

The elements of V,; are just the overlap sums between
the eigenmodes v at location s and those at location t,
multiplied by the coupling potential v = —A2/(2m*§2),2°
where § is the tight-binding lattice constant:

<j|ut|k)=v2¢;’(i)¢z(i), i=1,Q, (20

Q being the total number of lattice sites on a transverse
section.

Up to this point we have described the application
to a 3D geometry of the standard recursive Green’s-
function method. We shall now examine the drawbacks
of this method and the modifications we have introduced
in order to overcome such problems. The tight binding
energy—wave vector dispersion relation is cosinusoidal,

E = 2v[cos(kd) — 1], (21)

thus it represents a good approximation of the continuum
parabolic relation only for values of the energy E that are
very small compared to v. This introduces a constraint
on the value of 4§, the lattice spacing, which must be
chosen small enough as to make the hopping potential v
much larger than the maximum energy that we expect
to consider in our simulation. A small lattice spacing
leads, however, to a very large number of lattice sites in
the transverse sections. In the recursive Green’s-function
technique of Ref. 29, the number of transverse modes
considered corresponds to the number of lattice sites in
the transverse sections, therefore, the size of the matrices
to be inverted for the evaluation of expressions such as
that in Eq. (19) becomes very large, whenever a wide
energy range must be investigated.

In the case of the realistic model, this approach would
become unfeasible, because the number of sites in a 2D
cross section is extremely large even for coarse values
of the lattice spacing. We notice that only a relatively
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small number of transverse modes actually contributes
to the determination of the transport parameters: those
which exhibit a significant occupancy plus a few evanes-
cent modes.

The observation that in the procedure summarized
above the tight-binding formalism becomes important
only in the numerical implementation of the connection
between two neighboring sections has led us to the de-
velopment of an approach in which the tight-binding lat-
tice is preserved only in the longitudinal direction, while
transverse sections are dealt with in an independent man-
ner. In other words, we preserve the scheme of multi-
ple 1D tight-binding chains (each of which corresponds
to a transverse mode) interacting only at the interfaces
between different transverse sections, but evaluate the
transverse eigenvalues and the overlap integrals using a
completely independent discretization.

Thus, Egs. (10)—(19) remain formally unchanged,
while Eq. (20) becomes

(3 Vaelk) = v /S W3 (YL (F)dF, (22)

where S represents the surface of the cross section be-
tween the longitudinal sections s and ¢. The integral will
actually be performed with an appropriate discretization,
which is not related with the longitudinal tight-binding
lattice. The longitudinal lattice spacing can now be in-
dependently chosen, small enough as to allow good preci-
sion over the required energy range, without influencing
the overall computational complexity.

Formally, our modified method is rather similar to the
scattering matrix approach, which has often been applied
to the investigation of mesoscopic structures.3! Imple-
mentation in a computer program is straightforward and
computationally efficient.

For our realistic model, we have divided the structure
into a number of transverse slices (Fig. 4) in each of which
the potential is computed assuming a constant gate ge-
ometry corresponding to the one in the middle of the
slice. As discussed earlier, the hypothesis of quasiadia-
batic variation of the potential in the longitudinal direc-
tion is made, so that for each slice, we solve a 2D problem
equivalent to that of infinite quantum wires defined by
the transverse gate geometry of the slice.

FIG. 4. Subdivision of the device into a number of trans-
verse slices.

Far from the coupling region, the two waveguides are
separate and can be represented with two independent
semi-infinite leads. In the region where they approach
each other, a certain number of slices is needed, capable
of resolving the gate geometry, and, finally, the coupling
region, with constant gate geometry, is represented with
a single slice. We have experimented with the number of
slices and observed that no significant improvement was
reached with more than a total of 21 sections, including
the semi-infinite input and output leads and the coupling
region. Due to the longitudinal symmetry of the device,
we need to solve for the self-consistent potential only in
11 slices: one containing the semi-infinite leads, nine for
the transition region, and one for the coupling region.
We have increased the number of transverse modes being
included in our calculation until no significant difference
could be observed: a total of 18 modes have been used
for the two waveguides, with a number of modes with
significant occupancy varying between 4 and 12.

IV. NUMERICAL RESULTS

We have run simulations for the realistic model only for
a few important cases, since each data point requires sig-
nificant CPU time on an HP735 workstation. The calcu-
lation is very time consuming, because of the time needed
to reach convergence of the self-consistent Schrédinger-
Poisson solver for each of the 11 slices at low tempera-
tures.

In the first two simulations, we have held the gate and
the drain voltages constant, sweeping the source voltage
between —1.99 V and —1.4 V, at a temperature of 1.6 K.
The gate voltage has been set at —0.6 V, corresponding
to the 2D threshold. We have made this choice in order to
obtain some significant coupling between the two wave-
guides, which would otherwise be vanishing for lower gate
voltages.

In our model (Fig. 2), the source and drain gates are
within a short distance from the middle gate everywhere
along the longitudinal axis, therefore, they contribute to
the depletion under such gate, preventing the formation
of a 2D electron gas (2DEG) even under its widest sec-
tions. In the real device® the source and drain gates are
very far apart outside the central region, and there may
not be enough depletion underneath the middle gate, if
biased right at the 2D threshold, to keep the two 2DEG’s
insulated from each other. This could be the reason why
del Alamo and Eugster were not able to observe signif-
icant 1D-to-1D tunneling in their experiments32 on this
heterostructure: with a large enough negative bias volt-
age on the middle gate (to keep the reservoirs insulated
from each other) coupling between the two waveguides
becomes too small to be observed, as we shall see later
in this section.

In Fig. 5 we report, for a drain bias of —1.72 V, the
conductance of the drain waveguide (dashed line), of the
source waveguide (dotted line) and the tunneling con-
ductance between the two waveguides (solid line) for a
coupling length of 450 nm (a) and of 400 nm (b). All
conductances are expressed in units of 2e%/h. The drain
waveguide is defined by the drain gate and the middle
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FIG. 5. Tunneling conductance between the two wave-
guides (solid line), drain waveguide conductance (dashed
line), and source waveguide conductance (dotted line), as a
function of source voltage for a coupling length of 450 nm
(a) and of 400 nm (b). The drain voltage is held constant at
—1.72 V and the temperature is 1.6 K.

gate, which are held at constant voltages, therefore its
conductance is somewhat constant, oscillating between
1.5 and 2.5 units. The conductance of the source wave-
guide, instead, increases with increasing source voltage,
varying between 1 and 3.5 units. Two conductance steps
are visible, partially smeared by the effects of coupling to
the drain waveguide and of the bend geometry. The tun-
neling conductance is characterized by clear peaks that
correspond to the alignment of the highest subband levels
in the two waveguides. The central peak occurs, as ex-
pected, at a source voltage of —1.72 V, corresponding to
perfect symmetry with the drain waveguide. In this case,
all levels of both waveguides are aligned, but the main
contribution still comes from tunneling between the top-
most occupied subbands. Structure between the peaks
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FIG. 6. Tunneling conductance between the two wave-
guides (solid line), drain waveguide conductance (dashed
line), and source waveguide conductance (dotted line), as a
function of source voltage for a coupling length of 450 nm.
The drain voltage is held constant at —1.6 V and the temper-
ature is 1.6 K.

M. MACUCKCI, A. GALICK, AND U. RAVAIOLI 52

Conductance (2¢*/h)

Source voltage (V)

FIG. 7. Tunneling conductance between the drain and
source waveguides vs source voltage and coupling length. The
drain voltage is held constant at —1.72 V and the temperature
is 1.6 K.

is related to tunneling between lower subbands. Notice
also that dips in the drain and source waveguide conduc-
tances appear in correspondence with the peaks in the
tunneling current, a direct consequence of total current
conservation.

This same calculation has been repeated for a differ-
ent drain bias, —1.6 V, instead of —1.72 V, for a coupling
length of 450 nm. The results are shown in Fig. 6, and ex-
hibit the expected shift in the central peak, which moves
up to approximately Vg = —1.6 V, the bias value leading
to a symmetric transverse potential landscape. The other
peaks are correspondingly shifted towards higher Vg val-
ues. The meaning of the various curves is the same as in
Fig. 5.

In Fig. 7, we show some more results for a drain bias
of —1.72 V, varying both the source bias from —1.99 V
to —1.4 V and the coupling length from 0 to 900 nm.
A rich structure can be observed, originating from sub-
band alignments, periodic oscillation of the electrons be-
tween pairs of quasidegenerate states and multiple re-
flections associated with the particular geometry of the
wires. The oscillation of electrons between quasidegener-
ate states leads to fluctuations of the tunneling current
as a function of the coupling length and can be quali-
tatively understood in the framework of coupled modes
theory.?

In Fig. 8, we report the computed tunneling current
versus coupling length for three values of the central gate
bias: —0.6 V (solid line), —0.62 V (dashed line), and
—0.64 V (dotted line). We notice that the period of the

0.8 J
0.6
0.4
% 0.1 0.2 0.3 0405 0.6 0.7 0.8 0.9
Coupling length (um)

Conductance (2e%h)

FIG. 8. Tunneling conductance vs coupling length for
Ve = —0.6 V (solid line), Vg = —0.62 V (dashed line),
and Vg = —0.64 V (dotted line). The other parameters are
Vs =Vp=—-172Vand T = 1.6 K.
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main, lowest frequency, fluctuation tends to increase with
decreasing gate voltage.

This can be easily understood from coupled mode the-
ory. When the potential barrier between the two wave-
guides is very high (very low gate voltage), so that they
can be considered independent, each waveguide has its
own set of localized transverse eigenstates. By properly
biasing the source and drain electrodes, it is possible to
align the highest occupied eigenvalues of the two wires:
if we raise the gate voltage, the barrier between the two
waveguides will be lowered, the transverse states will not
be localized in a single waveguide any more, and their en-
ergy eigenvalues will split by an amount increasing with
increasing gate voltage. Let us define these energy eigen-
values E; and FE;. The wave vectors for longitudinal
propagation along the two modes will be given by

2m*
_T——(E - Et)v

ki =15

i=1,2, (23)
where F is the total energy of the electron. The proba-
bility density in each waveguide will depend on the inter-
ference between the longitudinal waves associated with
these k;’s, and maxima of the tunneling current will be
measured when the length of the coupling section will
correspond to m/(k; — kz).2 Thus, decreased coupling
leads to a reduced difference between k; and k3, and,
therefore, to a longer oscillation period in Fig. 8. Cou-
pling between the two waveguides becomes rapidly neg-
ligible when the gate voltage is lowered below —0.65 V,
as shown in Fig. 9, where the tunneling conductance is
plotted versus coupling length and gate voltage.

We have also performed a calculation for higher tem-
perature, 10 K. Results are reported in Fig. 10 for
Vs = —1.72 V and coupling length L = 450 nm (a) and
L = 400 nm (b). The overall behavior has not under-
gone significant changes with respect to the results at
1.6 K, because thermal broadening at 10 K is still much
smaller than the width of the peaks in the tunneling cur-
rent. The main effect of higher temperature is the one of
smoothing out the results as a consequence of the broader
0f/OF weighing function. This is clearly shown by the
data reported in Fig. 11, which represent the equivalent,
at T = 10 K, of those of Fig. 7.

These calculations at 10 K are only for exemplification
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FIG. 9. Tunneling conductance vs coupling length and gate
voltage. The other parameters are Vs = Vp = 1.72 V and
T=16K.
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FIG. 10. Tunneling conductance between the two wave-
guides (solid line), drain waveguide conductance (dashed
line), and source waveguide conductance (dotted line), as a
function of source voltage for a coupling length of 450 nm
(a) and of 400 nm (b). The drain voltage is held constant at
—1.72 V and the temperature is 10 K.

purposes, because at such temperature phase-breaking
dissipative effects, which are not included in our simu-
lation, would play a dominant role, destroying most of
the interference features and washing out conductance
quantization.

The main couclusion we can draw from the analysis
of the results obtained from our device model is that
with this heterostructure 1D-to-1D tunneling is difficult
to achieve, mostly because of the very small coupling be-
tween the two waveguides, except for gate bias values too
close to the pinch-off voltage for the 2DEG. Another rel-
evant point is represented by the drain-bias dependent
shift in the source bias values corresponding to the con-

Corductance (2¢%/h)

Source voltage (V) -2

FIG. 11. Tunneling conductance between the drain and
source waveguides vs source voltage and coupling length. The
drain voltage is held constant at —1.72 V and the temperature
is 10 K.
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FIG. 12. Tunneling conductance for the idealized model
vs source and drain voltage at 1.6 K. The drain and source
waveguides are 30 nm wide and are separated by a 0.4 eV
barrier in the 450 nm long coupling region

ductance peaks, which does not appear clearly in the ex-
perimental data from Ref. 11. Even though this experi-
ment has been performed with a somewhat different het-
erostructure, the behavior of the conductance bumps for
1D-to-1D tunneling should be in qualitative agreement
with our simulation. In order to gain a better under-
standing of these features, in particular, of the conduc-
tance patterns expected when both the source and drain
voltage are varied (as in the experiment of Ref. 11), we
have performed some calculations on the idealized model
described in Sec. II.

The results for the simulation of two quantum wires
30 nm wide coupled for a length of 450 nm through a
barrier with a height of 0.4 eV and a width of 5 nm
are shown in Fig. 12. The potential of the left edge of
the source channel is swept between —0.05 and 0.07 V
with respect to the Fermi level, while the potential at the
right end of the drain (see Sec. II) is swept between 0.05
and 0.2 V. The tunneling conductance exhibits relatively
narrow ridges approximately parallel to the Vs = Vp di-
rection. The reason for this alignment can be quickly
understood if we think of the symmetric bias condition.
As previously discussed with reference to the realistic
model, symmetric bias implies the alignment condition
for all of the pairs of transverse eigenvalues in the two
waveguides, and, in particular, for the eigenvalues clos-
est to the Fermi level. Such alignment is maintained if
we vary both Vg and Vp at the same time, giving rise
to the leftmost ridge visible in Fig. 12. The other ridges,
corresponding to different alignments, are exactly paral-
lel to the same direction, because in our idealized model
varying the bias values while keeping Vs — Vp constant is
equivalent to sliding the Fermi level through a constant
potential landscape: when the Fermi level goes through
the pair of aligned eigenvalues, they start contributing to
the tunneling current; then as the Fermi level gets further
up, their contribution slowly decreases until it vanishes.

The main features of these results are better visible
in a gray-scale plot [Fig. 13(a)], where black represents
conductance 0 and white conductance 1. The gray scale
is logarithmic, therefore very small details become vis-
ible, such as the “rays” radiating from the end of each
ridge. They are the result of multiple reflections between
the ends of the coupling region, and, thus, their spac-
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FIG. 13. Gray-scale plot of the tunneling conductance for
the idealized model vs source and drain voltage at 1.6 K. The
drain and source waveguides are 30 nm wide and are separated
by a 0.4 eV barrier in the 450 nm (a) or 650 nm (b) coupling
region.

0.05

ing depends on such a length. This can be verified by
comparing Fig. 13(a) with Fig. 13(b), where the results
for a similar calculation are shown. All the parameters
are the same as in the case of Fig 13(a), except for the
coupling length, which is now 650 nm instead of 450 nm.
The spacing between the “rays” becomes clearly smaller,
as a consequence of the reduced wave vector associated
with multiple reflections within the new, longer, coupling
section.

The results for a calculation of the tunneling conduc-
tance on a wider, symmetric range of drain and source
bias values are reported in Fig. 14, where Vs and Vp
vary in the range 0 — 0.4 V and the coupling section is
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FIG. 14. Gray-scale plot of the tunneling conductance for
the idealized model vs source and drain voltage at 1.6 K. The
drain and source waveguides are 30 nm wide and are separated
by a 0.4 eV barrier in the 650 nm long coupling region.

650 nm long. We notice that, moving towards higher
bias values along Vs = Vp, the conductance goes sud-
denly up when the Fermi level goes through the first pair
of aligned eigenvalues, then falls down and rises again
whenever a new pair of eigenvalues is crossed. For all the
other, nonsymmetric bias conditions, ridges have only
one maximum, followed by a long decay, because only
one pair of eigenvalues satisfies the alignment condition.

From these results, we deduce that a sharp difference
in the orientation of the ridges is expected between the
1D-to-2D and the 1D-to-1D tunneling cases. In the 1D-
to-2D case, maxima occur for values of the voltage ap-
plied to the gate defining the 1D channel, which corre-
spond to the addition of each new subband. These values
are independent of the bias applied to the other gate, as
long as this is not low enough as to create 1D confine-
ment. On the Vs — Vp plane, conductance ridges will
be parallel to the Vp or Vs axis, depending on whether
conduction in the source or drain channel, respectively,
is quantized. For 1D-to-1D tunneling, instead, the ridges
will be approximately aligned along the Vg = Vp direc-
tion, as previously discussed.

A similar alignment of ridges is expected to occur in
the case of the realistic model, for which we have not per-
formed a complete bidimensional scan, because of the ex-
cessive CPU time required. The data shown in Figs. 5,6
are consistent with such ridge pattern. The only qualita-
tive difference we expect with respect to the ideal model
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is represented by some possible curvature of the ridges,
due to the more complex dependence of the eigenvalues
on the bias voltages. The overall pattern of ridges run-
ning along a diagonal direction on the Vs — Vp plane
should be the distinctive signature of 1D-to-1D tunnel-
ing. Therefore, it is possible that the conductance pat-
tern observed in the plots of Ref. 11 is due to remnants
of 1D-t0-2D tunneling, rather than actual 1D-to-1D tun-
neling.

V. CONCLUSIONS

We have developed a method for the quasi-three-
dimensional simulation of quantum waveguide couplers,
based on the self-consistent calculation of the transverse
confining potential and on a modified recursive Green’s-
function algorithm for the evaluation of the transport
properties and, in particular, of the conductances.

Tunneling between two electron waveguides has been
investigated, focusing on the device fabricated by Eu-
gster and del Alamo.® Our results show that coupling
between the two waveguides in this structure is rather
small, and that a bias very close to the 2D threshold is
needed for the central gate in order to observe significant
tunneling. This explains why 1D-to-1D tunneling has not
been experimentally observed in the device based on this
particular heterostructure: the central gate cannot be
biased too close to the 2D threshold, otherwise far from
the coupling region insulation between the 2DEG reser-
voirs would deteriorate. From the data obtained both for
the quasi-three-dimensional model and for the idealized
2D model, for which a more extensive exploration of the
parameter space has been possible, we deduce the charac-
teristic signature that should be revealing of the presence
of 1D-to-1D tunneling and does not appear in currently
available experimental results:!! a pattern of ridges ap-
proximately parallel to the Vp = Vg direction in the plot
of the tunneling conductance versus Vp and Vs. Our
simulation method can be a useful tool for the design of
future implementations of this promising quantum effect
device.
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FIG. 13. Gray-scale plot of the tunneling conductance for
the idealized model vs source and drain voltage at 1.6 K. The
drain and source waveguides are 30 nm wide and are separated
by a 0.4 eV barrier in the 450 nm (a) or 650 nm (b) coupling
region.
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FIG. 14. Gray-scale plot of the tunneling conductance for
the idealized model vs source and drain voltage at 1.6 K. The
drain and source waveguides are 30 nm wide and are separated
by a 0.4 eV barrier in the 650 nm long coupling region.



FIG. 2. (a) Gate layout for the actual device (shaded ar-
eas) and modified layout used in the simulations. (b) View of
a cross section of the device: the dark-shaded regions corre-
spond to the quantum wires.



FIG. 4. Subdivision of the device into a number of trans-
verse slices.



