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We present a comparative analysis of tight-binding and free-electron calculations of the conduc-
tance of an atomic-scale metallic contact. The calculations are based on a full dynamic simulation
of the atomic structure during the pullout of the contact, for a range of temperatures. As in previous
simulations, we find that the contact evolves through a series of mechanical instabilities and can
become highly disordered prior to fracture. Both the mechanical evolution of the contact and the
behavior of the conductance depend strongly on temperature. We find that conductance quantiza-
tion is destroyed easily by irregularities in the shape of the contact and, in the tight-binding model,
also in the internal atomic structure of the contact. In the tight-binding calculation conductance
quantization is seen only at high temperature, when the contact geometry and structure become
very regular. With the free-electron model, we see perfectly quantized conductance plateaus just
prior to contact fracture, while the plateaus in the earlier history of the contact are washed out by
tunneling. In the free-electron calculation, conductance quantization is seen both at low and at high
temperature but is more prominent at high temperature. We use the tight-binding and free-electron
results for the conductance to obtain a calibration curve relating the conductance to the constriction
width. The calculated conductances lie significantly below the Sharvin limit but the inclusion of the
first-order semiclassical correction to the Sharvin formula greatly improves the agreement.

I. INTRODUCTION

Impressive progress in the experimental study of
electron transport in quantum nanocontacts has been
achieved during the past two years or so with the advent
of the mechanically controllable break junction (MCB3)
technique and with direct measurements of the con-
ductance using a scanning tunneling microscope (STM)
in the contact regime. The contacts in these experi-
ments are definitely in the ballistic regime with a large
splitting betvveen transverse electron levels ( 0.1—1 eV).
This is large enough for the presence of discrete levels to
be rejected in a quantization of the conductance, pro-
vided that the longitudinal electron motion is close to
adiabatic (i.e. , if the constriction is smooth) and pro-
vided that the actual atomic structure of the contact is
unimportant. There is, as far as we are aware, no direct
experimental information about the shape and internal
structure of the nanocontacts, and this is why realistic
atomistic simulations and conductance calculations have
proved invaluable. This lack of experimental information
has resulted in a considerable controversy over the ques-
tion of whether or not conductance quantization may be
observed in atomic-scale metallic contacts.

In the early experiments on Pt junctions, clear jumps
in the conductance during contact pulloff were found, but
these jumps were irregular in size and certainly not quan-
tized in the quantum conductance unit Ge ——2e /h. In
a realistic theoretical description of these experiInents,
a tight-binding model was used to calculate the conduc-
tance on the basis of a full dynamic simulation of con-
tact pulloff. In this calculation it was seen that during

pulloff the contact thins down through a series of abrupt
mechanical rearrangements (or instabilities). Each insta-
bility was found to result in a corresponding abrupt de-
crease in the conductance. The values of the conductance
between jumps were not quantized, which was explained
in terms of irregularities in the atomic topology of the
contact. In parallel with this work came further MCB3
experiments on Al, Pt, and Cu, in which generally non-
quantized but otherwise very clear and sharp conduc-
tance jumps were observed in all three metals. These
steps were explained in terms of Ref. 6.

Then, very recently, came a report on the observation
of conductance quantization in Pt, Cu, and Ni point con-
tacts in the STM, at room temperature. Also, a free-
electron conductance calculation in Ref. 3 on a highly
idealized geometry showed quantized conductance steps.
The authors of Ref. 3 also raised the question of whether
the conductance jumps in this kind of experiment were
at all related to mechanical instabilities, or whether they
corresponded simply to the closing-off of conductance
channels during an otherwise more or less smooth thin-
nirig down of the contact. In a response to Ref. 3 it was
pointed out first that the experimental observation of
conductance quantization is far from universal, and sec-
ond that the possibility of conductance quantization in
these contacts must be analyzed in conjunction with the
detailed structure of the contact and that irregularities
in this structure may destroy the quantization effect in
cases when the idealized jellium model in Ref. 3 would
predict it.

In the meantime, there have been experimental ob-
servations of quantized conductance plateaus just be-
fore contact fracture, in Au contacts, in both low-
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temperature and high-temperature STM. Experimen-
tal research with the MCBJ technique has revealed
prominent conductance quantization for low values of
the conductance (i.e. , just before contact fracture) in Na,
while under the same conditions Pt has shown no signs of
the eÃect. Very recent MCBJ measurements on Au and
Cu at room temperature have shown much more. pro-
nounced signs of conductance quantization than seen in
corresponding low-temperature experiments.

The present work addresses the theoretical aspect of
the question of conductance quantization in atomic-scale
contacts. The aim is to understand the conditions for
the observation of the eKect and to elucidate the origin
of some of the experimental observations to date. To
this end, we have carried out a direct comparison be-
tween tight-binding and free-electron conductance cal-
culations on the same realistic contact geometry. The
contact geometry is generated by a dynamic simulation
of the pullout of a Ni contact. The calculations are done
for three different temperatures, 10 K, 150 K, and 250 K,
and the eKect of temperature on the mechanical response
and on the conductance of the contact is investigated.

The essential difference between the two electronic
models is that in the free-electron picture the metal is
represented by jellium, so that only the shape of the con-
tact enters the model, while in the tight-binding picture
the exact atomic structure of the contact is re8ected ex-
plicitly in the Hamiltonian of the system.

We find that conductance quantization does occur, but
it requires special conditions and is easily destroyed by
the backscattering in realistic geometries. In the tight-
binding calculation, conductance quantization can break
down both as a result of rapid variation of the contact
cross section along the contact and as a result of defects in.

the internal atomic structure of the contact. With tight
binding, we find conductance quantization only at high
temperature, when the contact becomes very regular in
cross section and in internal structure.

In the free-electron calculation, departures from con-
ductance quantization can occur as a result of insufB-
cient smoothness in the contact profile. Conductance
quantization is seen only in the late stages of the pullout,
when the narrowest part of the constriction becomes suf-
ficiently smooth in shape. In the earlier stages of the
pullout, distinct conductance plateaus are not seen at all
in the &ee-electron model, due to tunneling eKects. In
the free-electron calculation, conductance quantization
is seen both at low and at high temperature, but is more
prominent at high temperature.

The above observations are in agreement with the cur-
rently available experimental data. It must be stressed,
however, that, to our knowledge, there have been no Sys-
tematic experimental studies of the dependence of the
quantization effect on temperature or on the electronic
structure of the material.

Finally, we use the tight-binding and free-electron re-
sults to obtain a calibration curve relating the conduc-
tance to the actual cross-sectional area of the contact.
We find a linear relationship between the two in which,
however, the conductance is suppressed considerably rel-
ative to the Sharvin limit.

II. COMPUTATIONAL METHODS

A. The dynamic simulatien

The setup for the atomistic simulations follows closely
that in Ref. 6, although the parameters in the simu-
lations were altered. Atomic interactions representing
nickel were taken from Ref. 11. These are long-range
many-atom interactions of the Finnis-Sinclair form. The
total potential energy is expressed as follows:

where r,z is the distance between atoms i and j, e

1.5707 x 10 eV, m = 6, n = 9 and c = 39.432, and
a = 3.52 A is the fcc lattice parameter. The potential
is truncated at 2.001a, which means that in a perfect
fcc crystal there are 140 interacting neighbors to a given
atom. We note that with a suitable scaling of the energy
and time this potential may also be taken to represent
Cu in the same scheme. The functional form in Eq. (1)
captures an essential feature of metallic bonding, namely
that the strength of a bond increases as the coordination
number decreases. This is an important feature in the
present context as the coordination of some atoms in the
contact decreases from 12 to 2 during the pulloK

In the simulations the contact geometry is initialized
in the following way. The contact consists of a cluster
of atoms sandwiched between two slabs. The cluster is
obtained by cutting out a cylinder of atoms, with a [ill]
axis, from a perfect fcc crystal. The cylinder comprises 13
(ill) planes, each containing between 19 and 21 atoms.
The ...ABC... stacking sequence of (ill) planes gives
rise to a serrated appearance of the sides of the cylin-
der. There are 265 atoms in the cylinder. This cylin-
der is attached to the underside of a rectangular slab
of 1836 atoms, comprising 6 (111) planes of dimensions
(9a/2)[1, 1, —2] by (17a/2)[1, —1, 0]. The cylinder and
slab have the same crystal orientations. Periodic bound-
ary conditions are applied in the three orthogonal direc-
tions of the slab. The length of the computational cell
normal to the slab is such that the cylindrical cluster is
in contact with the image slab beneath it as shown in
Fig. 1. The computational cell contains 1836+265=2101
atoms.

The simulation at 150 K was carried out first. Initially
the system was equilibrated for 5000 time steps of 10
sec. During this equilibration the area of the slab was al-
lowed to expand but the length of the computational cell
normal to the slab was fixed. The length of the computa-
tional cell normal to the slab was then reduced gradually
by one lattice parameter over 10000 time steps, in order
to simulate the compressive loading that occurs prior to
pulloff in the actual experiments. During this reduction
of the cell height most of the strain is accommodated
predominantly and elastically in the cylinder. This con-
figuratio formed the starting point for the pullout at 150
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B. The tight-binding conductance calculation

FIG. 1. Schematic illustration of the periodic boundary
conditions in the atomistic simulation of the contact pulloK
The central emboldened cell is repeated in three orthogonal
directions.

K. For the other two temperatures, 10 K and 250 K,
this configuration was annealed for a further 10000 time
steps, at the corresponding temperature, before the start
of the pulloK

The pullofF at all three temperatures was e8'ected at
the same constant velocity of 10 a per time step, or
3.52 m/s. In each time step the contents of the compu-
tational cell were strained homogeneously normal to the
slab such that the cumulative displacement of the top of
the cell relative to the bottom was 10 a. The strain
localizes and becomes inhomogeneous naturally through
solving the dynamical equations of motion of the atoms.
The Newtonian equations of motion were integrated via
the velocity Verlet algorithm, and a Nose-Hoover ther-
mostat was applied to all atoms in the cell to main-
tain the temperature at the required value throughout
the pulloK The pullout' was continued until &acture oc-
curred, which required typically 60 000 time steps. Snap-
shots were recorded every 100 time steps for each run
and were used to create a graphical, three-dimensional
animation of the pulloIII', which made it possible to follow
directly the structural evolution of the contact through-
out the run.

The tight-binding conductance calculation is imple-
mented in essentially the same way as in Ref. 6. The
conductance is calculated at every 10th time step of the
pullofF in the dynamic simulation, using explicitly the
respective set of atomic coordinates. In general, it was
found that the conductance fluctuates rapidly from one
geometry to the next, due to the thermal motion of the
atoms. These IIIuctuations have been smoothed out by
averaging the calculated conductance over 39 (1 + 19)
successive values before plotting the results. The num-
ber 39 has no particular significance: simply, it was found
to be large enough for the thermal Huctuations to be
washed out, and yet small enough for the gross struc-
ture of the conductance curves to be preserved. Note,
however, that we have taken the average of the instanta-
neous conductances, rather than the conductance of an
averaged atomic geometry.

Due to the size of the system, no attempt is made
to model the true 8-d band structure in Ni. Instead,
the electronic structure of the contact is represented by
an orthonormal nearest-neighbor 18 tight-binding model
with zero on-site energies and a band-filling of one-half.
While this model is not a description of Ni, it makes it
possible to trace the connection between the conductance
and the atomic topology of the contact and is therefore
sufhcient for our purposes here.

Furthermore, the calculation of the conductance is al-
ways done in the zero-temperature limit. The exact
Rnite-temperature expression for the conductance con-
tains an energy integral, the main contribution to which
comes from an energy window of size kT about the
Fermi energy E~. At all three temperatures &om the
simulations, kT [& 0.02 eV] is much smaller than the
splitting of the transverse electron levels ( 0.1 —1 eV)
in the contact. For this reason, it is possible to ignore
the finiteness of kT and to approximate the conductance
by its zero-temperature limit.

In the tight-binding model, the hopping integral H;~
between atoms i and j is represented by a function which
stays equal to the ideal nearest-neighbor hopping inte-
gral up to half-way between Erst and second neighbors,
and then decreases smoothly to zero at second neighbors.
Specifically, H, ~ given by

H;. =A for z, . (z„,
1 fz;, —z„l

H,, =A — 1+cosvr
iu 2 zc z7L

for z„& z,, & z„(2)
where A is the nearest-neighbor hopping integral in the
perfect fcc crystal, z,~ is the distance between atoms i
and j in units of the ideal nearest-neighbor separation,
z = (1+~2)/2, and z = v 2. The effect of the form of
the hopping integral as a function of the separation of the
atcms on the calculated conductance is an important and
interesting question but it will not be considered here.
Our own experience indicates that this eÃect is quan-
titative rather than qualitative. For instance, changing
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the form of Eq. (2) might alter the size of the ther-
mal Quctuations of the conductance between consecutive
geometries. It could also in principle affect slightly the
absolute value of the averaged conductance for a given
sequence of geometries. We expect, however, that the
qualitative effect of the atomic structure and defects in
this structure on the conductance will be independent of
the precise scaling of the hopping integral.

Periodic boundary conditions are not used in the con-
ductance calculation. Instead, the slabs above and below
the tip are replaced by two semi-infinite crystals, labeled.
1 and 2, respectively. The atomic positions within the
cluster are those given by the simulation. Since the dis-
tortion of the slabs in the simulation is negligible, crys-
tals 1 and 2 in the conductance calculation are treated as
perfect. We imagine that the cluster atoms are initially
decoupled &om each other and from the substrate atoms.
We then couple the cluster atoms to each other and to
the substrate atoms by a coupling V, whose matrix ele-
ments are given by Eq. (2). All on-site matrix elements
of V are zero.

As is shown in Ref. 14, the zero-voltage, zero-
temperature elastic conductance G of the Anal, coupled
system is given by

2c
G = „4 'T [~:(E )t'(E ):(E )t(E )1,

where t(E) = V + VG+(E)V, G+(E) is the retarded
Green function for the final coupled system, and pi(E)
and p2O(E) are the density of states operators for the re-
spective initial separate substrates and are given by

C,' = 2, [G,' (E) —G,'+(E)1p 1

Here, Gi+ (E) and G2+ (E) are the Green functions for
the respective separate substrates in the initial decoupled
system.

The trace in Eq. (3) is taken in the orthonorrnal atomic
ls basis. The matrix elements of Gi+(E) and G2+(E)
between (111)surface sites on the respective perfect semi-
infinite fcc crystals are calculated as in Ref. 14. The
matrix elements of t(E) are calculated by solving nu-
merically the Dyson equation

t(E) = V+ VG +(E)t(E),

where G + (E) is defined by its matrix elements
[G +(E)];i in the atomic basis as follows: [G +(E)];i =
[Gi+(E)],i if i, j C substrate 1, [G +(E)];i = [G2+(E)];i
if i, j E substrate 2, [G +(E));i. ——8;i/E if i, j E cluster,
and [G +(E)],i = 0 otherwise.

C. Free-electron conductance calculation

Electrons in a quantum constriction are subjected to
an ionic (pseudo)potential. In the simplest approxima-
tion one ignores its effects and assumes that the electrons
are free. This simplification does not affect the classi6. ca-
tion of states according to the transverse electron motion,

a(x) = a (x —x') f(x')dx',

but it leaves out the effects of ionic disorder which may
be present in real contacts. The ionic disorder can be
included in the calculation approximately, as mentioned
later in this section. At the same time, the effect of the
shape of the contact, including atomic roughness, can be
treated adequately.

In the present problem, the characteristic length of
the contact is smaller than the electron mean-&ee path,
i.e., the contact is ballistic. The linear response theory
of transport coeKcients then reduces to the much sim-
pler Landauer scattering problem. This problem is
solved easily within the free-electron approximation and
the calculation is orders of magnitude faster than the di-
rect evaluation of the conductance in the tight-binding
model [Eq. (3)].

In the present calculation we make use of the fact that
the geometry of the contacts from the atomistic simu-
lation is approximately cylindrical. In the free-electron
calculation we treat the constriction as a solid of revolu-
tion with perfect cylindrical symmetry. While at present
this is an approximation, it is interesting to note that
in LDA calculations the electronic conGning potential for
an STM tip in "hollow-site" geometries has been found
to have cylindrical symmetry to a good approximation.

The contact profile for the &ee-electron calculation is
obtained from the dynamic simulation in the following
way. The longitudinal direction (along the contact) is
taken as the x axis. Each atom is treated as a sphere
of radius ro given by 4irro/3 = vo/4, where vo is the
volume of the fcc unit cell of the bulk material. We define
a sampling range Lx and an increment bx along the x
axis.

In a given geometry from the simulation, we take a
slice of the contact of thickness Lx centered at position
x along the contact. From rp and the positions of the
atomic centers we then find the fractions of all atomic
spheres that lie within the slice. Then we equate the
total atomic volume contained in the slice to that of a
disk of thickness Ax and radius a (x). The radius a„(x)
is the effective radius of the contact at x. The slice is then
moved along by the increment bx and the procedure is
repeated, producing the effective radius of the contact at
position x + bx, a„(x+ bx). At the end of the procedure,
we have a profile for the contact given by the effective
radius a„(x) as a function of the coordinate x along the
contact.

The smoothness of the profile depends on the sam-
pling range Lx. For the moment, Lx is set equal to
diii, the ideal separation between neighboring fcc (ill)
planes. With this choice of Lx, the contact profile cap-
tures the surface roughness due to variations in the num-
bers of atoms between neighboring atomic layers in the
contact, but does not include any corrugation due to the
surface atoms themselves. The increment bx is set equal
to —d

We treat the roughness perturbatively, according to
Ref. 20. To this end, we define a smooth profile a(x) by
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where f (x) = p/7r(x + p ) is the normalized Lorentzian
with width p = 2diqq. Then the roughness of the profile
is by definition

&(x) = a-(*) —a(x).

As discussed in the context of the tight-binding cal-
culation, we may ignore the finite-temperature smearing
of the Fermi-Dirac function. The conductance G of our
system is thus given by the zero-temperature Landauer
formula

is the transverse part of the total kinetic energy opera-
tor, and (r, P) are the polar coordinates in the transverse
(y, z) plane.

We solve Eq. (10) by separating the "fast" transverse
motion from the "slow" longitudinal motion of the elec-
tron:

(13)

where u (r) is a solution of the radial equation of mo-
tion

2cG= ) T b(EJ), T, u (r) = e (x)u (r) (14)

where T~g(E) = t~g(E)t"&(E) is the transmission coef-
ficient for an electron incident on the contact from the
left in mode (channel) a and transmitted into mode 6
on the right, at the Fermi energy. The different modes
are simply the different eigenstates of the transverse elec-
tron motion. The total number of propagating modes is
N @+A, where k~ is the Fermi wave vector and A is
the cross-sectional area of the contact.

The calculation of the conductance in this approach
requires the solution of the Schrodinger equation to find
the transmission coefficients. Assuming an infinite square
well for the confining electron potential, we have to solve
the Schrodinger equation

( 0' 0' 0' l
, l

@(x,r) = Eq(x, r),2m* (Bx2 By2 Bz2 )

with the boundary condition u [lrl = a(x)] = 0, and
has the following form:

1C )~7ra(x) J( (+, (p( (
)

h2K2. .(*) =
2m*

where p is the nth root of the Bessel function j (x).
These equations define the modes which will be popu-
lated up to the Fermi level and contribute to the conduc-
tance.

Substituting Eq. (13) in Eq. (10), multiplying it by
u&&, and integrating over the cross section area at the
given x we obtain the following system of equations:

with the boundary condition vP [lrl = a (x)] = 0, where
r = (y, z) is the transverse component of the position
vector. It is worth noting that the requirement that the
wave function should vanish at the constriction walls cor-
responds precisely to the boundary conditions implied in
the tight-binding calculation.

We reduce the problem to that of solving the
Schrodinger equation for the contact with the smooth
profile a(x) by a simple canonical coordinate transforma-
tion. This transformation introduces an efFective bulk
perturbation Vg(x, r) into the Schrodinger equation (9)
which now takes the following form:

—
! 1 —

l
v. (x) y (x)

d / 2((*))
dx ( a x

d= —).l
2A-kp(x) —+ &-~p(x) l »p(x) (16))

A i p(x) =
a{a) t9*.()~ * () ( )

where K = 2m*E/h, and the terms on the right-hand
side correspond to nonadiabatic mode mixing processes,

f 0' 0' 0'
+ + Vg(x, r) ! @(x,r)2m* (Ox Oy ojz

&-~p(x) =-
a{+) 0

dP u (r) ukp (r) . (18)

= E@(x,r), (10)

2((x)-
Vg(x, r) = — T„

a(x)

where

( 0' 1 8 1 0' lT. =—
!+

——+—
2m* (Br r Br r' oj$2) (12)

with the boundary condition @[lrl = a(x)] = 0.
The perturbation due to the roughness ((x) is approx-

imately given by

Equations (10) and (16) are exactly equivalent. No ap-
proximation has been made in writing the wave func-
tion in the form (13). The nonadiabatic terms A and B
contain the parameters a'(x) and a(x)a" (x), where the
primes stand for the derivative d/dx. In realistic geome-
tries adiabaticity is poorly obeyed and therefore we have
retained the nonadiabatic terms.

It is, however, very instructive to consider also the ideal
case of smooth geometries with /!a"al « 1 (adiabatic
contact), when the nonadiabatic terms can be neglected,
allowing an analytical solution of the problem. In the
semiclassical regime an electron emitted from the left ter-
minal and traversing the smooth contact experiences an
adiabatically varying potential. If an electron propagat-
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ing in the mode mo. has positive kinetic energy every-
where in the contact, E ) t, it will be transmitted
to the right. If this condition is violated the transmis-
sion amplitude to the right will be exponentially small,
in other words the electron will be backscattered. This
allows a simple classification of electron states as belong-
ing to open or closed channels. The conductance of the
adiabatic contact will then be

) 0 [ep —e (a;„)j,

ing mode undergoes scattering into the quasibound state
with a corresponding suppression of the conductance.

Quasibound states may also result in the opposite ef-
fect —an enhanced conductance due to resonant tunnel-
ing in a nonpropagating mode via the quasibound state.
We will discuss a specific example of this efFect in the fol-
lowing section.

The Appendix contains a brief review of the general
relation between the continuous model used in the free-
electron calculation and the discrete tight-binding model
discussed earlier.

where 0(x) = 1 when x ) 0, and zero otherwise, e~ is
the Fermi energy, and a;„ is the minimal constriction
radius. Equation (19) means that electronic states with

& k~a;„will belong to open channels, compared to
the total number of channels entering the opening of the
constriction with radius a, p & A:~a, where a is
the radius of the opening.

Equation (19) describes the conductance staircase
which has been observed experimentally in a two-
dimensional electron gas (2DEG) subject to a split-gate
voltage. The cylindrical symmetry of our contacts gives
rise to an orbital degeneracy of the wave functions. The
height of the corresponding conductance steps could be
either Gp or 2Gp depending on the sequence of the Bessel
function roots. This degeneracy will be lifted when the
constriction is not exactly cylindrically symmetric, and
then one will have only conductance steps of height Gp,
as discussed in detail in Ref. 20. In nonadiabatic situa-
tions, tunneling in channels which are just opening will
tend to smear out the sharp conductance steps.

It is important now to de6ne the possible reason for the
breakdown of conductance quantization in real nanocon-
strictions. The I andauer formula, Eq. (8), suggests
that this reason is the backscattering of electrons. In
STM and break-junction devices direct backscattering
from the rough (nonadiabatic) contact surfaces and/or
internal structural disorder is the prime candidate for the
mechanism of departures from conductance quantization,
because the variation in the electronic potential due to
such defects has a characteristic length scale that is com-
parable to the Fermi wavelength of the electrons. The
eKects of internal disorder can in principle be included in
the free-electron formalism phenomenologically as a bulk
perturbation in addition to Vt, Eq. (11).

This is in stark contrast to what happens in homoge-
neous and smooth contacts. There, direct backscattering
is ineffective. In such contacts, mode mixing, which re-
quires much smaller deviations from adiabaticity than
backscattering, may still be present, but this mode mix-
ing conserves the total conductance and does not lead to
a breakdown of conductance quantization, as has been
seen in numerical calculations. This result is a conse-
quence of the unitarity of the scattering S matrix.

In such contacts the indirect backscattering via quasi-
bound states becomes important although it is formally a
second-order effect. 2s Quasibound states may appear, for
instance, as a result of a local widening of the contact, as
we will see later. The indirect backscattering involves a
mode-mixing process in which an electron in a propagat-

III. RESULTS AND DISCUSSION

A. 10 K results

Figure 2 shows the tight-binding (TB) and free-
electron (FE) conductance curves, and the minimal con-
tact diameter, 2a;„, in units of the Fermi wave vec-
tor, throughout the pullofF of the contact at 10 K. At
the bottom of the figure there are plots of the contri-
butions to the conductance from individual conductance
channels (some of which are doubly degenerate) in the
free-electron model. The horizontal axis represents the
number N of the time step from the simulation, in units
of 100.

We can immediately make one important observation,
namely that as far as the rough magnitude of the con-
ductance is concerned, the tight-binding and the free-
electron results are quite similar. At the same time, the
detailed structure of the two curves is rather difFerent.

The TB conductance curve exhibits the same abrupt
jumps as the ones reported in Ref. 6. Each jump coin-
cides with an abrupt mechanical rearrangement, or in-
stability, in the contact.

All mechanical instabilities result in an elongation of
the contact by one atomic layer and in a corresponding
decrease in the contact cross section. These sudden re-
ductions in cross section correspond to the abrupt jumps
in the minimal contact diameter 2a;„ from the FE cal-
culation.

In general, during a mechanical rearrangement the
contact suddenly loses its ordered structure, undergoes
some internal restructuring, and then reorders in its new,
longer, and thinner geometry. We have observed two dif-
ferent kinds of mechanical instability. The 6rst is seen
in the early stages of the pullofF when the contact cross
section is relatively large. The contact remains essen-
tially crystalline and the instability involves the nucle-
ation and glide of a dislocation on an inclined (ill) slip
plane. In the present model, where the stacking fault
energy is zero, the dislocation is dissociated into Shock-
ley partials. The first Shockley partial glides completely
through the contact creating a stacking fault on the in-
clined slip plane. After a further short period the second
partial glides along the same path and removes the stack-
ing fault. The final result is that the contact has length-
ened by one (ill) plane, and it is slightly narrower.

The second kind of instability is seen in the later stages
of the pullofF when the constriction is relatively narrow.
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Ni at 10K
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- Tight-binding FIG. 2. The tight-binding and the
free-electron conductances, in units of 2e /6,
and the minimal contact diameter 2a;„, in
units of the Fermi wave vector, during the
pullout of the contact at 10 K. % (the hor-
izontal axis) is the time step from the sim-
ulation in units of 100. The contributions
of individual conductance channels in the
free-electron model are shown at the bottom
of the plot. Observe the opposing behavior of
the two conductances between N 180 and
N = 205.
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In this case several atomic layers in the vicinity of the
narrowest part of the contact become highly disordered,
so much so that it is impossible to distinguish layers any-
more. The onset of this disordering transition is very
abrupt, and it is completed in a few hundred time steps,
during which the constriction reorders and one more layer
appears. In this process the formation of the new layer
is more homogeneous than in the erst kind of instability,
in that it involves a substantial volume centered at the
constriction rather than glide on a single inclined plane.

Between instabilities, the contact elongates elastically,
which is rejected in a uniform decrease in a;„between
the abrupt jumps. The total elastic elongation of the
contact between instabilities is typically of the order of
the bond length. This is a universal feature of all of
our simulations. It follows from the very essence of the
instabilities as processes in which the contact elongates
by one atomic layer at a time.

The slight positive slopes of the first couple of TB con-
ductance plateaus are due to the recovery of the bonds
from the elastic compression of the contact preceding the
pulloK Apart from that, the TB conductance generally
stays constant between jumps. The values of the con-
ductance at these plateaus, however, are not quantized
in units of Go, and neither are the actual jumps. This
is due to the fact that both the number of atoms and
the atomic geometry vary substantially between succes-
sive atomic layers in the contact. This lack of uniformity
destroys the translational invariance of the system (or of
the TB Hamiltonian), prevents the appearance of vrell-
defined conductance channels (or transverse modes) in
the TB electronic structure, and gives rise to backscat-
tering.

Right before fracture, between about N = 400 and
K = 450, the narrowest part of the contact begins to de-
viate substantially from the normal fcc crystalline struc-
ture, as shown in Fig. 3. A nominally one-atom contact
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FIG. 3. The contact at % = 415 in the 10 K simulation.
The snapshot is tilted in order to make it easier to see the
internal structure. Note the irregularity in the bond lengths
and in the coordination numbers in the narrowest part of the
contact.

exists at that stage, but this one-atom contact is a highly
defective one. There is a significant variation in the bond
lengths and in the coordination numbers of the atoms in
the narrowest part of the contact. In the TB model, this
disorder results in strong backscattering and the TB con-
ductance is only a fraction of Go, the value that may be
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expected for a perfect one-atom contact.
Now we turn to the FE curve. Its most prominent

feature are the R.at quantized plateaus at G = 1GO and
G = 3GO. They correspond to the last two transverse
modes of the circular constriction. The latter mode is
doubly degenerate. The actual jumps delimiting these
two plateaus still correspond to sudden reductions in
cross section due to mechanical instabilities, much like
the jumps in the TB curve.

No other clear conductance plateaus are present in the
FE curve. An inspection of the channel-by-channel con-
tribution to G shows that in the early stages of the pulloff,
the conductance channels do not get closed ofF abruptly,
but rather more gradually, over broad ranges of A val-
ues. This may be explained in terms of tunneling. As a
result of the nonadiabatic variation of the effective con-
striction diameter along the contact, individual channels
continue to conduct for some time after the effective one-
dimensional (1D) potential barriers for them have risen
above E~, by tunneling through these barriers. Thus, the
gradual decrease in the minimal contact diameter during
the elastic elongation of the contact between instabilities
causes a gradual decrease in the FE conductance between
the jumps, and hence the absence of Hat conductance
plateaus in the FE curve in the early stages of the simu-
lation. In the late stages of the pullofF the profile of the
narrowest part of the contact becomes much smoother
and closer to adiabatic than before. Tunneling now be-
comes insignificant and individual conductance channels
are either fully open or fully closed, hence the Hat quan-
tized plateaus before fracture.

Interestingly, the TB curve shows clear, more or less
constant conductance plateaus between instabilities even
in the early stages of the pulloff, where the FE curve
shows none. This difference between the two models is
subtle and important. During the elastic elongation of
the contact between instabilities successive atomic layers
in the contact are pulled farther apart while neighboring
atoms within each layer move closer together. Now, in
the TB model the effective cross section of the contact

is determined mainly by the number of atoms in a given
atomic layer. Variations in the bond lengths within the
layer have a secondary effect on the TB conductance.
Since the atomic structure of the contact does not change
between instabilities but only the bond lengths do, in the
TB model the effective minimal cross section between
instabilities stays more or less constant and hence the
Bat TB conductance plateaus.

A very instructive difference between the TB and the
FE curves occurs between N —180 and N 205, when
on the FE curve there is a prominent peak, while on the
TB curve there is a trough. The FE peak comes from
a corresponding peak in the contribution to G of one
particular channel, as may be seen from the bottom of
Fig. 3. This channel starts closing o8' slowly at around
N = 100, and then, after it has closed down almost com-
pletely, it reopens temporarily between N —180 and
N 205, giving rise to the peak. The reason may be
understood by an inspection of Fig. 4, which shows a
series of contact profiles for the N range of interest. As
may be seen from these profiles, over that part of the
pulloff the narrowest point of the contact moves from
one position along the contact to another. During this
process, there is a stage when the contact is a symmetric
double constriction. This geometry corresponds to sym-
metric 1B double barriers in the effective 1B potentials
for the various channels. These double barriers harbor
quasibound states, and when the energy of one of these
states passes the Fermi energy, electrons in the respective
channel experience resonant tunneling with a greatly en-
hanced contribution to G. Thus, the origin of the FE
peak in Fig. 3 is resonant tunneling.

Let us now consider the trough in the TB curve. An in-
spection of the actual atomic geometry from the dynamic
simulation reveals (Fig. 5) that over the corresponding %
range, there is a persistent crystal defect in the contact.
This crystal defect is a stacking fault, running straight
across the whole contact. The presence of this defect
makes no difference in the FE calculation. However, in
the TB calculation, this defect leads to a further loss
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I"IG. 4. A series of contact profiles be-
tween N 180 and A 205 in the 10 K
simulation. The contact radius and the longi-
tudinal position x along the contact are given
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(111) fcc layers. Observe the temporary ap-
pearance of a nearly symmetric double con-
striction.
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FIG. 5. The contact at 1V = 193 in the 10 K simulation.
Observe the stacking fault (indicated by the arrows) running
across the contact. This stacking fault gives rise to the scat-
tering responsible for the trough in the tight-binding conduc-
tance.

of translational invariance in the Hamiltonian, which in
turn gives rise to increased scattering. This scattering
suppresses the conductance and gives rise to the trough.

B. 150 K results

The results of the 150 K calculations are shown in Fig.
6. During the early stages of the pullo8, the mechanical

behavior of the contact and the TB and. FE conductances
show essentially the same features as in the 10 K case. An
interesting feature in the TB conductance curve, which
is present at all three temperatures but is most promi-
nent here, are the distinct dips just after a conductance
jump and just before the following plateau. The origin
of these dips is the following. As discussed before, the
onset of a mechanical instability is marked by the sud-
den loss of the normal ordered atomic structure in the
contact. This is when the jump in the TB conductance
occurs. The TB conductance stays at its value just af-
ter the jump while the disorder in the contact persists.
When the atomic rearrangement is Anally completed, the
contact recovers its normal crystalline structure and set-
tles into its new geometry. The recovery of crystallinity
in the contact leads to a slight rise in the conductance
relative to the preceding disordered situation, and so the
plateau at which the conductance eventually settles is a
bit higher than the value of G just after the onset of the
instability. This gives rise to the apparent conductance
dips. There are no corresponding dips in the FE curve,
because the loss of crystallinity has no e6'ect on the FE
Hamiltonian.

In the present 150 K simulation the contact loses its
crystalline structure permanentLy at a rather early stage
of the pullofF at about N = 250. From that point on,
the narrowest part of the contact is more liquidlike than
solidlike. The departure from crystallinity is so high that
there are no well-deGned atomic layers in a sizeable sec-
tion of the contact (Fig. 7).

There are no more clear mechanical instabilities and.
the cross section of the contact decreases gradually rather
than in discrete steps, with the exception of a single event
around N = 420 when some rearrangement in the disor-
dered region takes place. This mechanical behavior is
reHected in the TB curve, which for N & 250 is irregular
and without distinct jumps or plateaus.

At the same time, the pro/le of the contact is now quite
smooth. As a result of that, the FE curve shows two
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FIG. 6. The tight-binding and the
free-electron conductances, in units of 2e /h,
and the minimal contact diameter 2a;„, in
units of the Fermi wave vector, during the
pulloff of the contact at 150 K. N (the hor-
izontal axis) is the time step from the sim-
ulation in units of 100. The contributions
of individual conductance channels in the
free-electron model are shown at the bottom
of the plot.
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tact profile. Thus, when the contact profile is sufIiciently
smooth, in the FE model it is possible to have abrupt
and quantized conductance jumps without abrupt reduc-
tions in cross section. This is an example of conductance
jumps that are not related to mechanical instabilities.

Interestingly, the drop in cross section around % = 420
damages slightly the FE conductance plateau at that
point, but does not lead to a conductance jump. The
splitting of the transverse energy levels in the narrow
constriction is quite large and the reduction in the con-
tact diameter is not sufIicient to pinch ofF a channel. This
is an example of an abrupt jump in cross section which
does not generate a corresponding conductance jump.

C. 250 K results

FIG. 7. The contact at N = 470 in the 150 K simulation.
A section of the constriction (indicated by the arrows) has
become highly disordered and smooth in profile.

long Hat quantized plateaus, at G = 1Gp and G = 3Gp,
and some hint at a quantized plateau at G = 6Gp. The
abrupt conductance jumps delimiting these plateaus do
not result from sudden reductions in cross section, but
follow from the sudden pinching ofF of conductance chan-
nels during a gradual thinning down of the smooth con-

The 250 K results are presented in Fig. 8. Both the TB
and the FE conductance curves are substantially difFerent
from before. Unlike before, most of the plateaus on the
TB curve are in fact at quantized conductance values
(integer rnultiples of Go). Also unlike before, the FE
curve now shows three, as opposed to just two, prominent
quantized plateaus, the first one of which occurs fairly
early in the pullofF and has the high conductance value
of 6Gp.

The origin of these features lies in the mechanical evo-
lution of the contact during the pullofF. Due to the higher
kinetic energy of the atoms, it is now possible for the con-
tact to undergo larger overall structural rearrangements
than before. At any temperature, the contact would tend
to decrease its total surface area for a given contact vol-
ume. (Atoms on the surface are less tightly bound than
bulk atoms, and this gives rise to a surface energy. Thus,
decreasing the surface area also decreases the total en-
ergy. ) The difference from the previous two tempera-
tures is that now there is enough kinetic energy in the
contact to enable it to pursue this tendency to minimize
its surface area. In an animation of the simulation we
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FIG. 8. The tight-binding and the
free-electron conductances, in units of 2e /h,
and the minimal contact diameter 2a;„, in
units of the Fermi wave vector, during the
pulloff of the contact at 250 K. K (the hor-
izontal axis) is the time step from the sim-
ulation in units of 100. The contributions
of individual conductance channels in the
free-electron model are shown at the bottom
of the plot.
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FIG. 9. The contact at N = 220 in the 250 K simulation.

Layers 4 to 8 (indicated by the arrows) from the bottom of
the contact have nearly identical atomic geometries.

see that as a result of the first two instabilities, the con-
tact acquires a geometry in which all atomic layers within
the contact are very similar to each other. The middle
section of the contact represents a region several atomic
layers long, in which there is hardly any variation at all
in the numbers of atoms or in the atomic geometry of the
layers (Fig. 9). This translationally invariant piece of the
contact allows the formation of well-defined conductance
channels in the TB model and is the origin of the quan-
tization of the TB conductance plateaus. The improved
uniformity of the contact cross section is also the reason
for the larger number of Oat quantized plateaus in the

FE curve.
In the present simulation the contact remains crys-

talline almost until the very end, as in the 10 K case.
The early loss of crystallinity at the intermediate tem-
perature of 150 K can be seen as a sign of an overall
lack of stability of the contact at that temperature (and
strain rate), in the sense that there already is enough
kinetic energy in the contact to allow the initiation of
much more substantial atomic rearrangements than at
10 K, and yet this kinetic energy is not sufhcient to en-
able the contact to complete these rearrangements and
recover its crystallinity, as it can do at 250 K.

D. EfFects of atomic surface corrugation

In all of the FE calculations so far, the sampling range
Lx used to extract the jellium profile &om the real
atomic geometry has been set equal to the separation
dqqq between neighboring fcc (ill) layers. The calcu-
lated e8'ective contact radius is thus averaged over atoms
from neighboring layers and does not have any atomic-
scale corrugation. Now we wish to study the eKects on
the conductance of variations in the contact radius due to
individual atoms on the surface. For this purpose we set
3x equal to half the (ill) layer spacing and obtain a pro-
file with a corresponding atomic corrugation. Figure 10
shows a comparison between a profile with Lx = 2d~~q
and a profile with Ax = dqqq for the same contact (the
one from Fig. 5). We use the 10 K simulation to compare
the FE results for the conductance with and without this
corrugation in place.

The respective FE conductance curves for the 10 K
run are shown in Fig. 11. As may reasonably be ex-
pected, the additional surface roughness in the case with
the corrugation leads to an overall suppression of the con-
ductance relative to the case without the corrugation.
Only one of the two quantized plateaus found before is
present now. Also, the resonance peak around N = 200
has sustained some damage, even though it has survived.
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FIG. 10. Comparison between a contact
profile obtained with Ax = —di i i, show-
ing atomic corrugation due to the surface
atoms, and a smoother profile obtained with
Ax = d q q q. Both profiles refer to the contact
from Fig. 5.
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FIG. 11. A comparison of the free-electron
conductances for the 10 K simulation calcu-
lated vrith and without atomic corrugation
(Ax = —dzzz and Ax = dzzz, respectively).
N (the horizontal axis) is the time step from
the simulation in units of 100.
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IV. CONCLUSIONS

We have calculated the electronic conductance
throughout the puHofF of an atomic-scale metallic con-
tact using both the &ee-electron (jellium) model and a
18 nearest-neighbor tight-binding model. We have also
studied the efFect of temperature on the mechanical be-
havior and thereby on the conductance of the contact.

The principal difFerence between the two electronic
models is that in the free-electron model the conductance
is determined solely by the profile of the contact, while in
the tight-binding model, the Hamiltonian and hence the
conductance depend on the precise atomic structure of
the contact. This difFerence becomes particularly impor-
tant in situations when the contact develops structural
defects.

In reality, no system will be completely FE-like or com-
pletely TB-like. On the one hand, jellium may not be an
entirely accurate representation of FE metals on the size
scale of interest here. On the other hand, most met-
als with a TB-like band at the Fermi energy also have an
FE-like 8 band at the Fermi energy. Thus, the correct de-
scription of most real systems is likely to fall somewhere
between the two extremes. The results in the present pa-
per should be taken as a qualitative indication of trends
which might prevail in various cases, and. not as a direct
quantitative theory of specific real systems.

In conclusion, we address four points.

A. Conditions for the observation of conductance
quantization in atomic-scale contacts

Good conductance quantization (CQ) can be expected
only in smooth and homogeneous constrictions, in sys-
tems of any dimensionality. The origin of CQ lies in the
fact that electron transmission in such constrictions is
refIectionless. In general, the reason for the breakdown

of CQ in imperfect constrictions is electron backscatter-
2Dg.

Our results show that the main mechanism for depar-
tures &om CQ in a real atomic-scale contact is the direct
backscattering off (i) nonadiabatic surfaces and (ii) inter-
nal structural defects. Such backscattering is responsible
for the experimentally observed presence both of con-
ductance plateaus at noninteger conductance values and
of conductance jumps of noninteger size. We emphasize
that multiple scattering and mode mixing are included
fully in both the TB and the FE calculation schemes.

Our calculations show that the mechanical behavior
of the contact and hence the conditions for the observa-
tion of CQ depend on temperature. At low temperature,
there can be substantial variation in the number of atoms
and in the atomic geometry of successive atomic layers in
the contact. The nonadiabaticity of the constriction pre-
vents CQ with both the FE and the TB models. With
the FE model, suitable conditions for CQ appear only
towards the end of the pullofF, when the narrowest part
of the constriction becomes suKciently smooth in pro-
file. This results in the appearance of some quantized
plateaus in the FE conductance just before fracture. In
the TB model, the large departures from crystalline pe-
riodicity prior to fracture only make matters worse than
before. Thus, at low temperature CQ is seen only with
the FE model, and only in the last stages of the pullofF.

At high temperature, CQ is seen with both models.
The kinetic energy of the atoms at high temperature
enables the contact to undergo substantial restructuring
and to acquire a much more regular geometry than be-
fore. In pursuit of minimizing its surface area, the con-
tact develops a middle section consisting of several nearly
identical consecutive layers of atoms. This translation-
ally invariant section of the contact results in the appear-
ance of quantized plateaus in the TB conductance. The
presence of a long smooth neck of constant cross section
has a wholesome efFect on the FE conductance too. The
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quantized plateaus on the FE conductance curve are now
more in number and go up to higher conductance values
than at low temperature.

We may thus say that w'ith both models the conditions
for observing CQ are more favorable at high temperature
than at low temperature. With TB, CQ is present only
at high temperature. With the FE model, CQ is present
in both temperature regimes, but is more prominent at
high temperature, and is likely to be seen only in the late
stages of the pullofI'.

These results agree with the existing experimental
observations. Low-temperature MCBS experiments on
Pt, a highly non-FE metal, have revealed no signs of
CQ, 9 while room-temperature STM measurements on Pt
have shown signs of the eKect. Low-temperature MCBJ
studies on Na, which is a highly FE-like metal, have
shown prominent CQ for low conductance values, just be-
fore contact &acture, while for higher conductance values
the signs of the efI'ect are weaker or absent. According
to some very recent MCBJ research, high-temperature
measurements on Au and Cu have shown much clearer
signs of CQ than low-temperature measurements.

15.0
Sharvin conductance versus exact results
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possible to obtain a calibration curve relating these two
quantities.

Figure 12 contains plots of the calculated tight-binding
and free-electron conductances for all three temperatures
versus the dimensionless parameter (k~a;„)2, where
k~ is the Fermi wave vector and a;„ is the e8'ec-
tive minimal contact radius. The Sharvin limit, Gg ——

Go(kg a;„) /4, is also shown for comparison and it is
easy to see that it significantly overestimates both the
FE and TB conductances.

Even in the case of perfectly adiabatic jellium con-
strictions, the actual conductance always lies below the
Sharvin value. ' The reason is that, at least in the
case of hard-wall constrictions, the Sharvin formula over-
counts the number of propagating modes for a given min-
imal cross section. Correct counting, which takes into
account the fact that the electron wave functions vanish

B. Origin of the conductance jumps
10.0

It is sometimes asked whether the conductance jumps
that are seen experimentally during contact pullofI' are
due to abrupt decreases in the contact cross section or
whether they are due to the abrupt pinching ofI of con-
ductance channels during a smooth decrease in the cross
section. Our results show that there is a variety of pos-
sibilities enumerated below.

When the geometry of the contact is not sufficiently
uniform to allow CQ, then each mechanical instability re-
sults in a nonquantized conductance jump. In the present
calculations this is seen with both electronic models in
the early stages of the pullofI' at low temperature.

When the constriction is sufficiently uniform for the
conductance to be quantized (an integer multiple of Go),
then abrupt reductions in cross section due to instabilities
may give rise to quanti. zed conductance jumps, as this
happens in the TB calculation at 250 K, or they could
result in no conductance jumps, as this happens around
N = 420 in the 150 K FE calculation.

It is also possible to have quantized conductance jumps
which do not correspond to any instabilities. This hap-
pens for instance in the 150 K FE calculation. The quan-
tized FE conductance jumps in the regime when the con-
striction is disordered and smooth in profile correspond
to the sudden pinching oK of conductance channels dur-
ing an otherwise gradual thinning down of the contact.

C. Calibration of the conductance
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Using conductance measurements as a means of deter-
mining the cross-sectional area of an atomic-scale con-
tact is an attractive idea. Its implementation, however,
requires a prescription for relating a given measured con-
ductance to a given contact area. Our results make it

FIG. 12. The calculated free-electron and tight-binding
conductances versus (k~a;„), for each temperature. k~
is the Fermi wave vector and a; is the efFective min-
imal contact radius. The Sharvin conductance, Gg

(k~a;„) /4, and the corrected Sharvin conductance,
G=(k~a;„) /4 —(k~a~;„)/2, are also plotted for comparison.
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at the boundaries of the contact (for example, see Ref.
29), shows that in the case of a perfectly uniform jellium
constriction of cross-sectional area A and corresponding
perimeter P, in the semiclassical limit AA:+ && 1 the right
result for the conductance [Eq. (19)j is

Pky l
4m. )

(20)

(up to a negligible constant term), where the leading term
gives Gg. This result holds for circular and for rectangu-
lar constrictions and probably holds for constrictions of
any cross-sectional shape.

The corrected Sharvin conductance Rom Eq. (20) is
also plotted in Fig. 12. It is clearly seen that the cor-
rected conductance given by Eq. (20) is much closer to
the present exact FE results than the Sharvin limit is.

Interestingly, the TB conductances in Fig. 12 generally
lie below the semiclassical jellium estimate from Eq. (20)
and below the exact calculated FE conductance values.
The principal reason for this is the difFerence between
the FE and TB dispersion relations. The general state-
ment that the zero-temperature conductance, in units of
Go, for a perfectly uniform and homogeneous constric-
tion with a given electron density is equal to the number
of open channels at the Fermi energy, is true regardless of
the precise energy-momentum dispersion relation. This
is so because the contribution of each channel contains
a product of the corresponding longitudinal density of
states and longitudinal group velocity at the Fermi en-
ergy, and this product is equal to the same constant for
any dispersion relation. However, the actual number of
open channels for a given electron density does depend,
albeit not very strongly, on the dispersion relation (or, in
other words, on the effective Fermi momentum).

A further reason for the suppression of the TB conduc-
tances relative to the jellium ones is that there are more
sources of backscattering in the TB model than in the

Get = Go(ksa;„)'/5. S. (21)

The essential parameter in this formula is the minimal
cross-sectional area of the contact and one can expect the
result to be fairly insensitive to the shape of the contact
cross section.

We hope that the above approximate formula will be
of practical use in the analysis of real geometries in ex-
periments on atomic-scale contacts.

D. Possibilities for further research

There are a number of ways in which the present calcu-
lations may be extended and refined. The assumed cylin-
drical symmetry of the contact in the FE calculation is an
approximation which can in principle be removed. The
TB model can be extended by the inclusion of further
orbitals and by a systematic study of the importance of
the scaling of the hopping integrals with distance.

FE one. This backscattering has the e8'ect of reducing
the contribution to the conductance of the open channels
themselves, and is also responsible for the breakdown of
conductance quantization.

En order to obtain a realistic general calibration curve
relating the conductance to the actual cross-sectional
area of the contact, we have taken the average of the
calculated FE and TB conductances. The average con-
ductances for all three temperatures are plotted versus
(k~a;„) in Fig. 13, together with the jelliurn Sharvin
limit. At least for the range of minimal cross sections
studied here, we see a linearlike dependence of the aver-
age conductance on (k~a;„) . This linear dependence
is the same for all three temperatures (the bold solid line
in Fig. 13) and has a slope which is considerably smaller
than the one in the Sharvin limit. From our calculations
we obtain the fit
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FIG. 13. The average of the tight-binding
and the free-electron conductances versus
(k|;a;„),for each temperature. kp is the
Fermi wave vector and a;„ is the effective
minimal contact radius. The average con-
ductances at all three temperatures follow
a common trend. The Sharvin limit, Gs ——

(k~a;„) /4, is also plotted for comparison.
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In our view, however, the most interesting extension
of the current calculations will consist in the inclusion of
self-consistency. In the near future, we intend to do TB
calculations with the imposition of local charge neutrality
(LCN) on each atom in the contact. Since the coordina-
tion number of the atoms in the constriction can be very
different &om that of atoms in the bulk, I.CN should give
rise to significant on-site energy corrections for the con-
striction atoms. These on-site energy shifts are likely to
have a signiBcant effect on the calculated conductance.

where

t(r —r') = ) tk exp[ik (r —r')],
k

ti, = ) t(m) exp( —ik m).
vn QO

(A4)

(A5)

We can also include the effects of an external magnetic
Beld. In the presence of a vector potential A, the hopping
integral changes in the following way:
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APPENDIX: RELATION
BETWEEN THE TIGHT-BINDING
AND FREE-ELECTRON MODELS

That gives us the hopping integral in real space,

t(r —r') = ) ti, =~ exp[ik. (r —r')].
k

(A7)

t(r —r') = to + (—i'd%' —eA)' h(r —r'), (A8)
2m

Expanding tk ~ about k —&A = 0 and keeping only
the first two terms we obtain

&xn C~ Crn ) tenn C~ Cn I

III (Inn)

(Al)

where (mn) denotes the corresponding pair of neighbor-
ing atoms. Now we cast it into continuous form by
introducing the field operators

g(r) = ) b(r —ni)c (A2)

and rewrite the Hamiltonian from Eq. (Al) as

H= drer tr r

+ drdr' trtr —r' r',

It is instructive to establish a connection between the
continuous free-electron and the discrete tight-binding
formalisms. They both yield solutions to the scattering
problem of electron propagation through ballistic con-
strictions and are fundamentally related to each other.
As discussed in the text, both models allow size quan-
tization of the conductance. To see more precisely the
correspondence between the two, let us consider a perfect
periodic crystal described by the tight-binding Hamilto-
nian

where

1 1 (8'tA )
m A,' yak')„ (A9)

Thus, as may be expected physically, the discrete
model reduces to the continuous one in the limit of large
wavelengths, or, conversely, in the limit of small lattice
spacings. The estimate (A8) is valid whenever the band
is approximately parabolic. It is important to note that
in the case of a half-filled band and/or in the proximity
of the van Hove singularities the correspondence between
the TB and the FE models is the worst. In the case
of a half-filled band, the Fermi surface and, correspond-
ingly, the Fermi momentum are largest. In this case the
parabolicity of the band can be easily lost. The effect of
the van Hove singularities could also make the results of
the models quite different.

It is also interesting to observe that Eqs. (A8) and
(l l) provide a prescription of how to renormalize approxi-
mately the transverse hopping integrals for a system with
rough boundaries so as to reduce the problem to that of
a system with smooth boundaries. This type of proce-
dure may be useful for making approximate estimates of
the effects of roughness, but it has not been used in the
present work.
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