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We analyze the hydrodynamic modes associated with carriers in a photoinjected plasma in a direct-
gap polar semiconductor. In this paper we concentrate our attention on the carrier material motion.
Resorting to a mechanostatistical approach to irreversible thermodynamics, the coupled equations of
evolution for the charge density of electrons and holes are derived. They have the form of hyperbolic
equations which imply collective damped wave propagation. The kinetic coefficients on which they de-
pend are determined at this mechanostatistical microscopic level. The corresponding hydrodynamic
modes are characterized: they consist of, besides the single quasiparticle (electrons and holes) excitations,
two collective modes, namely, the acoustical and optical plasma waves. Their dispersion relations and
lifetimes are obtained. These hydrodynamic modes are evidenced and further characterized through the
calculation and analysis of the spectrum of Raman scattering of radiation by the carriers. The motion of
the charge density is analyzed and we show how the damped wave regime goes over to the Fick-like
diffusive regime in the limit of very large wavelengths and very low frequencies.

I. INTRODUCTION

Laser light illumination of semiconductor samples in a
process of photoinjection allows for the creation of a dou-
ble plasma (electrons and holes in the lattice back-
ground), which is a fluid displaying hydrodynamic prop-
erties. This is the case for a semiconductor system work-
ing under far-from-equilibrium conditions, and poses in-
teresting problems in the physics of condensed matter.
In particular, as we have pointed out on other occasions,
these systems provide a good testing ground for theoreti-
cal ideas in statistical thermodynamics and many-body
physics, and there is also an accompanying technological
interest because of their applications in electronic de-
vices.

We consider a semiconductor sample under the action
of continuous laser illumination that creates the plasma,
and drives the system to a steady state in conditions far
from equilibrium. Under the action of laser light of con-
stant intensity, a uniform concentration n of carriers
(electrons and holes created in pairs), that increases with
the laser power I, is produced. These carriers become
internally thermalized in the subpicosecond time scale
due to the strong Coulomb interaction,! and then their
macroscopic state can be characterized by a quasitem-
perature and quasichemical potentials. The nonequilibri-
um phonon system does not have a unique quasitempera-
ture but different quasitemperatures for each mode, with
a privileged distribution around an off-center region of
the Brillouin zone.?

In this paper we study some hydrodynamic properties
of the carrier system. We look for the evolution of local
deviations in the carrier density from the homogeneous
state, leaving out the question of propagation of thermal
waves for consideration in the following paper.® Hydro-
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dynamic theories have in large part been based on classi-
cal (sometimes called linear) irreversible thermodynamics
(CIT). CIT (e.g., Ref. 4) introduces the local equilibrium
assumption and leads to hydrodynamic equations which
are of the parabolic type (Fourier’s and Fick’s diffusion
equations) which predict an infinite speed of propagation
for thermal and viscous signals, an unphysical feature.
However, it may not be a dangerous paradox in certain
situations when it becomes a good approximation, as dis-
cussed below. Furthermore, CIT does not produce good
agreement with experiment in the short-wavelength
and/or high-frequency regimes; examples are the case of
sound absorption and its dispersion in fluids, and the
description of shock waves or Mach numbers larger than
1.85.° Some approaches to go beyond CIT are presently
available; one of them is extended irreversible thermo-
dynamics (EIT).%” EIT removes the main difficulties as-
sociated with CIT, with the equations of evolution for the
densities now being of the hyperbolic type, implying
damped wave propagation with a finite velocity. These
equations are referred to as the Maxwell-Cattaneo-
Vernotte equations. The name of Maxwell arises out of
the fact that in the last century he proposed a relation-
ship in viscous systems between forces (causes) and fluxes
(effects), including relaxation processes, as contained in
EIT.® EIT can be shown to be partially encompassed in
kinetic theory through alternatives to Grad’s’ moments
method. ! However this kind of relationship between
kinetic theory and EIT in many of its aspects has been
limited to the use of a finite number of moments in
Grad’s method. This implies an arbitrary truncation of
the set of coupled equations of evolution for the basic
variables.

On the other hand, on the mechanostatistical side the
so-called nonequilibrium statistical operator method
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(NSOM) seems, within the group of available formal-
isms,!! to offer a very powerful and practical tool. Re-
cently it has been shown that different approaches to the
NSOM, based on either heuristic or projection operator
technique points of view, can be brought together under a
unifying variational principle.!? This approach to the
NSOM places the formalism within the scope of Jaynes’
predictive statistical mechanics.!> This theory is based
on the principles of Bayesian statistical inference, %1’
with a constructive criterion for setting up probability
distributions, namely the maximum entropy formalism
(MAXENT).'*!6 The MAXENT-NSOM recovers, as
special cases, equilibrium statistical mechanics, linear-
response theory, and Kubo’s transport theory.!” Howev-
er, the formalism is powerful enough to go beyond in or-
der to provide mechanostatistical foundations for an ir-
reversible thermodynamics of systems arbitrarily away
from equilibrium, leading to what can be referred to as
informational statistical thermodynamics (IST).'®¥! IST
encompasses EIT as a limiting case. Underlying ideas for
the use of an informational-statistical approach after its
introduction by Jaynes have been handled by several au-
thors. One of the first approaches to IST is due to
Nettleton,?® who also pointed out apparent inconsisten-
cies in the existing phenomenological versions of EIT.?!

Furthermore, the MAXENT-NSOM provides a non-
linear quantum transport theory of a large scope, which
can be considered a far-reaching generalization of Mori’s
approach.?? 1In this theory the transport coefficients,
which are open parameters in phenomenological thermo-
dynamic and kinetic theories, are given at the microscop-
ic level (that is, in terms of the underlying dynamical
theory averaged with the appropriate MAXENT-NSOM
statistical distribution that characterizes the nonequilibri-
um macroscopic state of the system), and which also in-
corporates nonlocality in space and time (spatial correla-
tions and memory effects, respectively).

The hydrodynamic properties of the carrier system in
photoexcited semiconductors described in this paper are
based on a theory founded on the MAXENT-NSOM,
that is, derived from IST. It should be noted that IST im-
plies a generalization of Grad’s moments approach, now
at the quantum level and to all orders.!®!%23 Clearly, a
practical use in general requires us to introduce a trunca-
tion procedure, therefore leading to an approximation
that needs to be evaluated in each case, as done in the fol-
lowing sections. We recall that the MAXENT-NSOM is
described with certain detail in Ref. 12, and the associat-
ed transport theory in Ref. 22. We have also applied the
MAXENT-NSOM to the study of ultrafast relaxation
processes and transport processes in highly excited plas-
ma in semiconductors,?* where a brief review of the
method is given and particularized for such cases. Of the
different alternative constructions of the NSOM we use
the one due to Zubarev:?® an elegant, concise, and practi-
cal approach to the formalism.

In this paper we describe the calculation of the equa-
tions of evolution of the carrier’s local-charge densities.
We derive those for the electron and hole equations of
propagation with damping, which are of the telegraphist
type arising out of the resulting Maxwell-Cattaneo-
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Vernotte-like equations contained in IST. From them we
are able to characterize a set of electronic elementary ex-
citations. They are of four types: two are the excitations
of single quasiparticles (electrons and holes individually),
and two are collective excitations. The latter, for these
charged particles, are plasma waves. One has a high fre-
quency, and the other a low frequency and a linear ener-
gy dispersion at long wavelengths. They are termed opti-
cal and acoustical plasma waves, respectively. The ex-
istence of acoustic plasmons was predicted by Pines and
co-workers?® for the case of a plasma in the solid state
with two types of carriers. It should be noted that the
two types of carriers in the photoinjected plasma in semi-
conductors we consider are produced in nonequilibrium
conditions, i.e., they are generated by the continuous ap-
plication of laser light. There seems to be experimental
evidence of acoustic plasmons in the carrier contribution
to the Raman spectra in photoexcited GaAs.?’ It has
been suggested, but not proved experimentally, that there
is a possible presence of acoustic plasmons in the case of
carriers in different valleys,?® in an ideal degenerate two-
component (one or both superconducting) Coulomb Fer-
mi liquid,”® and in a superconducting two-component
Fermi liquid. *°

The paper is organized as follows. In Sec. I, we derive
the equations of evolution for the carriers’ local-charge
densities. They are coupled, as is the general case, !® to
an infinite set of equations (the local linear momentum
density and its higher-order fluxes), and then a truncation
procedure is introduced as described in the text. From
these equations of evolution for the carrier densities we
derive the complete spectrum of elementary excitations.
Further, we briefly discuss the lifetimes of these excita-
tions, and the diffusion process of carriers. In Sec. III we
calculate the electronic contribution to the Raman-
scattering cross section in a typical pump-probe experi-
ment. This is done by calculating the carrier contribution
to the frequency- and wave-number-dependent dielectric
function which determines the Raman spectrum. The ele-
mentary excitations are characterized by the different
bands that appear in the Raman spectrum, which are re-
lated to the zeros of the real part of the dielectric func-
tion. We recover the results of the hydrodynamic analysis
of Sec. II. In Sec. IV we review and discuss the results.

II. QUASIHYDRODYNAMICS OF HEPS

We consider an intrinsic direct-gap polar semiconduc-
tor sample illuminated by a continuous laser beam, with a
power flux I; and a photon frequency w; . The photogen-
erated electron-hole pairs are assumed to behave as free
carriers, i.e., to be on the metallic side of the Mott transi-
tion (typically for concentrations higher than 10'® cm™3).
These carriers relax energy to the lattice while their total
number varies as it grows due to photon absorption but
diminishes in recombination processes, until a steady-
state situation is achieved when both effects are compen-
sated. We assume a constant laser light intensity
throughout the volume of laser light focalization, and
stimulated emission and self-absorption are neglected in
comparison with spontaneous recombination. The sys-
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tem Hamiltonian consists of the carriers’ energy operator
[electrons and holes in band energy states taken in the
effective-mass approximation, plus the Coulomb interac-
tion dealt with in the random-phase approximation
(RPA)], the Hamiltonian of the phonon field, and the en-
ergy operators describing the interaction of carriers with
lattice vibrations and with the laser and recombination
radiation fields. The carrier-radiation interaction is treat-
ed in the dipole approximation, with the photon field de-
scribed by a classical field incorporated in the carriers’
Hamiltonian. Optical phonons are described in an Ein-
stein (dispersionless) model. The acoustic phonons are
taken as a thermal bath at temperature T,. These and
the laser source are taken as ideal reservoirs, i.e., they are
assumed to remain in stationary unaltered conditions
while constantly coupled with the open semiconductor
sample.

Through this process of photoinjection is created a
highly excited plasma in the semiconductor (HEPS) in
nonequilibrium conditions. We consider the hydro-
dynamic properties of the carriers’ system in this HEPS;
and, for such a purpose, we resort to the statistical-
mechanical formalism of the MAXENT-NSOM de-
scribed in an earlier publication,31 where details are
given. We simply note that the hydrodynamic study of
the carriers’ system requires us to introduce basic dynam-
ical variables consisting of the electron density and hole
density, whose Fourier amplitudes are given, respectively,
by

ﬁe(Q>=§ﬁ§Q=zc’;+Qck , (1a)
k

ANQ =3 At =h_—ohly . (1b)
k k

where c(c') and 4 (k) are annihilation (creation) opera-
tors in electron and hole states, as well as those for the
linear momenta

p°M(Q) =3 Ak +1Q)rLy )
k

and all other higher-order (tensorial) fluxes of matter.

Quantities of Egs. (1) and (2) are relevant for the study
of the material motion of the system. For the analysis of
the thermal motion we need to introduce the energy den-
sity

2
£Q=3 T [k-(k+Q)+10%1f, , 3
k 2ma
the energy flux
~ 2
Q=3 % s [k-(k+Q)+10?]
k 2ma
#i a
X ——(k+1Q)Afq , (@)

a

and all the other higher-order (tensorial) fluxes of energy.
In Egs. (3) and (4) a=e for electrons and a=#h for holes.

Material and thermal motion are coupled together in
the equations of evolution for corresponding macrovari-
ables. The coupling occurs through cross-kinetic terms
associated with thermoelectriclike effects. We now con-
sider both types of motion separately, in order to concen-
trate attention alternately on plasma and thermal waves,
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respectively, to facilitate their study and a better appreci-
ation of their physical characteristics. To neglect the
coupling effects only produces minor numerical
differences in the characterization of the hydrodynamical
modes. In fact, they give rise to frequency shifts and ad-
ditional contributions to the lifetimes. This has been test-
ed; we omit the lengthy details for the sake of brevity, but
call attention to the result presented in Sec. III where, for
a connection with Raman experiments, a complete calcu-
lation is performed which implies the inclusion of both
mass and energy densities and their fluxes of all orders:
as noted there, corrections to the frequencies and life-
times obtained in the approximate calculation are—for
the case of GaAs considered—of the order of 20%. In
the present paper we consider the material motion (plas-
ma waves), and in our following paper the thermal
motion (heat propagation).

Consequently we next consider the derivation of the
equations of evolution for the density and all its fluxes. A
practical use of the method requires us to introduce a
truncation procedure in this infinite set of coupled
integrodifferential equations: we choose the contracted
set consisting of the carriers’ density and linear momenta,
namely

n"M(Q,H=Tr{7n*”(Q)p(1,0)} , (5a)
P M(Q,1)=Tr{p  (Q)p(1,0)} , (5b)

where p(¢,0) is the corresponding auxiliary nonequilibri-
um statistical operator in MAXENT-NSOM, 12,25 which
in the present case takes the generalized non-
equilibrium Gibbsian-like form given by Eq. (18) in Ref.
31.

A contracted description of this type, i.e., here in terms
of a density and its flux, is equivalent to a truncated
description in the classical Grad’s moments approach,’
as shown in Ref. 18. The approximation needs to be eval-
uated in terms of some appropriate expansion parameter.
As discussed elsewhere, '* in this case it is y =(0Q /w)?,
where U is the average velocity of the carriers; Q =27 /A,
where A is the wavelength of the excitation; and w,; the
optical plasma frequency. In what follows we shall keep
only linear terms in the dispersion relations, implying a
long-wavelength limit characterized by y << 1.

The equations of evolution for the basic set of variables
of Egs. (5) follow from application of the MAXENT-
NSOM statistical method as described in Ref. 22, and are
given by Egs. (32a)-(32d) in Ref. 31. We recall that in
their derivation space correlations were neglected; that is,
they are equations local in space, and linearized in the in-
homogeneities. Thus, we consider small local derivations
from the homogeneous state.

In continuation we consider the homogeneous state of
reference as stationary, which is a result of the application
of cw laser illumination. Consequently, the kinetic
coefficients in Eqgs. (32) in Ref. 31 are constant in time.
These four equations, which are of first order in the time
derivative of the four basic variables, are next
transformed into two equations, albeit of second order in
the time derivative, for the densities. For that purpose
we derive with respect to time in Egs. (32a) and (32c¢) in
Ref. 31, and next the dependence on the momenta is
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eliminated through the use of Egs. (32b) and (32d), to finally obtain the following set of coupled equations, namely

1

1 9 nh 2 h( h
——n° ) +__ > » + e ) + € » + N
2 a2 n4Q,t) D, " “Q,t D.. at n"(Q,1)+0*n4Q,1)+a™MQ)Q[n4Q,t)+n*Q,1)]=0, (6a)
%—a~ WQ 1)+ - Q0 ——n “(Q,0)+Q*n"(Q,0)+a"Q)Q?[(n%Q,1)+n"Q,n]=0, (6b)
c? ot? D, ot D,. ot
where case (ii) we find the characteristic eigenfrequencies
Cez(h % e(h ka fe(h l_fe(h ] (73) pl op (47Tn€2/m )1/2 5 wp],Ac:sAQ N (10)
where s, =(vv,r/3)7? is the group velocity of the
D :[,yhe+ [-\he_+_Ae]/ce , (Tb) latter. A eFVnF group y
- AR The two frequencies of Eq. (10) are (1) o, (the
D, =D, with exchange e«>h , (7¢) dispersionless frequency in the given approximation of
m small Q) of propagation of the usual plasma wave corre-
DGl= |y LT | se2 (7d)  sponding to the collective motion, in the relative coordi-
me nate, of electron-hole pairs interacting through the bare
1y =1 Coulomb interaction, and called the optical plasma
= h exch , 7 > o . . . .
Dye =Den with exchange e<h (7e) mode; and (2) @p ., With a linear dispersion relation,
a™Q)=V(Qn,/m,cl=0w,,/Q%], (7)  which can be ascribed to the acoustical plasma mode con-
he . jectured by Pines.?® The latter can be interpreted as aris-
a(Q)=a® with exchange e<h , (7g) ing out of the collective motion of the centers of mass of

with all quantities on the right of Egs. (7) defined in Ref.
31, and @}y , (=471, (e’ /Moy

In Egs. (6) above we have only taken terms involving
the densities when associated with Coulomb interaction
(last term on the left), neglecting, when compared with it,
additional terms also proportional to the densities but as-
sociated with interactions with the phonon and radiation
fields.

It should be noted that Eqs. (6) are space-Fourier
transforms of a telegraphistlike equation with a source
(the term involving Coulomb interaction). Hence Egs. (6)
correspond to damped propagations of oscillations whose
frequencies (dispersion relations) are given by the corre-
sponding characteristic equation, namely

2

C
wz—iD—“’w+c3(1+aeh)Q2
e

CZ
Dhe
(8)

Next we look for the dispersion relations in the absence
of damping (i.e., all D ~! set equal to zero), and in lowest
order in Q (we neglect a.an,0%. Two cases can be
proved: (i) neglecting the effects of Coulomb interaction
(a=0), we obtain the excitation energy of the single
quasiparticles; and (ii) including the effects of Coulomb
interactions we obtain two collective (plasma) excitations.
In fact, in case (i) in the highly degenerate regime we find

a)ezveFQ > wh:UhFQ ’ (9)

where v, is the Fermi velocity of electrons (holes).
These are the averages over the ensemble of the single
quasiparticle excitations of €'y —ef"' ~#k-Q/m, ;). In

2

w2~1D—h+ch(l+ahe)Q2}

2

(1+ahe)Q ] [iDchh h2 heQZ

the electron-hole pairs, with the particles interacting
through the screened part of Coulomb interaction. In
fact, if for the plasma frequency we take the expression®®

=(n/m)Q*V(Q), (11)

(1) @y, follows for m =m,, and V(Q), the bare
Coulomb interaction, is 47e?/Q%; and (2) @p A follows
for m =M =m,+m,, and the screened Coulomb in-
teraction V(Q)=4ﬂ'e2/(Q2+A}?T2), after taking Q ~0
and Agp as the Fermi-Thomas screening length (namely,
Ap?=4mne(gp, +gp,), with 8Fe(h)= €. () being the
density of states at the Fermi level of energy €g,,): then

0> =#Q*37*n)?>3/3Mm,, recovering the expression
51, Ac= VRV @2 /3.

Once the collective oscillations have been character-
ized, we next look for their lifetimes, to be provided by
the complete solution of Eq. (8). We consider the limit of
weak dissipation of the waves, and then we write

Wop=Wp opTi8, aNd WA= A 184, and we solve for
6 in Eq. (8) up to first order in that quantity. We find that
1 [~ C‘)f;l e h Dplh
Sop=— |A° +A , (12a)
2
pl op Dpl,op
1 -
Bac=7 |c2(DS DG p‘ <
pl Ac
©ph
+e2(Dy '+ D) (12b)
@pl, Ac

Inspection of Eqgs. (12) shows us that the lifetime of the
optical plasmons is determined exclusively by interaction
with the phonon field. The lifetime of the acoustic
plasmons is also determined by the interaction of the car-
riers with the laser and recombination radiation fields,
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which appear in the direct and cross-diffusion
coefficients, respectively D, ;) and D ., defined in Egs.
(7). It ought to be stressed that, since o, A.=s,9, Eq.
(12b), derived on the basis that 8, <<w ., is only valid
for not too small values of Q. This tells us that when go-
ing from high values of Q to small values of Q, this col-
lective movement changes in character from a damped
oscillation to a nonoscillating overdamped regime. This
will be better shown in the study of Raman scattering in
Sec. III.

After characterizing hydrodynamic modes associated
with the coupled material motion of electrons and holes
in HEPS, let us close this section with an analysis of the
evolution of the local deviations of the whole charge.
Considering charge neutrality in the movement, i.e., set-
ting n%Q,1)=n"(Q,t), we find for the charge density
n(Q,t)=n%Q,t)+n"(Q,t), after summation of Egs. (6),
that

1 0

2
%a—at;n(Q,tH—D—-ét-n(Q,t)+Q2n(Q,t)=—An(Q,t) :

(13)

or, in direct space,

n(l',tH‘iin(r,t)—vzn(r,t)= — An(r,t) .

1
2 D ot

82
c? ar?
(14)

We recall that the dependence on Q of the coefficients
has been neglected, leading to the local space formulation
given by Eq. (14) which is also local in time as a result of
the second-order approximation in relaxation theory
(SOART) approximation we used. In Egs. (13) and (14)
we introduced the coefficients

¢ r=1lc, 2 +c, %], (15a)
DT'=41D;"+D;'=Dg'-Dy'], (15b)
A=(w},/c2)+(f) , /c}) . (15¢)

Equation (14) is an equation of the telegraphist type
(the left side) with (on the right side) a term directly pro-
portional to the local deviation of the charge density: let
us recall that it is a consequence of the Coulomb interac-
tion that is responsible for the emergence of the collective
motion. Hence Eq. (14) implies the propagation of
damped waves with velocity ¢, and a lifetime related to
quantity D which plays the role of an ambipolar diffusion
coefficient.?

This ambipolar diffusion coefficient depends on the in-
teraction of carriers with phonons and the recombination
radiation field; the effect of the laser field disappears in
the differences of gamma coefficients once the dipolar ap-
proximation and the limit of Q going to zero are taken.
In ultrafast pump-probe experiments, during tenfold to
hundredfold picosecond time intervals, the diffusion of
carriers out of the region of the volume of laser illumina-
tion is shown to be important for the macroscopic char-
acterization of HEPS.?? In this situation the effect of the
interaction with phonons predominates over the effects of
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recombination, which becomes relevant only on the
nanosecond time scale. In stationary conditions, result-
ing from continuous laser illumination, considered in
deriving the equation of charge-density propagation, Eq.
(14), both types of contributions are present; that is, those
arising from carrier-phonon collisions, responsible for the
presence of coefficients A, and interaction with the
recombination radiation field, responsible for coefficients
y and T'. In the case of cw laser illumination the contri-
bution to the dissipation arising out of recombination
effects is much larger than that due to electron-phonon
interaction.3*® This is a result that in the stationary state
almost immediately follows internal thermalization of
carriers and phonons. A study of diffusion in HEPS is re-
ported in Ref. 31.

Equation (14) governs the evolution of the charge car-
rier density which, as noted, implies a damped undulato-
ry motion. It is composed of the superposition of move-
ments associated with different modes previously charac-
terized in the analysis of Egs. (6). Let us next look to
some limiting cases. In the very long-wavelength limit
(Q—0) and in the degenerate state when
€, ~Vop >>C), ~ Uy, the motion is dominated by the opti-
cal plasma wave, with frequency o, ,,~w, . and a life-
time ~D /v%. Consider now the limit of infinite velocity
of propagation ¢, while D and A4 are kept finite. In this
limit Eq. (14) becomes

S _pv

n(r,t)=—DAn(r,t), (16)
ot

which is Fick’s diffusion equation but with an extra term
on the right. The latter can be written as —n(r,t)/7,,
with 7,=(DA)”!, to be interpreted as a decaying term
for the local deviation from homogeneity of the charge
density, forced by the Coulomb interaction in order to
damp out the increase in energy associated with the
charge-density-wave formation. To obtain this result the
limit we took seems somewhat arbitrary, but it follows
that it is equivalent, that is, it also follows Eq. (16), if one
takes dp°") /3t =0. This means considering a quasistatic
regime, or a uniform motion in the sense that the rate of
variation of the momenta is null. In such a limit we go
from the regime of validity of EIT, with hyperbolic equa-
tions of evolution and a damped wave motion, to the re-
gime of LIT, with parabolic equations of evolution and a
diffusive motion (implying propagation of thermal and
viscous perturbations with infinite velocity). We also call
attention to the fact that Eq. (16) follows approximately
in the overdamped regime of Eq. (14), i.e., when
® <<c?/D; that is, in the very low-frequency limit.

In Sec. III we extend the study of the elementary exci-
tations in HEPS presented in this section, looking for
their characterization in the Raman-scattering cross sec-
tion.

III. THE RAMAN-SCATTERING CROSS SECTION

Raman spectra provide information on the spectrum of
elementary excitations in semiconductors,** and then we
resort to a calculation of the contribution of the carriers
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in order to characterize the elementary excitations in
HEPS we derived and discussed in Sec. II. First we note
that the scattering cross section is given in terms of the
imaginary part of the reciprocal of the frequency and
wave-vector-dependent dielectric function, ¥ie.,

d’c
dQdw
where #iw is the energy transfer and #Q the momentum
transfer in the scattering event. The dielectric function

can be calculated using the fact that, according to
Maxwell’s equations,

“Q,w)=1+n(Q,w)/ry , (18)

~[1—e P ' Ime " 1(Q,0) , 17)

where —en (Q,w) is the Fourier transform (in time and
space) of the charge density that arises in the system un-
der the action of a probing charge of the form
—ergexp(—iwt+Q-r); hence we need to calculate
n(Q,w) in the nonequilibrium HEPS. For that purpose
we improve upon the truncation procedure used in Sec.
II, introducing as basic variables the nondiagonal ele-
ments of the single-particle density matrix, namely

niQ()=Tr{fop"(1,0)} =Tr{c] o, p(1,0)} , (19a)
nlo()=Tr{Alop(t,0)} =Tr{h_,_oh' ,p(1,0)} , (19b)
and then the auxiliary NSO is taken to be
p(t,0)=exp{ —¢(t)—B.[H. —p, N, —p1, Ny ]
— S F Vg~ S Fiqthitq+Flo(Ditg 1}
qu kQ
(20)

In Eq. (20), Fﬁg’) are the nonequilibrium thermodynamic
coefficients conjugated to the quantities of Egs. (19), and
the homogeneous part is taken as stationary. We stress
the fact that the density and linear momentum variables
n¢"M(Q,t) and p°"(Q,t) of Sec. II are linear combina-
tions of those of Egs. (19), and also that p of Eq. (20)
reproduces that of Ref. 31 if we impose the choice (trun-
cation)

Fig ()= —B(u "M (Q,0)—B(t)v¢'M(Q, 1)k . (21)

Thus the basic set of variables we use in this section im-
plies a large enhancement of those in Sec. II. We stress
that in this way we are dealing here with an approach
that can be considered equivalent to including an infinite
set of moments in Grad’s formalism. It is possible to ob-
tain a nearly exact expression for the dielectric function
in this case.

We derived the equations of motion for the variables of

Eq. (19) in SOART, and linearized in those variables, to
obtain

L ngo(n)=

at V(Q)AfﬁQro"i'AEiQnﬁQ(t)

—2V(Q)Af§Q[ne(Q,t)+nh(Q,t)]

+1Ban kQ(t) BnkQ(t) (223)
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., 0
zﬁ-a—tnﬁQ( HN=ih—_— 9 niq(?) with exchange e<sh ,

ot

(22b)

where
AEﬁg”*eﬁ(ﬁQ e, (23a)
ee=Eg+#k*/2m, , (23b)
el=#k*/2m, , (23¢c)
Afig’ =rfiltq—ri" (23d)
V(Q)=4me?/e,VQ?, (23e)
and fi'® are distribution functions (see Ref. 31) for elec-

trons (holes). We recall that the Coulomb interaction has
been dealt with in the RPA. Furthermore, coefficients B
are related to relaxation effects resulting from the interac-
tion of the carriers with the laser and recombination radi-
ation fields, while the interaction with the phonons is
neglected since it produces effects much smaller than
those generated by the others, and then

(24a)
(24b)

where coefficients B after the last equal sign are defined in
Ref. 31.

Fourier transforming the time variables in Egs. (22)
reduces them to a coupled set of algebraic equations
which are solved, and the result is used to obtain n(Q,w),
which once replaced in Eq. (18) leads to the expression

e(Qo)=1-V(QIN(k,Quw)D '(k,Qw), (25
k
where
N(k,Q;0)=(Af{q—Af ) fio—i(Bigy +Big)]
—(AfiQAEiq+AfigAEL,) , (26a)
D (k,Q;0)=(fio+AEfq—iB o) (fio—AElG —iBiy)
+ BB (26b)

Equation (25) provides an expression for the RPA
dielectric function of the electron-hole system in the
homogeneous and steady state in the photoinjected plas-
ma in HEPS. In the limit of vanishing coefficients B, we
recover the well-known Lindhardt (RPA) dielectric func-
tion for the system of electron and hole fluids.

To perform numerical calculations one needs to specify
the system and the experimental conditions. We choose
the case of GaAs illuminated by laser light with photon
energy fiw; =3.4 eV, while kept at very low tempera-
tures, i.e., 87! much smaller than the Fermi temperature
of electrons and holes, so that the distribution functions

ﬁ(h’, that are of the Fermi-Dirac type in the internally
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FIG. 1. The density of photoinjected carriers as a function of
the laser power (cf. Ref. 32).

thermalized carrier system, can be approximated by step
functions, the step limit being the Fermi energy. The
laser power is taken to be ~2.5 kW /cm?, which, accord-
ing to Ref. 33, produces a photogenerated concentration
n=~10" cm 3 (see Fig. 1).

Figure 2 shows the Raman spectrum for Q =10* cm ™!,
and Fig. 3 the real part of the dielectric function. The
three bands in the Raman spectrum correspond, as ex-
pected, to the three types of excitations discussed in Sec.
I1, namely from lower to higher frequencies, the one due
to scattering by hole individual excitations, the one
due to acoustic plasmons, and the one due to electron in-
dividual excitations; the fourth one, due to optical
plasmons (the highest infrequency), is left out of the
range of frequencies in the figure. The frequencies at the
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FIG. 2. The Raman spectrum for the cases n =10!° cm™3

and Q =10* cm ™. vy is the Fermi velocity of the electrons.
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FIG. 3. The real part of the frequency and wave-vector-
dependent dielectric function for n and Q as given in the caption
to Fig. 2.

positions of the peaks of the bands correspond very near-
ly to the frequencies at which the real part of the dielec-
tric function is zero. The width of the band due to
scattering by the plasma wave is a result of the lifetime of
this excitation. There is a good agreement with results
obtained in Sec. II; the frequency at the peak of the Ra-
man line corresponding to scattering by the acoustic
plasma wave is ~0.24Qv,;, and from Eq. (10) we find
0.2Qv,r. The linewidth is ~0.03Qv,;, and so 8,./
@p1,oc~0.1, and the excitation corresponds to a weakly

damped wave with wave number 10* cm ™.

Figure 4 shows the Raman spectrum for several values
of Q, which indicates a tendency—reinforced when tak-
ing ever smaller values of Q-—to a large overlap of the

(b) —»,

CROSS SECTION (arb.units)

(c)

y
| |
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FIG. 4. The Raman spectrum for the cases n =10 cm™
and (a) Q=50cm™!, (b)25cm™}, and (c) 10 cm ™.
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FIG. 5. The real part of the frequency and wave-vector-
dependent dielectric function for n =10 cm™3 and Q =10
-1
cm™ L.

three bands. In the curve for the real part of the dielec-
tric function, for Q =10 cm ™!, shown in Fig. 5, we see
that the two zeros at low frequency are no longer present,
being replaced by a dip at w/Qup~0.25. At very low
wave numbers there is no oscillatory motion, in accord
with what was stated in Sec. II; that is, the excitation is
associated with an overdamped motion.

Hence an analysis of the Raman scattering spectrum
shows the four types of elementary excitations in the sys-
tem, namely the two due to scattering by quasiparticles
and the two due to the acoustic and optical plasma
waves. The frequency and lifetime of the plasma waves
are determined from the Raman lines, which were
derived—we recall—in an exact calculation of the
dielectric function in Landau’s quasiparticle approach.
When they are compared with results obtained resorting
to the truncated procedure used in Sec. II, the numerical
differences are within the order of 20%.

IV. CONCLUDING REMARKS

We have presented a study of the hydrodynamic prop-
erties of the double Fermi liquid of electrons and holes in
a plasma in a semiconductor generated by intense laser il-
lumination. To deal with this far-from-equilibrium sys-
tem we resorted to the concise and seemingly powerful
MAXENT-NSOM. However, we restricted the calcula-
tions to what we have called the second-order approxima-
tion in relaxation theory. In SOART the equations of
evolution are instantaneous in time (memoryless). Fur-
thermore, we have only introduced the density of carriers
and the linear momentum density as basic variables to de-
scribe the evolution of the carrier system. As noted else-
where, !® this implies a truncation procedure (higher-
order tensorial fluxes are neglected) valid in the long-
wavelength limit, as is the case in the hydrodynamical
analysis we performed. In this way we are able consider
the motion of the carrier density. A complete hydro-
dynamical analysis would also incorporate as basic vari-
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ables the density of the energy and its flux, which we
have associated with the propagation of damped thermal
waves.> Both types of motion, material and thermal, are
coupled through cross-kinetic terms. Our analysis here
neglected such cross-transport effects, concentrating at-
tention only on the movement of mass (the evolution in
space and the time of the charge density).

As shown in Sec. IT the motion of the carrier density is
governed by an equation describing damped waves. It is
an equation of the telegraphist type [hyperbolic partial
differential equation; cf. Eq. (13)], where c is the velocity
of propagation, and D is a diffusion coefficient (setting ¢
going to infinity, but D finite, and neglecting the term
with coefficient 4, we obtain the equivalent of Fick’s
diffusion equation). D is the ambipolar diffusion
coefficient, defined at the microscopic mechanostatistical
level by Eq. (15b). In nonstationary conditions the
dependence of D on time arises out of the fact that it is,
in the MAXENT-NSOM and SOART, dependent on the
instantaneous nonequilibrium state of the system. In Ref.
31 ambipolar diffusion effects in photoexcited plasmas in
semiconductors are analyzed in detail and a comparison
with experiment is presented.

Our analysis of the charge propagation done in Sec. II
allowed us—through an analysis of the eigenvalues of the
equation of evolution in the steady state [cf. Eq. (6)]—to
characterize four types of elementary excitations (the hy-
drodynamic modes are obtained, we recall, in the limit of
long wavelengths, i.e., small Q). Two are associated with
single-particle excitations of electrons and holes; the oth-
er two are collective excitations. These collective excita-
tions are plasma waves of two kinds: (i) an optical
plasmon corresponding to a collective movement associ-
ated with the relative coordinates of the electron-hole
pairs and the highest in frequency of all four excitations,
and the pair interacting through the bare Coulomb in-
teraction; and (ii) an acoustic plasmon corresponding to a
collective movement associated with the centers of mass
of the electron-hole pairs, which is low in frequency and
superposed with the continuum of quasiparticle excita-
tions and, thus, involving pairs interacting through a
screened Coulomb interaction. As noted in Sec. I, these
two types of collective excitation were predicted by Pines,
and experimentally observed by Pinczuk, Shah, and Wolff
in the case of the photoexcited plasma in GaAs.

We have derived expressions for the lifetime of both
plasma modes [cf. Egs. (12)], and all the excitations are
brought into evidence in the Raman spectrum, calculated
in Sec. III, since each type of excitation contributes to the
scattering of photons, producing a characteristic band in
the spectrum: the lowest in frequency is the one due to
scattering by single-hole excitations, followed, with in-
creasing values in frequency, by those due to scattering
by acoustic plasmons, single electrons, and optical
plasmons.
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