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We present a detailed analysis of a quantum directional coupler. The innovative aspect of the propo-
sal comes from a dual coupling scheme. With respect to structures with a single interaction window, the
crucial advantage is that the phase in the output leads can be strongly modulated through the distinct
coupling paths. As a consequence, the proposed structure is highly directional in a four-terminal
configuratio. In order to address the above idea, a theoretical analysis is,conducted by solving the two-
dimensional Schrodinger equation using a mode-matching technique. Transmission spectra and conduc-
tance variations are calculated and interpreted paying attention to the inAuence of structural parameters
such as wire widths and branch-line coupling lengths. On this basis, a parametric analysis is carried out
including notably studies of the multimode operation and of the inAuence of electrostatic potential varia-
tions along the direction of propagation. Various modes of operation are pointed out. First, we illus-

trate a 3-dB coupling situation with a directivity as high as 35 dB in the monomode limit where the
clearest interference effects are expected. Second, a real-space transfer mechanism with over 90% of
transferred electrons is proposed as the operating mechanism of a quantum interference electronic
switch. At last, the time response of mechanisms is discussed by viewing the transfer of electrons as a
resonance process.

I. INTRGDUCTIQN

Electronic transport in confined semiconductor
geometries has received increasing interest in the last de-
cade with the potential of a new class of quantum devices
whose functionality appears promising for the future.
Since the pioneering works of Tsu and Esaki' on super-
lattices and double-barrier resonant tunneling hetero-
structures, quantum size and tunneling efFects
have been thoroughly studied in multilayered structures
grown mainly by molecular-beam epitaxy. Recently, ad-
vances in electron lithography technique at the nanome-
ter scale have made it possible to control the lateral ex-
tent of a two-dimensional electron gas created at the in-
terface of a modulation-doped heterojunction in such a
way that the motion of carriers is restricted to one direc-
tion. Furthermore, if the length of these quasi-one-
dimensional microstructures is less than the phase-
coherence length over which the electrons retain phase
information, the transport is ballistic, with conduction
properties solely determined by the geometry of struc-
tures. In this regard, the material of choice is the
modulation-doped Al Ga& „As/GaAs heterostructure
where electron mobility as high as 10 cm V 's ' has
been measured' in liquid helium with the associated
benefit of a coherence length on the order of a microme-
ter. Under these conditions and due to transverse quan-
tum eII'ects in the waveguide, conductance quantization
has been revealed by varying the dimensions of the quan-
tum wire by means of gate bias. Experimentally, plateau-
like structures are obtained in the current-voltage charac-
teristics which have been vastly reported and analyzed in
the literature. '"

A next step in the understanding of electron transport

in the waveguide is to study junctions. Therefore,
T-shaped structures, acting as a lateral stub, and direc-
tional couplers by analogy with optics and microwave
components have been considered. For the latter, several
proposals have been analyzed including structures with a
middle extremely narrow gate which controls the height
and width of a tunneling barrier between two waveguides
in close proximity, or with an open window region in-
duced by a split gate. In this paper, we propose and an-
alyze theoretically a directional coupler which consists of
two parallel quantum wires coupled by two branch lines.
The crucial advantage of such a coupling scheme is that
the phase of electrons in the output leads can be strongly
modulated through the difFerent coupling paths. As a
consequence the proposed structure is highly directional
in a four-terminal configuration. In order to support this
idea, a theoretical study was carried out using mode-
matching techniques. This numerical procedure was
developed originally by Kiihn to compute electromag-
netic fields inside multiports waveguide circuits, and was
used recently by Weisshaar et al. ' for quantum struc-
tures such as bent narrow wires. For the present work,
this approach was extended to the case of four-terminal
systems in order to determine, by solving the two-
dimensional Schrodinger equation, the wave function
within each region constituting the coupler. The
transmission characteristics are first calculated, and con-
ductance spectra are then deduced according to the
Landauer-Buttiker formula. ' By varying systematical-
ly the bias conditions and topology of structures, various
operating modes have been revealed which can give rise
to concepts of devices whose operations rely entirely on
interference efI'ects. First of a11, a directional coupling '

efFect with a directivity as high as 35 db with a quasiequal
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share of the presence probabilities at the two coupled
output ports was found in the single-mode limit where
the clearest quantum-mechanical effects are expected.
Also, a real-space transfer with an electron transfer
exceeding 90%%uo was demonstrated, and is proposed as the
operating mechanism of a quantum interference switch.

The paper is organized as follows: Theoretical aspects
along with the calculation of the transmission, conduc-
tance, and coupling characteristics, described by the cou-
pling and directivity coefficients, are presented in Sec. II.
Section III is devoted to a parametric study related to the
inhuence of the structure geometry„bias conditions, and
properties of coupled waveguides in multimode opera-
tion. Also, a comparison between a single and a double
branch coupler is presented. Finally, the various regimes
of operation are analyzed and discussed with a first ap-
proach of the time response of phenomena by viewing the
charge transfer as a resonant tunneling process. Section
IV contains concluding remarks.

II. THEORETICAL ANALYSIS
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FICx. 1. Topology of the quantum directional coupler with
two branch lines.

Basically, there are two ways to couple two-electron
waveguides. First, one can make use of a very thin tun-
neling barrier as was proposed in earlier works. Such a
coupling scheme can be achieved by means of a very nar-
row gate on the surface of a modulation-doped hetero-
structure with a bias control of the coupling between the
two waveguides. A second procedure consists of using an
open interaction window, as considered in the present pa-
per. In practice, this can be implemented by means of
split gates. Figure 1 depicts such a scheme in a four-
terminal configuration. Instead of a hole or slit used as a
coupling structure, the interconnecting regions have siz-
able dimensions with respect to the electron wavelength.
Hence, we will use the phrase "branch line coupler" in
the sense that the coupling regions behave as electron
waveguide sections with their own propagation charac-
teristics. This also means that it is possible to operate in
a tunneling (coupling by evanescent waves) or propaga-
ting mode according to the geometry and the energy
range considered. Also of major concern is the directivi-
ty of the structures. By analogy with a directional mi-
crowave coupler, the directivity can be defined as a mea-
sure of the unbalance between the electromagnetic waves

at the output ports of the coupled waveguide (let us say
between ports 3 and 4) according to the notation of Fig.
1, by assuming a structure fed by port 1. From this point
of view, a single interaction window with an opening at
the nanometer scale is not directional, as shown below.
In contrast, a dual-branch scheme can overcome this
drawback with a degree of freedom in the control of the
presence probability afforded by the two distinct coupling
paths. However, other operating modes can also be
found notably with a complete change in the propagation
direction and hence with a drastic unbalance between ad-
jacent wires. Concerning ways to show the effects of
directional coupling, we have a choice between several
theoretical approaches. Therefore, the transport proper-
ties can be investigated by studying the time evolution of
a Gaussian wave packet initialized in one arm of the
directional coupler impinging successively on the two
branches and interacting with them. By means of this
procedure, based on solving the time-dependent
Schrodinger equation, resonant charge transfer can be
demonstrated and the time response of the mechanism in-
volved can be analyzed. In counterpart, due to the fact
that the Gaussian wave packet exhibits a spread in ener-
gy, it appears relatively difficult to calculate quantities
relevant to the coupling of the structure except by in-
tegration. This diIIIiculty can be ruled out with the spec-
troscopic method. Indeed, by analyzing the quantum
state of the whole structure as the solution of the time-
independent Schrodinger equation, the transmission
probability can be determined very accurately for each
electron energy value, and hence the coupling charac-
teristics. Moreover, it is possible to obtain an estimate of
the time response mechanism involved from the broaden-
ing of the resonance peaks, as is done for conventional
resonant tunneling structures.

A. %'ave-function calculation

A two-dimensional approach is used to solve the time-
independent Schrodinger equation in the effective-mass
approximation. In order to suggest what features are re-
lated to the interference phenomena, analysis was made
in the ideal case of hard walls and square corner
waveguides. In a previous work it was verified that the
directivity inherent to the double-branch scheme still
holds when a more realistic shape is assumed. In addi-
tion, since in general the clearest quantum-mechanical
effects are expected in the single-mode regime, we choose
typical wire widths around 20 nm in order to preserve a
monomode operation over a relatively broad energy
range. Finally, assuming that the electron coherence
length is longer than the size of the device (180 nm here)
we treat the transport ballistically. In each subregion
defined by the grid in Fig. 1, the wave function is expand-
ed in orthogonal functions with propagating or evanes-
cent properties, according to the energy considered,
weighted by harmonic terms describing the quantum-
sized effects in the transverse direction. The solution can
be thus written in the following form:
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and index transformations.

In region 1 (type A), the wave function is written as

X 2 e'"+8 e
4'=g(a' e +b' e ™x)sin — —y (3)

with

(2)

In these expressions, m is the width of the square
confining potential with quantum levels indexed by m,
and y is the propagation or attenuation constant
[evanescent modes depending on the sign of the term un-
der square root in Eq. (2)] along the direction of propaga-
tion.

Now considering in more detail the topology of the
coupler, we partition the structure into 12 regions where
the wave function can be written independently using
different expressions of Eq. (1), namely, two waveguides
(regions labeled 1-9-6-10-2 and 4-11-8-12-3) connected by
two branch lines (regions 9-5-11 and 10-7-12). We thus
obtain three dift'erent forms for the wave function since
regions 1-2-3-4 (type A), regions 5-6-7-8 (type B), and re-
gions 9-10-11-12(type C) are equivalent owing to variable

In the following, we will assume a feeding of the structure
by port 1 with unitary presence probability. Hence, due
to rejections in the interconnecting regions, the wave
function is the sum of a forward wave and a backward
wave. Conversely„ for the other three ports (2-3-4), only
waves leaving the simulation domain are computed. This
means that no waves are incoming from these three ports
considered as output terminals, and which thus behave as
perfect matching loads. In practice, this could be
achieved by an off'set of the chemical potentials at termi-
nals 2, 3, and 4 with respect to terminal 1 so that the
charge transfers at the Fermi level at the output ports are
forbidden.

In the coupling region (from 5 to 12), the wave func-
tion is constructed by placing successively hard walls at
all —1 open boundaries and by superimposing the
difFerent solutions thus obtained. This procedure gives a
suitable set of orthogonal functions for the application of
mode matching. For region 5 (type B) we obtain

d' sinh[P (y Ly&)]sin — x +d" sinh[P (y Ly i )]sin —x
Lx1 Lx1

(4)

where the coefficients d' and d correspond to the two superimpositions necessary in that case (two open boundaries),
and Ly, and Lx; are marked in Fig. 1. For region 9 (type C), we have

e' sinh[y (x Lx, )]sin — y +e sinh(P y)sin x +e' sinh(y x)sin y (5)

with coeKcients e', e, and e' to account for the three open boundaries.
In order to calculate the amplitude of the wave functions in each region, we first apply the continuity equation of the

wave function P, and second impose the continuity of the normal derivative of g at each interface. Again, only two
series of fundamentally difFerent equations are found for interfaces of types A-C and type B-C, respectively.

As an example, for interface 1-9 (type A-C) the continuity conditions are expressed as

Vm a' +b' = —e' sinh(y Lx, ) (6)

LX 1L/1

with

Lp)E„' = J sinh(P„'y)sin y dy .
0

Concerning interface 9-5 (type B-C), we obtain

Vm e sinh(P Ly, ) =d' sinh[P (Ly, —Ly2)]

and

Vm g (e„'9L„'+e„'L„)+eb9P9cosh(P Lyi)=d P cosh[P (Ly, Ly2)]+d P-
L/1L X1
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and

Lxi
sinh y'„x—L,x, sin x dx

X1
L

(9)

Lxi
I,„= sinh y„xsin x dx .

0 L,X1

By applying this procedure to the 12 interfaces, a set of
linear equations (dimension 24XX24N, where X is the
number of quantum levels or modes considered in the
simulation) is obtained which interrelates the amplitude
coefficients of the wave function to the known values a '

which described the incident waves at port 1. In order to
obtain a less time-consuming code, all e", e ', and
e"(i =9, 10, ll, and 12) are analytically eliminated to
finally obtain a 122VX12% matrix M. The amplitude
coefficients of the wave functions in the remaining re-
gions stored in vector X are given by

Dda = 10 log[0(GQ/G3 ) (14)

propagating modes at the energy EF corresponding to the
Fermi level in the incident waveguide.

In analogy with microwave couplers, we subsequently
define the directivity as the ratio of presence probability
between ports 3 and 4, whereas the coupling coefficient
rejects the sharing of the wave function between the in-
cident ports 1 and 3. Numerically, the directivity (D)
and coupling coefficients (C) are expressed using the con-
ductance terms, respectively:

X=M '8, (10)

where the column matrix B contains the amplitude
coefficients of the wave function in region 1. This infinite
set of equations has to be truncated in order to obtain nu-
merical solutions. For example, when all dimensions
such as waveguide widths or coupling lengths are kept
smaller than 60 nm, satisfactory convergence is obtained
provided 20 modes are included in the simulation.

B. Transmission, conductance, and coupling characteristics

Using the amplitude coefficients calculated with the
method outlined above, it is now possible to calculate the
transmissivity properties for a four-port structure.
Therefore, the transmission coefficient at port i (i =2, 3,
and 4) for incident mode j, by taking into account X
modes in the coupling region can be obtained by

N

m=1

The reAection coefficient at port 1 is calculated in the
same way:

N
g j y bi bi+( i ale)/ t le( i ale)

m=1
(12)

Experimentally, for split-gate structures, only the con-
ductance information can be measured by varying gate
voltages and thus constricting more or less efficiently the
electron gas in the quantum waveguide by a modulation
of their widths. In the limit of zero temperature and
low-bias voltages between input and output ports, the
conductance at each port is expressed according to Lan-
dauer and Buttiker's formulation:

2e2 K
Tj, ;(E~), i =2, 3,4 .

j=l
(13)

Here the summation is performed on the number K of

Cdii = 10 log, o( G4 /K ),
where E is the number of incident propagating modes
whose amplitudes are normalized to unity.

III. RESULTS AND DISCUSSIQN

A. Transmission spectra

Figure 2 shows a typical result of the variations of the
transmission coefficients at the three output ports versus
electron energy. All dimensions such as wire widths and
interguide distances are equal to 20 nm. This gives a
ground quantum level at 14.1 meV which corresponds to
the cuto6'energy for the first propagating mode. The en-
ergy threshold for a higher-order propagating mode is
56.4 me V. In contrast to uncoupled quantum
waveguides, pass- and stop-energy bands can be noticed
in the transmission probability which correspond to vari-
ous matching conditions of the electron wavelength to
the dimension of the interconnecting branches (regions
9-5-11 for the first branch, 10-7-12 for the second).
Therefore, for energy values giving rise to a standing-
wave pattern along the y axis, the direct transmission
T1 2 is maximum whereas the transfer from the first wire
to the second is very weak, as shown in Figs. 2(b) and
2(c), where transmission spectra for ports 3 and 4 are re-
ported. The very sharp resonant (antiresonant) peak ap-
parent at E =28. 2 meV in T i z ( T i 3, T i & ) corresponds
to the case where the wave function perfectly matches the
two branches with a wave function vanishing at the boun-
daries between subregions, i.e., 9-5, 5-11, 10-7, and 7-12
interfaces, as will be the case for an in6nite sidewall. As
a consequence, transfer from port 1 toward port 2 is close
to unity, and coupling between the two wires is forbid-
den. Such behavior is obtained for a third level in the y
direction:
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transmissivity is expected. In addition, since the energy
and well width are correlated, a transmission spectrosco-
py as a function of the well width, more directly related
to experience, can be carried out. Therefore, in Sec. III 8
we will consider the results obtained in a conductance
versus wire width approach.

B. Conductance versus wire widths

Under the conditions of low-bias voltages and low-
temperature operation, it can be assumed that there is no
energy dispersion for electrons participating in the
current, and hence that the energy of injection is given by
the Fermi level Ez of the structure. By varying the po-
tential of the gates which are responsible for the electron
confinement by depletion, the shape and subsequently the
relative position of the confinement potential with respect
to EF can be modified. In this section, we simulate a
change in gate voltage by shrinking or widening the
channel part under the gate. This is equivalent to an
overall shift in energy of the transmission spectra. By
this means the transmission properties can be investigat-
ed at the Fermi level, which is the energy reference tak-
ing advantage of the shifting of spectra when the wire
width is taken as a parameter. This approach is quite
similar to the method used experimentally to determine
the transmission probabilities in double-barrier resonant
tunneling heterostructures. Indeed, by studying the on-
set of tunneling current at very low temperature, when
the transmission curve begins to overlap the supply func-
tion with Ez as the energy limit, one can show that infor-
mation about transmission, most notably its energy
broadening, can be established. At this stage, let us
define two characteristic distances we will use in the fol-
lowing as a function of the variables defined in Fig. 1: the
wire width L~ which is equal to Ly &

and Ly-Ly2, and
the coupling length L, which equals Ly2-L,y, . For the re-
sults reported hereafter, the coupling branch widths and
the separation between the two branches were kept at 20
nm. Figure 4(a) shows variations of the conductance be-
tween port 1 and 2 as a function of Lw calculated for an
energy reference of 40 meV. For this simulation the cou-
pling length Lc was fixed to 20 nm whereas the widths of
the incident and coupled waveguides were kept equal and
varied between 10 and 60 nm. Here the conductance is
expressed in units of 2e h. For comparison, we also plot-
ted the variations of conductance expected for an unper-
turbated electron waveguide with a series of plateaus cor-
responding to various propagation conditions with
threshold widths defined by t.w =M(m. h /2m *E)
(M = l —5 for the width range considered). For the
coupler, if the conductance quantization is preserved as a
function of the number of propagating modes, the con-
ductance evolution appears strongly perturbed by the
coupling to the other waveguide, with an average con-
ductance value lower than M times 2e /h. On the other
hand, it can be noted that a high straight-through
transmission, reaching the maximum values, is recovered
at each cutoff length for which a higher-order mode is ac-
commodated. Figure 4(b) illustrates the conductances
calculated for the two output ports 3 and 4, respectively.
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FICx. 4. Comparison of the conductance evolution between
uniform quantum waveguide and the double branch coupler at
port 2 (a) and conductances at port 3 and 4 for the double
branch coupler (b) as a function of Lm (all other dimensions are
20 nm) for an incident energy E =40 meV.

%'hatever the number of modes, G3 and G4 have compa-
rable mean values showing that only the highest-order
propagating mode participates notably in the coupling.
In fact, the lowest-order modes are predominantly
transmitted directly toward port 2. This means that the
coupling coeKcient progressively decreases as the num-
ber of propagating modes increases. Concerning the
directivity, Fig. 4(b) shows that a monomode operation is
a particularly favorable situation from this point of view.
However, with the increase of propagating modes, it can
be seen that it becomes more and more di%cult to main-
tain significant differences between G3 and G4, notably
spike and antispike variations as observed when only one
mode can propagate. At last, as far as the conductance is
concerned, one can note that all modes have quite com-
parable behaviors throughout their domain of appear-
ance, except for the first mode which is in major part
transmitted toward port 3.

Before considering the various modes of operation of
the dual-branch coupler, it can be interesting to make a
comparison between single- and double-branch schemes
aimed at establishing the origin of the directivity. The
results of simulations performed for this comparison are
displayed in Fig. 5, which shows the wire width depen-
dence of the conductance G4 for a reference energy of 30
meV and a coupling length of 20 nm. In the case of a
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single-branch structure, the calculation of 63 and 64
shows that there are only slight differences in the varia-
tions between them as a function of Lm. Hence no direc-
tivity effect can be pointed out. Indeed let us recall that
the size of the coupling window is at the scale of 20—40
nm in order to promote transverse quantum effects in the
interconnecting region. This also means that the ways to
couple ports 3 and 4 to the incident port 1 are quite simi-
lar at the scale of the opening chosen here. On the con-
trary, marked differences can be pointed out in the
transmission as seen before, and hence in the conduc-
tance variations between ports 3 and 4 for a double-
branch configuration. It is clear that to couple a wire by
means of two distincts paths introduces phase shifts be-
tween the wave-function contributions leading to marked
interference phenomena. In analogy with microwave
couplers, one can also imagine an increase in the number
of coupling branches. In that case one can expect the
same advantage afforded by the multiplicity of coupling
structures for electromagnetic couplers notably in terms
of frequency (energy) band. However, we have to keep in
mind that the observation of the interference described
here needs to preserve a ballistic transport during the
coupling process. An increasing number of branches
should enhance the probabilities of phase breaking, with
the result of strong modifications in transmission spectra.

C. Coupling length and bias voltage

Another parameter of key importance is the coupling
length Lc between the two parallel waveguides. First of
all, the same trends in the conductance variations are ob-
served if L,c is chosen as a multiple of the previous value
Lc =20 nm. In this case, higher-order modes can be ac-
commodated over the coupling length but, on the whole,
the interference pattern remains unchanged. On the con-
trary, by varying the value of Lc without keeping a
periodicity rule, various operation regimes can be ob-
served, as is exemplified in Fig. 6 which shows the varia-
tions of conductance versus the wire width calculated at
the three ports 2, 3, and 4 for L,c =50 nm. Three regimes
can be pointed out in the wire width window which cor-
responds to a monomo de regime. First of all, for

FIG. 6. Evolution of the conductance at the output ports of
the structure for a coupling length Lc =50 nm as a function of
Lw at E =30 meV (branch widths and interbranch distance are
Axed to 20 nm).

Lm =16 nm, a quasicomplete transfer of the presence
probabilities between ports 1 and 3 with negligible values
at the two other ports is apparent. In contrast to this, we
obtained a regime of equal sharing of the presence proba-
bilities for Lm —17 nm, where equal conductance levels
are calculated at all ports. Finally, one can note that the
charge transfer toward port 4 can be inhibited over a rel-
ative wire width range in the vicinity of Lm =22 nm.

Let us now consider the effect of a drain-source voltage
bias. To this aim, a very simple model has been con-
sidered which assumes a uniform Geld in the intercon-
necting regions and a steplike distribution of potential
along x to describe the voltage drop across the structure
with respect to the Oat conditions assumed previously for
the calculations. In practice for a given voltage V„„a
constant electrostatic potential is considered in each re-
gion. Therefore, the potential is set to 0 V for regions 1

and 4, —V„,/4 in regions 9, 5, and 11, —V„,/2 in re-
gions 6 and 8, —3V„,/4 in regions 10, 7, and 12, and
—V„,in regions 2 and 3. Using this approach, the
mode-matching technique can be direct1y applied, taking
into account the correction of propagating or attenuating
factors in each region due to the change in the reference
energy. It is worth mentioning that this procedure is no
longer valid when the energy values gained at each
boundary region exceeds the values of eigenstates of the
we11s in that case introducing a nonrealistic confinement
potential. Figure 7 shows the transmission spectrum for
the first propagating mode between ports 1 and 3 at equi-
librium and under bias voltages of 4 and 10 mV. In this
structure, all characteristic dimensions are kept constant
at 20 nm. As is observed in devices making use of
quantum-size effects such as double-barrier heterostruc-
tures, the resonant and antiresonant structures are shifted
toward lower values at increasing bias. This can be ex-
plained by the lowering of the quantum states of the in-
teraction region relative to the injection region. In addi-
tion, one can note less efticient resonant effects as a direct
consequence of the asymmetry in the structure intro-
duced by the applied voltage. Here again the analogy
with the resonant double barrier is fruitful, for which
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tematic study can be undertaken by systematically vary-
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FIG. 7. T. Transmission spectra at port 3 as a function of ener-

gy for various bias conditions in the x direction (all dimensions
are fixed to 20 nm).

quite similar effects can be pointed out under bias. In
fact, the mismatch between the quantum levels in the in-
cident or transmitted quantum wires is progressively
misaligned, and as a consequence the resonant transport
tends to become smeared.

)0

0

D. Coupling parameters and wave functions

th
By means of Eqs. (14) and (15), the directivit (D) d
e couphng coefficient (C) can be calculated for various

energy and operating conditions. As an example, Fig. 8
shows the variations of D and C versus L,m for an
incident-energy value of 20 meV. Over the well width in-
vestigated, the directivity in most cases appears positive
and hence with a preferential transfer toward port 3. The
highest value (D -30 dB) was obtained in a fundamental
propagating mode regime just before the wire width, at
which another mode starts to carry current. As expected
from the previous analysis, in a multimode regime the

irectivity is lowered, with maximum values around 12
dB. Concerning the coupling characteristics, one can
note that C exceeds the reference value of 3 dB plotted in
dotted lines at I.w =24 nm. In that particular case, C is
close to 0 dB, corresponding to full transfer conditions.
Otherwise a 3-dB coupler (in analogy with the hybrid mi-
crowave coupler) can be implemented with a directivity
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FIG. 8. Calculated coupling coefficient and directivity as a
function of Lw for E =20 meV (all other dimensions are 20 nm).

FIG. ~. 9. Operating regimes for the double branch quantum
coupler for di6'erent geometrical designs (the branch widths and
the interbranch distance are fixed to 20 nm). (a) 3 dB coupling:
E =31.5 meV, Lw =20 nm, and Lc =20 nm. (b) Real-space
transfer: E =30 meV, Lw=27. 4 nm, and Lc =15 nm. (c) Cou-

pling by evanescent wave: E =30 meV, Lw =40 nm, and
Lc =60 nm.
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ing the topology of the structures in order to optimize
coupling and directivity characteristics. Four representa-
tive results of this parametric study are given in Figs.
9(a), 9(b), and 9(c).

Figure 9(a) gives a three-dimensional view of the
modulus of the wave function (instead of the squared
modulus for the sake of clarity in the drawing) within a
structure for an injected energy of 31.5 meV and for all
dimensions equal to 20 nm. An equal sharing of the pres-
ence probability is apparent at the output ports 1 and 3
along with a low reAection coefficient at the feeding port
1 (lower than 0.01, here characterized by smooth oscilla-
tions of the wave function above 1). Conversely, the
value of T&4 is less than 0.005. Such a low transmissivity
can be understood by the rapid decay in the wave func-
tion due to the excitation of higher-order evanescent
modes for the energy considered (here a node in the mid-
dle of the channel in the y direction at the interface 11-4).
On the other hand, the equal partition in the output wires
2 and 3 can be explained by the balance between the
direct transmission from port 1 toward port 2 and the ex-
tracted electron fiuxes at each branch which recombine
constructively in the third output wire. The low
reIIIectivity at port 1 and also the efficient coupling to the
second wire can be explained by an antinode in the
modulus of the wave function in the vicinity of the cross
between the incident wire and the branch lines.

For the two examples displayed in Figs. 9(b) and 9(c),
the energy injection was fixed to 30 meV and the distance
between the two branches kept at 20 nm. However, the
coupling length Lc and the input and output wire widths
were varied in order to change the wave-function
configuration. Figure 9(b) corresponds to Le=15 nm
and Lw =27.4 nm. For these input data a complete
charge transfer between ports 1 and 3
(63=0.943X2e /h) is obtained. This behavior stems
from the fact that the scattered waves are in phase in port
3, explaining a high transmissivity, and out of phase in
port 2, where the wave function is quenched. In contrast
to this, as Lw is set to 29 nm, a straight through
transmission (62=0.993X2e /h) can be achieved. By
taking advantage of straight-through and real-space
transfer regimes the concept of a switching action relying
entirely on quantum interference can be supported. In
addition, if we view the transfer of electrons from one
wire to the other as a resonant process, an estimate of the
characteristic time of this switching mechanism can be
found. Indeed, the width at half maximum of the peak of
transmission as a function of energy can be related to the
dwell time within the coupling region: ~=Pi/I . On this
basis, we found I =1.2 meV or &=0.55 ps, which vali-
dates the expectation of a very fast transfer.

Finally, Fig. 9(c) corresponds to a coupling by an
evanescent mode. This operating regime was pointed out
in Sec. III 8 for a topology corresponding to wire widths
equal to 40 nm and to branch-line widths equal to 20 nm.
In order to investigate where the electrons go, the cou-

pling length was fixed to 60 nm so that the evanescence of
the electron wave, generated below the cutofF energy of
the interconnecting waveguides, can be demonstrated
unambiguously. For waveguides in closer proximity it is
clear that this coupling by evanescent modes, and hence
similar to a tunneling regime, could be strengthened.

IV. CONCLUSION

In summary, we have investigated theoretically the po-
tential of a dual-branch coupling scheme between two
electron waveguides. Ballistic transport conditions are
assumed so that the conduction characteristics are solely
determined by the structure geometry. For this analysis,
we have developed a numerical code based on mode-
matching techniques for solving the two-dimensional
Schrodinger equation in a multiple-port configuration.
This method was successfully applied to the quantum
coupler proposed including 20 modes (evanescent or
propagating) in the simulations, and was systematically
used to calculate the quantum transmission probabilities
and the conductance characteristics. As the topology of
structures is varied, several kinds of coupling characteris-
tics have been pointed out, taking benefit of the quantum
interferences which develop in the interconnecting re-
gions including (i) straight-through transmission; (ii) mul-
tiplexing of the presence probabilities with an equal parti-
tion between two output ports, whereas the wave func-
tion collapses at the fourth port; or (iii) full electron
transfer between the two-electron waveguides. As a gen-
eral rule, and as expected, the most salient features have
been obtained in a monomode propagation regime. For
instance, in a structure where the wire dimension is close
to 20 nm, a 3-dB coupling coefficient along with a direc-
tivity of 35 dB was obtained. When several current-
carrying paths are allowed, as is the case in multimode
operation, the directional coupling still holds, though
with degraded performances in terms of coupling (6 dB)
and directivity (10 dB), characteristics due to the
straight-through transmission of low-energy-relying
modes. On the other hand, using an open-coupling win-
dow instead of a tunneling barrier appears to be a wel-
come feature if we are interested in the time response
properties. Preliminary estimates of the dwell time
within the active region using the width at half maximum
of the quantum transmission probabilities versus energy
show that the transfer of charge can occur with about a
half-picosecond time response in a switching process. On
this basis and in anticipation of future improvements in
the fabrication techniques and higher quality material, it
is believed that this class of quantum components can
find application in extremely low consumption and ul-
trafast devices. As a last comment, let us note that a fur-
ther degree of control can be a8'orded by the application
of a magnetic field, as is observed for Aharonov-Bohm
rings for which strong interference phenomena have been
predicted and clearly demonstrated in experiment.
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