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Second-sound wave in photoinjected plasma in semiconductors
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We consider the question of propagation of thermal perturbations in the carrier system in photoinject-
ed plasma in semiconductors. A hydrodynamiclike approach is introduced in the spirit of extended ir-
reversible thermodynamics (EIT) that incorporates the energy Aux as a basic thermodynamic variable.
Its equation of evolution is derived at the microscopic level using the nonequilibrium statistical operator
method which provides the foundations for informational statistical thermodynamics, , This equation is
of the Maxwell-Cattaneo type of EIT, which replaces the Fourier constitutive equation of classical ir-
reversible thermodynamics. Used in conjunction with the equation of conservation for the energy densi-

ty, together with the definition of a nonequilibrium temperature, it leads to a wave equation with damp-
ing, implying the propagation of second sound.

I. INTRODUCTION

In the preceding paper in this issue, hereafter referred
to as (I), we presented an analysis of the hydrodynamics
of the carrier system in a highly photoexcited plasma in
direct-gap polar semiconductors (HEPS). ' The hydro-
dynamic modes of the system are associated with materi-
al and thermal motion (plasma waves and heat waves, re-
spectively). Both types of modes are coupled together
through cross-kinetic terms in the equations of evolution.
For the purpose of a clearer presentation and discussion
of the relevant physical properties associated with these
phenomena, we have separated the analyses of both types
of motion. Each one is quite relevant by itself, and, as
discussed in (I), the coupling terms do not introduce any
new or fundamental physical fact —at least within the
conditions we are considering here —but only minor nu-
merical corrections to the frequency and lifetime in the
dispersion relations of the hydrodynamical modes. In (I),
after presentation of the general theory, we considered
the material motion in the carrier system in HEPS
(damped plasma waves), as decoupled from the thermal
motion. Here we consider thermal motion (leading to
second-sound waves) as decoupled from the material
motion.

Thermal efFects are, of course, also expected to occur
in the lattice: in fact, Guyer and Krumhansl, by means
of a calculation based on a Boltzmann-like transport
theory for the pure phonon field, obtained a set of macro-
scopic equations which describe a Poiseuille-like Aow and
propagation of second sound with damping. It has been
shown that these results can also be obtained within the
framework provided by extended irreversible thermo-
dynamics.

This theory, which supersedes classical irreversible
thermodynamics, needs to be introduced because, de-
pending on experimental conditions, thermal waves are

not compatible with the local equilibrium assumption
since they imply heat transport from cold to hot regions
during short-time intervals, and, further, an infinite speed
of propagation (as implied by Fourier s law) is an inad-
missible feature, even though it is usually not a dangerous
paradox in the context of classical irreversible thermo-
dynamics in certain limiting conditions, as discussed
below in this paper. The question of transmission of heat
has been reviewed and interpreted in a relevant article by
Joseph and Preziosi, which presented a relatively com-
plete chronology of thought about the subject up to the
late 1980s. To look for thermal efFects in the carrier sys-
tem in HEPS, we resort to the methods described in (I);
that is, an informational statistical thermodynamics
(sometimes referred to an informational-theoretic ther-
modynamics). We derive microscopic mechanostatistical
level equations of evolution of the Maxwell-Cattaneo type
of extended irreversible thermodynamics for the energy
Aux and for the energy density. Introducing a space- and
time-dependent nonequilibrium carrier temperature, we
find it to satisfy an evolution equation of the form of a
damped wave, corresponding to a second sound, that in
the charged carrier system is tempting to call second plas-
fPl,Q MQVe.

II. SECOND-SOUND WAVE IN HEPS

We again consider the system of photoinjected carriers
in HEPS, as described in (I). To deal with thermal effects
in the system we introduce as basic dynamical variables
the energy density and energy flux, as given by Eqs. (3)
and (4), respectively, in (I). Consequently, the auxiliary
maximum entropy formalism nonequilibrium statistical
operator method (MAXENT-NSOM) is given for this
case by the generalized Gibbsian-like nonequilibrium dis-
tribution
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g g [0 (Q r)& (Q) —P(r)p (r, ~)& (Q) —& (Q, &).I (Q)) . .
a QAO

In Eq. (1), P, p, V, and F are the Lagrange multipliers (in-
tensive variables thermodynmically conjugated to the
basic ones) that the method introduces [see (I)].

Resorting to the method described in (I), we find two
variables of interest, namely

e (Q, t)=Tr[e (Q)p(t, O)], (2a)

I (Q, t)=TrII (Q)P(t, O)], (2b)

where e (Q) and I (Q) are the dynamical variables of
Eqs. (3) and (4) in (I), and their equations of evolution are

r

where stands for the tensorial product of vectors,
namely, ~=a(31 is the tensor of components ~; =a;b,
and

nfl(t) =TrI8'qqP(t, O) I .

Furthermore,

JV (Q, t)= V(Q)(i' /2m )

Xgf /[2(k Q)k —Q(k Q+ —'Q )]n(Q, t),

(3a)

I (Q, r) ip (Q—, r)Q=o (Q, t)+iAf (Q, r),a
(3b)

4.(Q. r )=X, , [k (k+-,'Q)+-,'Q']

X [(k+—,'Q)S(k+ —,'Q)]nfl(t),
2m

(4)

where, we recall, QAO. Transformed to direct space,
Eqs. (3) are continuity equations with sources. In Eq.
(3b) iit is the Aux of the Aux of energy, or the second flux
of the energy density, a tensorial quantity given by

where V(Q)=4me /eoQ is the matrix element of the
Coulomb interaction, and n(Q, t ) =n'(Q, t ) + n (Q, t ).
The last term in Eq. (3b), given in Eq. (6), is a result of
Coulomb interaction dealt with in the random-phase ap-
proximation. It couples the thermal motion we are
analyzing with the material motion (plasma waves). It
plays the role of a source in Eq. (3b), and, as already not-
ed, for our purpose here of analyzing the pure thermal
modes it is ignored in what follows [we recall the argu-
ments advanced in (I) that the coupling of both types of
movement is only redundant in minor corrections to fre-
quencies and lifetimes in the dispersio~ relations of the
polar modes]. The relaxation terms are

cr (Q, t)= —(7rfi/2m')yA (kqy;t)[q (2k —q))[rig'(&)+ng g(t)]
kyar

cr (Q, t)= —(m'/A')g A (kqy;r)[g, (k, q)+g, (k, q)Q+g (k, Q)Q+(&'/2m'. )[Q'+-,'QQ]qI
kyar

X [nqq(t)+nq q(t)],

(7a)

(7b)

where A ( kqyt) and f f,
'"' are given in Eqs. (13g) and

(13h) in (I):

go (k, q) (vrh /=2m )[(2k.q —
q )k+(k —q) q], (Sa)

(, (kq) =(vrA /2m )[2(k:q)—(qq)],

g~ (k, q)=(m. fi /2m )(2k.q —
q ) .

It must be stressed that the relaxation terms o and o.
of Eqs. (7a) and (7b) are a result of carrier-phonon col-
lisions. In addition to these contributions, contributions
associated with the interaction of carriers with radiation
(laser and recombination) fields are also present. The
latter involve interband transitions and are of relevance
to determine the homogeneous state, but in the dipolar
approximation for the radiation fields they do not a6'ect

I

the inhomogeneous variables. Furthermore we caB atten-
tion to the fact that Eqs. (3) for the inhomogeneous vari-
ables (QWO), are coupled to the equations of evolution for
the remaining basic variables, namely the homogeneous
variables consisting of the energy of electrons and holes,
the particle numbers (or concentration), the homogene-
ous Aux, and the phonon populations. They are given
elsewhere, and are not of direct interest for us in what
follows; we need only keep in mind that Eqs. (3), and
therefore their solutions, are dependent on the homo-
geneous variables, or, better to say, on the variables con-
jugated to the latter, which are P(t), p (t), and F„r(t)

Inspection of Eqs. (3) tells us that it requires a closure
procedure. As shown elsewhere, a complete description
of the system requires the introduction of an infinite set
of variables, composed of all cruxes of tensorial rank
r =2, 3, . . . , which are disregarded in our calculation.
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Such a truncation procedure has been discussed in (I).
Consequently, the closure of the equations of evolution
requires us to express quantities g, o, and o in terms of
the basic variables. Since all of them are linear combina-
tions of nz&(t) of Eq. (5), we need to express the latter in
terms of the chosen basic variables. For that purpose we
resort to a Heims-Jaynes perturbation expansion for ex-
pectation values, in a quite similar way as done in (I).

We assume the inhomogeneities to be weak, and then
we take only the first term in the Heims-Jaynes expan-
sion; i.e., we introduce a linear approximation in devia-
tions from the homogeneous state. After some algebra,
we find that

n f&(t)= a—(k, t)p (Q, t)+b (Q, t) V (Q, t)

+c (k, t)P(t)/t, (Q, t),

a (k, t)=(A'&'/2m*)fi, .(t)[1—f|,(t)],

c (k, t)=f~(t)[1—f„(t)],

f i,(t) =Tr [cocci,po(t, O) ],
f i",(t) =Tr[h" i/i i Po(t—,O)],

(10c)

(10d)

(10e)

with po(t, O) being the homogeneous part of the auxiliary
NSO, namely

b (k, t)=(A'k'/2m*)(Rk/m„*)f„(t)[1 —f (t)], (10b)

po(t, O)=exp[ —po(t) —p(t)[II, /J, , (t)N—, /th(t)N—q]++V (t) I —gF (t)9

where Po ensures its normalization. Moreover, we have
neglected the dependence on Q of the coe%cients a, b,
and c, that is, spatial correlations are ignored.

The expression of Eq. (9) depends on the intensive vari-
ables p and V, which we can replace in terms of the ex-
tensive variables e and I, resorting again to the Heims-
Jaynes expansion in first order to obtain

I

D (k, t)=a &i(t)a»(t) —a(~(t)azi(t) . (14d)

I (Q, t)=L'(t)iQE (Q, t)+L"(t)iQn(Q, t)

Using Eq. (13) to express f and cr in Eq. (8b), we obtain
an equation of evolution for the Auxes of energy of the
fol m

n (Q, t)= —X»(t)p (Q, t)+&»p(t)p (Q, t),
e (Q, t)= —A»(t)P (Q, t)+A2, (t)P(t)p (Q, t),
I (Q, t)=&»(t)V (Q, t),
where

A, „(t)=gc (k, t),

i(2t)= a2(it)=g a (k, t),
k

iPz2( t) =g (A' k /2m *
) c (k, t ),

k

A33(t)=g (2/3m" )(A' k /2m' ) c (k, t) .
k

(1 la)

(1 lb)

(1 lc)

(12a)

(12c)

(12d)

—8, '(t)I.(Q, t)

—A2(t)(Qg Q+Q21)I (Q, t),
where 1 is the unit tensor, and

OI '( t ) = ( ~iri /3 m *
) [a 33 ( t ) ]

AkX g 3 (kqy;t) k (k q)
kqr 2m~ m~

Xf i, (t)[1—f1, (t)],

L '
( t ) = ( 2/3 m *

)g ( R k /2m *
) g 2 ( k, t ),

L"(t)=(2/3m* )g (A' k /2m*) g, (k, t),
k

A (t)=(m5 /3m' )[a»(t)]

(15)

(16a)

(16b)

(16c)

Finally, using Eqs. (9) and (11), we find that

nP&(t)=g, (k, t)n (Q, t) +zg( kt) e(Q, t)

+g, (k, t) I (Q, t),
where

g, (k, t)=[c (k, t)A»(t) —a (k, t)A, »(t)]D '(t),

g, (k, t)=[a (k, t)A, »(t) —c (k, t)A, »(t)]D '(t),

g, (k, t) =b.(k, t)/a;, (t),

(14a)

(14b)

(14c)

X g A (kqy;t)(R k /2m" )(iri/m*)(k q)
kqr

XfI, (t)[1 fi,(t)] . —(16d)
We recall that the time dependence of the kinetic

coefficients is a result of evolution in time of the homo-
geneous state of reference.

In direct space, Eq. (15) becomes

A(t)[V a V+V—21]I (r, t ),
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where, consistently, we have ignored the source term
with the cross-kinetic coefticient L".

Equation (17), which replaces the Fourier constitutive
equation of classical irreversible thermodynamics, is of
the Maxwell-Cattaneo type of extended irreversible ther-
modynamics (EIT): 6) plays the role of a relaxation time
(of Maxwell's conjecture' ), and on the right-hand side
the first term is a driving thermodynamic force created
by a gradient of energy, while the last term is a driving
force created by the rate of change in space of the Aux it-
self. Also, Eq. (17) is of the same form as the one derived
for the heat Bow in a lattice.

Consider now the equation of evolution for the energy
density, viz. Eq. (3a). Proceeding in a similar way as in
the case for the derivation of the equation for the Aux,
after some algebra we obtain, in direct space, that

BI/(lt =0. After neglecting the last term (A =0), we ob-
tain that

I(r, t ) = &—(t)V T*(r,t ),
where I=I, + Ih is the total energy Aux, and
&=&,+&h, with & =L'l 6)t /kBT* . Equation (24)

is the Fourier constitutive equation of classical irreversi-
ble thermodynamics, with & being the thermal conduc-
tivity.

Let us return to the equations of evolution in extended
thermodynamics, but considering now Eqs. (17) and (18)
in the case of the presence of a reference homogeneous
state in stationary conditions (which follows when the
sample is under the action of continuous laser light il-
lumination), so that all kinetic coefficients are constant in
time. Taking the time derivative of Eq. (18), and next re-
placing in it Eq. (17), we find a hyperbolic-type equation
of propagation for the energy density, namely

where p (t) stands for the contributions provided by the
pumping external source, and recombination in the
homogeneous state. Present in Eq. (18) is the reciprocal
relaxation time

82
e (r, t)+0, ' e (r, t) L'V —e(r, t)

=[81 ' —A (V(8)V+V' 1)]divI (r, t), (25)

8, '(t)=(2M/m*)g 2 (kqy;t)(2k q
—q')g2(k, t) .

kqy

Let us next introduce a space- and time-dependent
quasitemperature for carriers through the identification

p (r, t)=llkBT*(r, t),
where the same quasitemperature is taken for both kinds
of carriers, taking into account the very rapid (subpi-
cosecond) thermalization of the carriers brought in by
Coulomb interaction. " The relation of T* with energy
can be obtained from Eqs. (11): after some algebra we
find that

where in the stationary state the pumping term y in Eq.
(18) is compensated for by the loss of energy to the
thermal bath, i.e., y —0, 'e =O. Introducing the quasi-

temperature T (r, t), using Eq. (21) and taking into ac-
count that e is a constant, after some algebra we obtain
an equation of propagation for this local quasitempera-
ture, namely

T*(r,t)+ T*(r,t) —V' T'(r, t)
c Bt Dz. ~t

=g [y ' —A (VV+V l)]divI (r, t),

e (Q, t)= —l (t)P(g, t)+k (t)n (g, t), (21)
—2 —2+ —2 D

—1 D
—1+D —1 (27a)

where

l (t) =A2, (t) —[A, »(t)A, 2, (t) /A, »(t) ],
k (t)=A. ,2(t)/A, „(t) .

(22a)

(22b)

Transforming back to direct space, using Eq. (20) to-
gether with the fact that the linear approximation that
has been used implies a weak local departure of the local
quantities from their homogeneous values, and then
T (r, t)=T'(t)+b, T*(r,t), with AT'(r, t) «T*(t), a d
also n (r, t)=n (t)+An (r, t), we have

Ve (r, t)=[l (t)lkBT* (t))VT"(r, t)

+k (t)Vn (r, t) . (23)

Once again neglecting the coupling with the material
motion (k =0), the role of T (r, t) as a nonequilibrium
temperature for the carriers can be better shown when in
Eq. (17) we take the limit of a near-stationary Aux,

~e(h) ~e(h) & ~e(h) ~e(h) e(h)
2 = 2 2 2

Ae(h) Ae(h) B To l e(h)le(h)

2=A (h)&t„„)/~e (h)

(27b)

(27c)

where To is the quasitemperature in the homogeneous
and stationary states, and

~e(h) Le(h)le(h)~t („)/kBTO . (27d)

Equation (26) is of the form of the telegrapher's equa-
tion with a source. ' This source is associated with space
derivatives of the energy Aux, and then relevant in the
presence of steep local variations (even though its ampli-
tude is small). Equation (26) implies a damped propaga-
tion of the local nonequilibrium quasitemperature of the
carrier system. If in this equation we take the velocity c
as going to infinity, while D is kept finite, and the source
on the right-hand side is neglected, we recover Fourier's
law for heat propagation of classical irreversible thermo-
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i.e., a propagation with velocity CT and a lifetime approx-
imately given by 2DT/cT when cog). cr /2DT = 1/2—6T,
where we have defined the characteristic time Bz, or re-
laxation time for quasitemperature. In this limit of the
group velocity cT going to infinity, while the thermal
diffusivity DT is kept finite, from Eq. (28) we find that
there follows an approximate solution corresponding to a
frequency with a real part (reciprocal period) null and
whose imaginary part is Drg . The system then goes
from a regime of damped propagation of thermal waves
to a diffusive regime. In this 1irnit, as already noted, the
telegrapher's equation goes over Fourier's diffusion equa-
tion. This limit is equivalent, i.e., follows Fourier s law, if
one considers a near-stationary Aux; that is, when in Eq.
(17) it is taken that BI(r, t )/Bt =0.

We made an explicit application of the hydrodynamic
theory above to the case of GaAs samples under cw laser
illumination, as reported elsewhere. ' Here we reproduce
two figures corresponding to a carrier concentration of
n =1.4X10' cm (laser power -0.2 kWcm ), when
the carrier system can be considered nondegenerate. Un-
der such conditions analytic expressions can be obtained
for the relaxation time 8T, resulting from collisions aris-
ing out of a predominant Frohlich interaction. Figure 1

shows the dependence on the carrier quasitemperature of
the relaxation time (dashed line), and the limiting condi-
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FIG. 1. The dashed line is the relaxation time (right ordinate)
for a range of values of the carrier quasitemperature. The full
line separates the regions of values of the wave number (left or-
dinate), which for each quasitemperature corresponds to either
damped wave propagation (upper part) or to diftusive movement
(lower and right parts). Parameters characteristic of GaAs and
a carrier concentration n = 1.4X 10' cm were used.

dynamics, with DT playing the role of a diffusion
coefficient. Furthermore, from the left side of Eq. (26),
after Fourier transforming in space and time, we obtain a
dispersion relation for the propagation of the damped
thermal waves, namely

2

2+i —g =0,
2
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FIG. 2. A description of the Raman intensity, upper full lines
for T*=100K, lower full lines for T =200 K, and dashed line
for T*=300 K. The transition from the damped to over-
damped regimes is clearly shown. The crosses in Fig. 1 indicate
the corresponding three situations considered here.

tion cTQ =1/2BT. Figure 2 shows the Raman lines ex-
pected to arise from scattering by these thermal waves,
for the indicated value of the wave number and the three
different states of the system indicated by cross points in
Fig. 1. These results are discussed in Sec. III.

III. CQNCI. USIONS

The results presented in Sec. II have shown that car-
riers in HEPS, in interaction with the thermal bath of
phonons, behave like a Poiseuille-like Auid that can sus-
tain thermal waves. %'e have already stressed the formal
similarity of our Eq. (17) with the one derived by Guyer
and Krumhansl for heat propagation in lattices in insu-
lating crystals, which describes the propagation of
second sound.

We call attention to the approximations introduced,
namely (i) we have neglected coupling between thermal
and material (plasma) waves, i.e., neglected cross-kinetic
terms that would couple Eqs. (3) with the equations for
the density and momentum density; (ii) correlations in
space and time have been disregarded [i.e. , we took
space-independent kinetic coefricients and an instantane-
ous (or memoryless) approximation]; and (iii) we have
considered small deviations from the homogeneous state
of reference (linear theory).

A detailed study of the complete generalized extended
hydrodynamics of HEPS is underway. It includes cou-
pling effects of thermal and mass motion, and with it the
polarization effects of Coulomb interaction Idisregarded
here because of the approximation indicated in item (i)
above] together with a detailed calculation of the kinetic
coeKcients. This complete treatment wi11 allow us to ob-
tain the hydrodynamic correlation functions, and from
them the expression for the Raman-scattering cross sec-
tions, which permits us to characterize ihe different hy-
drodynamic modes, including the second-sound wave.
The Raman spectrum is to be composed of Stokes and
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anti-Stokes lines associated with density oscillations, that
is the optical and acoustical plasma waves, ' as well as the
Stokes and anti-Stokes lines, centered at +cTQ, associat-
ed with the thermal oscillations we described in Sec. II,
having a linewidth roughly given by 2DT/cT=20T. As
noted in Sec. II, in the diffusive limit (we recall that cT is
large and DT is finite, and refer to a near-stationary ffux)
the two lines due to scattering by the damped thermal
waves collapse into a unique line at a zero-frequency shift
and with linewidth DTQ that is characteristic of the
Rayleigh scattering. ' This is clearly shown in Fig. 2.
Experimental observation of the peaks due to scattering
by these second-sound waves should be greatly impaired
by the background radiation (single-quasiparticle scatter-
ing) at these low-frequency shifts. We stress that the car-
rier system goes from the situation of damped wave prop-
agation to that of diffusive movement (and thus the hy-
perbolic equation of evolution in extended thermodynam-
ics goes over Fourier's parabolic one of heat di6'usion in
classical irreversible thermodynamics) when the wave
motion goes from a damped to an overdamped regime
(i.e., f«m cTQ & cT/2DT =1/28T «cTQ «T/2Dr
=1/26T). This is shown in Fig. 1. The extended hydro-
dynamic theory presented in this paper should then re-
place the usual one based on classical irreversible thermo-
dynamics when the limit of validity of the latter is not

satisfied. We recall that this limit corresponds to the case
of phenomena characterized mainly by large wavelengths
and small frequencies (as shown in the calculations of
previous sections, these limiting conditions mean a negli-
gible divergence and time derivative of the energy ffux).
It ought to be stressed that when wavelengths are shorter
(and consequently frequencies of the waves are higher),
according to the criterion for truncation in informational
statistical thermodynamics, higher- and higher-order
Auxes of the energy density are required to be included in
order to obtain a more accurate description of the sys-
tem, and a better agreement with experiment.

The implications of the propagation of thermal waves
in nonequilibrium solids on the physical meaning of
nonequilibrium entropy and nonequilibrium temperature
in EIT are discussed elsewhere. ' The question of a
quasitemperature and its measurement in HEPS is being
addressed in a forthcoming paper. '
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