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We study the phase locking of a long 3osephson junction operating in a Quxon oscillator regime to
external rf signals whose frequency is an even harmonic of the oscillator frequency. The phenomenon
is investigated for diferent values of the dc bias current in the junction, and around each value the
current intervals that allow phase locking are evaluated. These intervals can be well identi6ed even
when the drive frequency is sixteen times the Huxon oscillator frequency. The explanation of the
numerical data that we obtain is given in terms of analytical approximations for a long Josephson
junction model. An equation containing relevant experimental parameters is derived for the current-
locking ranges generated by the di6'erent harmonics. This equation establishes that the amplitude
of these intervals decreases exponentially with the harmonic number and we show how this result
can be related to a property of the Fourier spectrum of Buxon oscillations. In all the cases that we

analyze very good agreement is found between the numerical evidence and theoretical analysis.

I. INTR.ODUCTION

The study of coherence and phase locking phenomena
in extended Josephson structures is a very interesting
issue in solid state physics because it deals with the re-
sponse of a system containing an internal (spatial) de-
gree of freedom to external excitations. In the past much
attention has been devoted to the phase locking of one-
dimensional junctions biased on zero-field steps of the
current-voltage characteristics. These singularities are
generated by magnetic-fIux-quanta shuttling motion in
the junction and in several cases the problem of the phase
locking has been reduced to the study of the motion of
a particle (vrhose dynamics is governed by an efFective
Hamiltonian) in an external oscillating field. i'2 4 Very
recently, the study of phase locking in cases where the
phase oscillations inside a long junction cannot be treated
as a point particle has begun. ' Results have also been
reported concerning the phase locking of long junctions
operated in the Aux-Bow regime and interesting experi-
ments have been performed on phase-locked inductively
coupled junction oscillators. '

The wide interest that the problem of phase locking
may have in nonlinear dynamics has recently been recog-
nized even for the discretized versions of wave equations.
In fact, the problem of phase locking in discrete Joseph-
son transmission lines was investigated and it has been
shown by Cai et al. that the phenomenon of the lock-
ing of nonlinear coherent structures to oscillating fields
can produce interesting eKects even for other discretized
wave equations.

In spite of the growing interest that phase locking has
received, a systematic study giving direct information

about ranges of locking, parameter spaces, and other
experimental quantities is still lacking. A study of the
dependence of parameters of the current-voltage char-
acteristics of long Josephson junctions in the presence of
uniform rf driving currents has been reported recently by
Cirillo et al. These authors found that, in the case of a
junction driven uniformly by a rf external current, there
exists a simple and straightforward relation between the
intervals of locking and the dynamical resistance of the
zero-Geld steps. In particular, the current ranges of lock-
ing are proportional to the applied rf current through
a coefFicient in which the dynamical resistance enters
linearly. The case investigated represents perhaps the
simplest possible physical configuration, very suitable
for experimental investigations in which the Josephson
junction can be considered uniformly irradiated by rf
fields &4i»

The results mentioned in the previous paragraph, how-
ever, were obtained for the case in which the Quxon volt-
age is equal to the Josephson voltage, i.e., when the fre-
quency of the applied rf signal equals twice the Huxon os-
cillator frequency. The case in which the drive frequency
is a higher multiple of the Auxon oscillation frequency
was not analyzed in detail. In particular, no attempts
were made to give phenomenological or analytical expla-
nations for the few numerical data. Subharmonic locking
is relevant for practical applications as it is not trivial to
find a nonlinear system that can generate it in a stable
and controlled manner. In the present work we consider
the subharmonic locking in long Josephson junctions.
We show that the subharmonic locking is a well control-
lable mechanism that can be obtained even for relatively
high harmonic numbers due to the extremely sharp na-
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ture of the voltage peaks associated with a moving fluxon.
We find the parameter ranges for the phase-locking in-
tervals and analyze the details of the locking process in
terms of fluxon dynamics.

In this paper we will concentrate on phase-locking
phenomena generating major effects in the observable
current-voltage characteristics of Josephson junctions.
For this reason we will consider only phase-locking phe-
nomena for drive frequencies equal to even multiples of
the fluxon oscillation frequency. The odd multiple fre-
quencies can be shown to generate phase locking over
much more limited intervals of parameter values.

The paper is organized as follows. In the next section
we briefly review the results obtained for the phase lock-
ing of the long overlap junction to a drive signal whose
frequency is twice the fluxon oscillator frequency. In Sec.
III we show the results obtained numerically for the sub-
harmonic locking. In Sec. IV we compare the obtained
results with analytical approximations and. present phys-
ical explanations for the observed phenomena. In Sec. V
we conclude the paper and briefly discuss the impact of
the results on 3osephson junction physics and devices.

II. UPPER LIMIT FOR THE LOC KIN C
INTERVALS

In the following we briefly review previous work as it
is relevant for the present purposes. In Refs. 5 and 13
large parameter excursions were considered in the case
of a long overlap Josephson junction uniformly driven in
space by a rf signal whose frequency is twice the fluxon
oscillation frequency. We recall that when the external
drive kequency is twice the fluxon oscillation frequency
the dc voltage due to the ac Josephson effect and the
"fluxon" voltage are equal.

The model equation under analysis is the sine Gordon
with dc and rf driving forces

+ sing+ aP' = pp+ pi sin(~t)

with open circuit boundary conditions, i.e. , P (0, t)
(l, t) = 0 over the finite spatial interval [O, t]. In Eq.

(1) and everywhere else in this paper time and space
scales are normalized to Josephson characteristic time
and lengths and the current terms are normalized to
the maximum Josephson supercurrent in the junction.
The numerical results presented in this paper have been
obtained for a long junction model of length l = 4 and a
loss parameter o. = 0.1. The investigations we performed
were made for three different values of the dc bias current
po. 0.26, 0.3, and 0.35. For these values of the dc bias
current and for a fixed value of the dissipative parameter
the corresponding fluxon oscillation frequencies were, re-
spectively, 0.678, 0.704, and 0.726. We recall that these
frequencies correspond to the inverse of the time spent
by the fluxon to cover a distance 2l.

For the sake of reproducibility of our results we specify
here the most relevant parameters of our numerical in-
tegration procedures. We obtained current-voltage char-
acteristics by sweeping the dc bias current in increments
of 10 . At every increment a transient of 2000 rf cycles

was allowed to develop, and after this transient average
values of voltages from Eq. (1), i.e. , (Pq), were obtained
over 1000 rf cycles. We found that these transient and
averaging times were safe margins for our investigations.
The CPU time required for these simulations is such they
could be performed on desktop machines such as SUN
workstations or 486 PC's.

In Fig. 1 we show the results for the phase-locking
intervals LI as a function of pi for the three different
values of the dc bias current investigated. According to
the results of Ref. 13 the slope of the straight lines in Fig.
1 (least squares fits to the data) can be predicted by the
equation

AI2/pi ——(1/~2) nRg, (2)

0.()H P
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FIG. 1. Current intervals of locking as a function of the
applied rf current (pi) for the three dc bias points that we
analyze. The uppermost data correspond to pp ——0.26, the
middle data to pp

——0.3, and the lowermost to pp = 0.35.

where Rp is the normalized dynamical resistance eval-
uated at the corresponding dc bias point on the zero-
field step. We recall that I/a in Eq. (2) represents the
normalized Ohmic resistance of the long junction and,
therefore, on the right hand side of the equation we have
the ratio of two resistances. From the data of Fig. 1 we
have found that the discrepancy between the numerical
result and Eq. (2) is within a few percent. In Eq. (2) the
subscript in AI2 indicates that we are considering the
case N = 2, i.e., the drive &equency is twice the fluxon
oscillation frequency.

When comparing Eq. (2) with numerical results at-
tention must be paid to the evaluation of the dynamical
resistance because an inaccurate estimate of this parame-
ter may give rise to larger discrepancies than the ones we
obtained. We evaluated the dynamical resistance by dif-
ferentiating an eighth-order polynomial curve fitting the
current-voltage characteristic points spaced by a 10
current step. Fitting by lower-order polynomials gave
results that were identical. The uncertainty of our fit-
tings was always within 3%%uo. We point out that Eq. (2)
uses a linear approximation for the portion of zero-field
step centered on the dc bias point of interests. In gen-
eral, we have found that the values of the rf drive levels
for which this can be a good approximation depend on
junction length, loss parameter, and dc bias level.
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the locking intervals upon the external rf field is linear.
Indeed, as a general feature we have seen that the de-
pendence remains linear even for higher values of the rf
field (including pi )) 1), while the same does not happen
for the N = 2 case. However, the slope of the straight
lines in this case cannot be related in a simple manner
to the locking intervals and it is clear that an explana-
tion of the observed locking ranges can only be obtained
by considering the full problem of harmonic locking for
higher values of ¹5

The difficulty concerning slope prediction anticipated
in the last paragraph is more evident &om Fig. 3(b) where
we show the results for the bias point po ——0.3. Compar-
ing Figs. 3(a) and 3(b) we see that on increasing N the
difference between the slopes of the linear fit to the data
corresponding to the same harmonic for different bias
points decreases. This tendency is confirmed by the data
relative to the po

——0.35 bias point: for increasing values
of N there is very little difference between the slopes of
the straight lines obtained for the three different dc bias
values [see Fig. 3(c)].

It is somewhat surprising that the linear dependence of
the locking ranges upon the rf amplitude persists for high
harmonics even for relatively high amplitudes. Increas-
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FIG. 5. A current-voltage characteristic for the long junc-
tion model when pumped with a rf current having amplitude
10 (in normalized un. its) and a frequency corresponding to
the 12th harmonic of the soliton oscillation frequency. The
phase-locked step appears at the subharmonic frequency on
the zero-field step.

ing the harmonic number further, it becomes difficult to
observe phase locking for low values of the applied rf cur-
rent. However, increasing the value of this parameter one
can still observe a linear dependence of the locking inter-
vals upon the rf current amplitude. This observation is
demonstrated by Fig. 4 in which we plot the dependence
of the locking intervals upon pq for N = 12 and N = 16
for the three different values of the dc bias current. We
see that even in this case there is very little dependence
of the slopes upon the dc bias.

In Fig. 5 we show a current-voltage characteristic
which exhibits a phase-locked current step on a zero-field
step obtained for the value pi ——10 and N = 12 (a); the
range of locking for this value of the rf current is equal to
ten times the one obtained for p~

——1.0, meaning that we
are still in a linear regime. We note that the current am-
plitude of the phase-locked step for N = 12 is 8.3 x 10
which represents 3.2%%uo of the dc bias point value (0.26 in
this case).

In order to gain more insight into the functional depen-
dences of the locking intervals for the different harmonics
we have plotted the dependence of the slopes AI~/pi for
all the harmonics corresponding to a given dc bias point.
In Fig. 6 the triangles represent the numerical data for

po = 0.26. As emphasized by the dashed line interpolat-
ing the triangles we see that there exists an exponential
dependence of the intervals upon the harmonic number
N. Since the first point (N = 2) corresponds to the lock-
ing at twice the soliton frequency [Eq. (2)] our conclusion
is that the follow'ing extension of Eq. (2), as a first rough
approximation, can account for the dependence of the
locking ranges upon the harmonic number:

FIG. 4. Current-locking ranges for N = 12 (a) and N =
16 (b). In (a) the circles, crosses, and squares refer, respec-
tively, to the bias points 0.35, 0.3, and 0.26. Note that in this
case the slope of the straight lines increases for higher values
of the dc bias. In (b) we observe the same tendency, as the
circles refer to the bias point 0.35 and the crosses to 0.3.

where N = 2, 4, 6..., k is a constant, and AIq is given by
Eq. (2).

In Fig. 6 we have also plotted the dependence of the
locking intervals upon the harmonic number for the other
two bias points. In the figure the squares correspond to
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FIG. 6. Dependencies of the slopes AI/pq upon the har-
monic number N for po ——0.26 (triangles), po ——0.3 (squares),
and po = 0.35 (circles); the straight-dashed line represents a
least-squares Gt to the data for po = 0.26 and the full lines
represent the predictions of the theory [Eq. (5)] for the three
cases.

IV. DISCUSSION AND MODELING

We have seen at the end of the last section that our
ansatz is consistent with a set of data reported in Ref.
5 that, in turn, are consistent with a theoretical, per-
turbation analysis of the phase-locking phenomenon in

pp = 0.3 and the circles to pp = 0.35. We see that the
basic features described above are again present. From
the data of Fig. 6 it seems that there is weak dependence
of the slope of the straight line upon the dc bias point.
However, the exponential tendency is present even for the
two other bias points. Fitting the data of Fig. 6 in the
higher-N region with straight lines we have found that
the value of the constant A: in the exponent is equal to
0.48 for the data corresponding to pp ——0.26, to 0.45 for
pp ——0.3, and to 0.4 for pp = 0.35.

Equation (3) contains most of the information needed
for evaluating the phase-locking intervals for the uniform
dc and rf bias case. In a given experimental condition it
is simple, given the profile of a zero-field step, to evaluate
the dynamical resistance. Also, from the measurement of
the subgap resistance one can derive the Mccumber pa-
rameter P, = 1/ct . These are all the parameters needed
to check our results Rom an experimental point of view.

The voltage ranges of locking that Inay be measurable
in direct Josephson radiation experiments can be evalu-
ated from Eq. (3) following the Taylor-expansion argu-
ments employed in Ref. 5 for the locking ranges at K = 2,
i.e., (AV~/EI~) = Bd, . Therefore we expect

—k(1V—2) (4)

where AV2 ——(1/y 2)nBq~pg
It is worth noting at this point that Eqs. (3) and (4)

represent only an ansatz that Gts the data reasonably
well. However, the same ansatz, applied to the results
obtained for a completely different parameter set, gives
a very good explanation of the numerical data. For the
set of data presented. in Ref. 5 the value of the constant
k (the slope) is equal to 0.25. The parameter set used in
these simulations was pp = 0.0336 o; = 0.025, and l = 8.

long, uniformly driven long junctions. Thus it is natu-
ral to check whether the proposed theoretical model can
be applied even for moderately long junctions like the
one that we used, having a normalized length equal to 4.
Therefore, in Fig. 6 we have reported the prediction of
the theory [Eqs. (11) and (12) of Ref. 5] superimposed on
our numerical data. We note that for the three cases we
have analyzed there is little difference between the ansatz
Eq. (3) and the perturbation analysis results. The differ-
ence becomes more evident for lower values of ¹ Indeed,
one can derive analytically an expression showing that in
the large N limit our ansatz and the theoretical analy-
sis basically coincide. Specifically, in the limit u —+ 1
and large % the following analytical expression can be
derived from Eqs. (12)—(14) of Ref. 5:

(
+IN/pl ——2 y '(u)7r' —exp

l

—
I (5)

& 21~( )&

In these expressions p(u) = 1/v 1 —u2 and u is the soli-
ton power balance velocity. Equation (5) gives a func-
tional dependence for the locking intervals as a function
of the harmonic number which is not very different from
Eq. (4) because the dominating exponential determines
the shape of the function. For large N the functional
dependencies of Eqs. (4) and (5) are basically the same.
Equation (5) gives the correct values for the slopes of the
straight lines interpolating the data of Fig. 5 for large
¹ For the three values of the bias current 0.26, 0.3,
and 0.35 we get, respectively, for the coeKcient of the
exponential of Eq. (5) 0.54, 0.48, and 0.42. These coef-
ficients agree very well with those that we have found
numerically (0.48, 0.45, 0.4). The discrepancy decreases
on increasing the dc bias current as we expect because
of the high-velocity approximation made in deriving Eq.
(5). Better agreement is expected if the original, but
more complicated, expressions from Ref. 5 were used.

The good agreement between the theoretical predic-
tion and the data ensures us that the boundary-pumping
model proposed by one of the authors can be applied
to predict the ranges of phase locking for long junctions
whose length is relatively short (4 in our case). Go-
ing through important features of the theoretical anal-
ysis employed in Ref. 5 enables us to understand the
higher-harmonics results within the same equivalent-
circuit analysis reviewed in Sec. II.

The necessary condition for obtaining the phase-
locking current intervals in the framework of the per-
turbation model is derived by requiring the time integral
(evaluated over one period of motion) of the time deriva-
tive of the total energy of the system to be zero. An in-
spection of the form of this integral [Eqs. (7) and (10) of
Ref. 5] indicates that it consists essentially of the Fourier
transform of the soliton profile. Thus we conclude that
the "phase-locking" currents are related to the Fourier
transform of the soliton wave form. Bearing in mind
that Pt, is related to the voltage generated by the Auxon
in the long junction, we have translated this observation
in terms of circuit analysis as follows.

In the circuit model discussed in Sec. II one pro-
ceeds from the current-source model to the voltage-source
model knowing the voltage generated across Rg and 1/o. .
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FIG. 7. Fourier spectrum of the voltage wave form gen-
erated by Huxon oscillations at one end of the junction for
three difFerent lengths, / = 4 (a), l = 6 (b), and I = 8 (c).
We see that the amplitude is a linearly decreasing function
of the harmonic number N. The dashed line in the leftmost
spectrum represents the result expected from our model.

where s is a constant. We know that, as far as phase lock-
ing is concerned, a good approximation for V2 is pqRg . If
we apply the voltage V~ sin u~t across the resistor I/n,
&om the Kirchhoff voltage law we obtain an expression
for the current-locking ranges identical to Eq. (3). In Fig.
7(a) the dashed line indicates the slope that we obtain for
s = 0.48, i.e. , for the coeKcient obtained from the data
of Fig. 6. We see in Fig. 7 that the slope accounts very
well for the observed exponential decay of the Fourier
component's amplitudes.

V. CONCLUSIONS

In the present work we have shown how it is possible
to quantify the most physically relevant phase-locking
phenomena in uniformly driven long Josephson junc-
tions. The uniformly driven Josephson junction is de-
scribed by a model equation that has been successfully
employed in the past in several physical circumstances
to describe experimentally observed phenomena and

One implicitly assumes that the amplitude of the com-
ponent at the &equency ~2 ——2~, of the voltage present
across the two resistors must be equal. This is very rea-
sonable because the average voltages at this &equency
in the phase-locked state must be equal. It is clear that
the same kind of arguments can be used if we have infor-
mation about higher components of the voltages present
across Bg.

We have performed fast Fourier transforms (FFT's) of
the voltage wave form generated by the oscillating Huxon
and the result, for three diferent lengths, is shown in Fig.
7. These wave forms have been obtained for zero exter-
nal rf current, with a dc bias point equal to 0.3 and for
the three lengths l = 4, 6, 8. In the figure we see the am-
plitude of the components decreasing linearly, indicating
that, considered the logarithmic scale of the power axis,
the amplitude of the Fourier components is an exponen-
tially decreasing function of the harmonic number. This
result tells us that an approximation for amplitude of the
fluxon-voltage ¹hFourier component is

—s(N —2)

physics of Josephson devices. Complementary to Ref.
5, we have demonstrated that, due to the large harmonic
content of the wave forms associated with shuttling Qux-
ons, it is possible to phase-lock the long junctions to rf
signals whose &equency is much higher than the funda-
mental &equency associated with the Buxon oscillations.
We have reported here on phase-locking intervals when
the frequency of the external drive was up to 16 times
the fundamental Buxon oscillation &equency.

This phenomenon could be very useful for devices in
which a low-&equency reading of high-frequency signals
is necessary. A typical application for example would
be a readout of the pump signal for voltage standard
devices. The Josephson voltage standard is usually
pumped with a 70—90 GHz signal. An integration of the
standard including a superconducting (or semiconductor)
oscillator would certainly be simplified if the readout of
the frequency of the signal can be made at lower &equen-
cies. Our simulations have shown that the long junction
Huxon oscillator could provide the basic ingredients for
this kind of property. We note that we have observed dc
locking ranges at the 16th harmonic of the soliton oscilla-
tion frequency representing up to 1070 of the bias current.
If we consider that a typical value for a current bias point
on a zero-field step can be of the order of several hun-
dred microamperes, we conclude that the amplitude of
the phase-locked step can be of the order of several tens
of microamperes.

An important feature of the operation described in the
last paragraph is the fact that the Quxon oscillator, ac-
cording to our simulations, requires moderate amplitudes
of the rf pumping current for the ranges of operation
that can be interesting in practice. For example, a down
conversion of a factor 10, which means going down for
example from 90 GHz to 9 GHz, would require a rf cur-
rent less than ten times the Josephson critical current.
This critical current for a long junction Huxon oscillator
is typically of the order of 1 mA which means coupling
to the oscillator ten times as much rf current. These cur-
rent levels are nowadays available even from integrated
superconducting millimeter-wave oscillators.

We have given expressions for the voltage and current
ranges of locking that are versatile and contain readily
evaluable experimental parameters. The agreement be-
tween an analytical perturbation treatment of the sine-
Gordon equation containing rf and dc driving terms and
the numerical results has given us the key to interpret the
numerical data in terms of a circuit model of a driven long
Josephson junction. The exponentially decreasing ampli-
tude of the locking ranges as a function of the harmonic
number is directly related to the exponentially decreasing
amplitude of the Fourier components of the voltage wave
form of fl.uxon oscillations. This physical phenomenon
has given us the key to establish a link between numerical
data, analytical approximations, and circuit modeling.

ACKNOWLEDGMENTS
This work was performed under the auspices of the

U.S. Department of Energy. Partial financial support by
the Superconductive and Cryogenic Technologies project
of the CNR (Italy) is also acknowledged.



512 M. CIRII.LO et al. 52

M. Salerno, M. R. Samuelsen, G. Filatrella, S. Pagano, and
R. D. Parmentier, Phys. Lett. A 137, 75 (1989); Phys. Rev.
B 41, 6641 (1990).
B. A. Malomed, Phys. Rev. B 41, 2037 (1990).
N. F. Pedersen and A. Davidson, Phys. Rev. B 41, 178
(1990).
N. Grejnbech-Jensen, Phys. Rev. B 47, 5504 (1993).
N. Gr@nbech-Jensen, Phys. Lett. A 169, 31 (1992).
N. Gr@nbech- Jensen and M. Cirillo, Phys. Rev. B 50, 12 851
(1994).
N. Gr@nbech-Jensen, P. S. Lomdahl, and M. Cirillo, Phys.
Rev. B 51, 11690 (1995).
A. V. Ustinov, J. Mygind, and V. A. Oboznov, J. Appl.
Phys. '72, 1203 (1992).
T. Hoist, J. Bindslev Hansen, N. Gr@nbech-Jensen, and J.
A. Blackburn, Phys. Rev. B 42, 127 (1990).
A. V. Ustinov, H. Kohlstedt, and C. Heiden, Appl. Phys.
Lett. 65, 1457 (1994).
A. V. Ustinov, M. Cirillo, and B. A. Malomed, Phys. Rev.

B 47, 8357 (1993).
D. Cai, A. R. Bishop, N. Gr@nbech-Jensen, and B. A. Mal-
omed, Phys. Rev. E 50, 694 (1994).
M. Cirillo, P. Cocciolo, V. Merlo, N. Gr@nbech-Jensen, and
R. D. Parmentier, J. Appl. Phys. 75, 2125 (1994).
M. Cirillo and F. L. Lloyd, J. Appl. Phys. 61, 2581 (1987).
R. L. Kautz, in Structure, Coherence and Chaos in Dynami-
cal Systems, edited by P. L. Christiansen and R. D. Parmen-
tier (Manchester University Press, Manchester, 1989), pp.
207—226; Metrology at the Frontiers of Physics and Technol
ogy, edited by L. Crovini and T. J. Quinn (North-Holland,
Amsterdam, 1992), pp. 259—296.
R. D. Parmentier, in The Nehru Superconducting Electron-
ics, edited by H. Weinstock and R. W. Ralston (Kluwer,
Dordrecht, 1993), pp. 221—248.
D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1672
(1978).
M. Cirillo, Italian Patent No. RM94A000418 (24 June
1994).


