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Aggregate defects of gold and platinum with lithium in silicon:
II. Electronic-structure calculations
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We present ab initio total energy calculations for aggregate defects of the noble metals Pt or
Au with Li. The calculations are performed in the local spin density approximation to the density-
functional theory using the linear-mufBn-tin-orbital method in the atomic spheres approximation.
We determine the binding energies of the aggregates (ignoring lattice relaxations) and calculate the
hyperfine interactions. We show that in the aggregate defects observed experimentally (see paper
I) the noble metal atom is always on a lattice site. There is a stable orthorhombic pair consisting
of one Li atom on an interstitial site close to the noble metal impurity and a trigonal aggregate
consisting of the noble metal surrounded by three Li atoms on the nearest interstitial sites. The
hyperfine interactions (see paper I) with the noble metal, with Li, and also with Si are quantitatively
explained by an extension of the vacancy model and it is shown that the Si nucleus giving rise to
the prominent hyper6ne interaction is on a regular lattice site. We show that aggregates involving
two Li atoms are not stable. There is, however, a stable aggregate where four Li atoms are placed
around one Pt atom in a tetrahedral configuration. The analogous aggregate with Au has no state
in the gap and, therefore, would be a stable end product of the gettering process of Au by Li. Its
presence might be difBcult to prove experimentally.

I. INTRODUCTION

With electron paramagnetic resonance (EPR) and elec-
tron nuclear double resonance (ENDOR), the syinmetry
of aggregate defects of the noble metals Au and Pt with
Li has been determined (see the preceding paper, in the
following to be referred to as part I). We, thus, know
that within experimental accuracy, the defects have or-
thorhombic or trigonal symmetry, respectively. The or-
thorhombic defects consist of one noble metal atom and
one Li atom on a cubic axis. For the trigonal aggregates,
the experiments show that the noble metal and one Si
atom are on the trigonal axis, while three Li atoms are
placed on three equivalent mirror planes.

In order to establish a microscopic model of the ag-
gregate defects, one has to know which of the atoms are
built in on substitutional lattice sites, which are intersti-
tials, and what the interatomic distances are. This infor-
mation cannot be obtained from the experimental data.
From the order of magnitude agreement of the observed
hyperfine interactions (hfi) with the Pt nucleus for our ag-
gregate defects with that observed for isolated Pt (which
is identified as substitutional Pts,. with an orthorhombic
lattice distortion of the nearest neighbor ligands, ) one
is led to assume substitutional noble metal atoms in the
aggregate defects as well. All aggregate defects show hfi
with one shell of Si nuclei, which exceeds the h6 with the
other Si nuclei by one order of magnitude. From the ex-
perimental data one has no indication as to whether the
Si atom is on a regular lattice site or on an interstitial
position.

In this paper, we show that theoretical total energy

calculations provide a powerful tool for the development
of an atomic model for the aggregate defects: In Sec.
II, we sketch the computational method, in Sec. III, we
present the total energy results for isolated point defects
and compare these with total energies calculated for dif-
ferent models for the aggregate defects. From a com-
parison of the total energies, we can decide whether a
certain configuration is stable with respect to dissocia-
tion, whether it has a paramagnetic state, and what the
ionization energy is of this state. Combining total en-
ergy results with spin densities obtained theoretically in
comparison with hfi data obtained experimentally, one
can discriminate whether a given model is a proper can-
didate for one of the aggregates found experimentally.
In this way, we show that aggregates of the interstitial
noble metals, Pt;, or Au;, with Li are not stable and
that the calculated h6 data for these hypothetical aggre-
gates are incompatible with the data presented in part
I. In the same way, we show that the incorporation of
Si self-interstitials Si, into aggregate defects leads to a
prominent hfi with a Si nucleus that has not been ob-
served experimentally. In Sec. III, we concentrate on
defects where the noble metal atoms are substitutionally
bound on regular lattice sites. We find stable aggregates
of the noble metal ions: an orthorhombic pair defect with
one Li and a trigonal aggregate involving three Li ions,
which can be identified with the aggregates found exper-
imentally in part I. In Sec. IV, we extend the vacancy
model calculation of Anderson et aL ' for isolated Pt
point defects to these defect models. We show that our
aggregate models explain quantitatively the measured hfi
data of part I.
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II. COMPUTATIONAL

The ab initio self-consistent electronic-structure calcu-
lations are performed using a Green function approach.
In this approach, the problem separates into two parts,
the calculation of the Green function Go for the perfect
Si crystal, and the solution of a Dyson equation for Green
function G of the crystal with the impurities. The Green
function Go is calculated self-consistently treating ex-
change and correlation in the local spin-density approx-
iination (LSDA) of the spin-density functional theory
(DFT).s s The Green function G for the infinite crystal
with the impurities is obtained by a solution of Dyson's
equation,

G = Go+Go LV G.

Here, AV is the potential of the perturbation due to the
impurities. Dyson s equation is solved self-consistently
again using the DFT-LSBA method for an approximate
treatment of the many-body effects.

In order to obtain theoretically the paramagnetic prop-
erties, we used a computational method that fairly repre-
sents wave functions in the vicinity of the nuclei. In this
study, we used the linear-muon-tin-orbital method in
the atomic spheres approximation" (LMTO-ASA). In the
LMTO-ASA method, the crystal is divided into overlap-
ping spheres, each containing a spherical symmetrical po-
tential for which the Kohn-Sham (KS) equation is solved
directly. One-half of the spheres is centered around regu-
lar lattice sites, whereas the other half is centered around
the highly symmetrical interstitial sites in order to fill
the volume of the open diamond lattice. In our calcula-
tions, the positions of impurities forming a comple~ are
restricted to the centers of these spheres only. If we place
an impurity I on a lattice site, we shall denote it by Is;,
if we place it on a highly symmetrical interstitial site it
will be indicated by I, . Unfortunately, the use of the
ASA does not allow to treat the effect of lattice relax-
ations around the impurity. The effect of this relaxation
may be large, in particular, for the Li atom which is held
in the interstitial position by undirected ionic forces.

Prom the self-consistent solution of Dyson's equation,
we obtain the induced charge density, which is the dif-
ference between the charge density of the crystal with
defects and the charge density of the unperturbed crys-
tal. This density is composed of three contributions: The
first one arises &om the localized state solutions of the
KS equations, denoted as single-particle gap states. The
second contribution arises from resonancelike solutions of
the KS equation in the valence bands of the host lattice.
The contribution arising from the core states is generally
small, except for the spin polarization (the core polariza-
tion), which is large for impurities with an open d shell,
i.e. , for the noble metal impurities.

XII. RESULTS: TOTAL ENEB.GIES

We summarize the results of our LSDA calculations
in terms of total energies, E& t, and the binding energy,

bEb;„g, for the aggregate defects. In order to avoid the
comparison of total energies for differently charged sys-
tems, we consider neutral systems: if the defect is posi-
tively (negatively) charged, we consider the charged de-
fect plus the extra electron (hole) at the Fermi energy.
For a defect in the charge state n, the total energy Et t
of the corresponding neutral system thus depends on the
Fermi energy and is given by Et~~ ——Et ~ + nE&.

The binding energy, bEb;„g, of an aggregate defect
is defined as the difference between the sum of the to-
tal energies Eq t of the isolated point defects that form
the aggregate defect and the total energy of the ag-
gregate defect itself. As an example, we shall denote
as bEb;„d(Pts; —Li,),~b ——E«t(Pts, ) + Eton'(Li;)+
Ei t(Pt s;

—Li;),~b the energy gained by the formation
of the aggregate defect &om the constituents. Since
(Pts; —Li,.),tb can be considered to be formed combin-
ing Pts; with Li, or alternatively combining Pts,. with
Li,+, we always use the charge state combination that
leads to the lowest total energy.

A. Isolated point defects
of the noble metals Au and Pt and of Li

Our results for the isolated substitutional Pt and Au
point defects are similar to those obtained by Fazzio,
Caldas, and Zunger and by Heeler and SchefBer. The
electronic structure is described by the vacancy model
proposed by Watkins, as a vacancy interacting with
the 5d states &om the noble metal atom. Since the 5d
states for Au and Pt are tightly bound, the corresponding
single-particle states obtained &om a solution of the KS
equations form resonances in the valence band. This is
schematically shown in Fig. 1(a) for isolated Pts, These
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FIG. l. (a) Defect-induced single-particle states for substi-
tutional Pts.„(b) the orthorhombic (Pts; —Li,.)c, pair, and
(c) the trigonal [Pts; —(Li,.)s]c aggregate defect A [see Fig.
6(a)], respectively. The energy scales for the gap states and
for the valence band resonance states are difFerent. The ex-
change splitting for the valence band resonance states is not
shown. Full cicles represent occupied states (open circles rep-
resent empty ones).
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resonances are essentially Pt 5d states with little admix-
ture from the dangling vacancy bond states (the reso-
nances are too broad to resolve the spin exchange split-
ting of these states). The antibonding states [called dan-
gling bond hybrid (DBH) by Fazzio et al. ] are dangling
bond states with some admixture &om Pt p and d states.
We find that about O'Pp of the total DBH charge density is
p like in the Pt sphere and ll%%up is d like. The DBH single-
particle states in Fig. 1(a) are split by the spin exchange
interaction. Since in our calculations the orthorhombic
lattice distortion is left out, we have a ground state with
spin 3/2, in contrast to the experiment. While our re-
sults agree with those of Fazzio et al. , there is disagree-
ment with the structural model proposed by Ammerlaan
and van Oosten, which propose a d electron configu-
ration. Since the LSDA-DFT calculations are parameter
free, there is no possibility of reconcileing our results with
the model of Ref. 11. The results are also contrary to the
famous Ludwig and Woodbury model which, however,
was developed for 3d transition metal impurities rather
than for the 5d noble metals.

If the charge state of a defect is changed by adding an
electron, the energies of all single-particle states change
simultaneously. The electron removal energy E~ ~~~

of some point defect D is, therefore, not equal to the
single-particle energy of the state that is occupied ad-
ditionally. Instead it has to be determined as that po-
sition of E~, where the total energies Et; i (D( ) ) and
Et t(D( )) for the two charge states are equal. For the
isolated substitutional defects, we obtain E+~ = E +
0.52 eV (0.28 eV) and E ~ = E„+0.97"eV (0.65 eV)
for Pts; (Aus;), which compare reasonably well with the
experimental datai 0.32 eV (0.35 eV) and 0.94 eV (0.63
eV), respectively.

In Fig. 2, we compare the induced charge density of the
isolated Pts,. point defect with that of the isoelectronic
Aus;. The charge density arising from the d-like reso-
nances is centered around the noble metal nucleus, while
the more extended charge density arises predominantly
from the occupied DBH. Since the nuclear charge of Au
exceeds that of Pt by one elementary charge, the Au 5d

resonance states are more localized and also lower in en-
ergy by about 2.5 eV. Therefore, the hybridization of the
5d electrons with the vacancy orbitals is less pronounced
for Aus; than for Pts; and the energetic position of the
Aus; DBH is lower than that of the Pts; DBH.

We find that the total energies for isolated interstitial
Pt and Au point defects are higher than those for isolated
substitutional Pt and Au point defects by about 3.2 eV
for Pt and 4 eV for Au (see also Ref. 9). The localized
states for the interstitial noble metals are very high in the
gap and transform, according to the aq irreducible rep-
resentation of the point group Tg. These states would,
therefore, show a large contact hfi ( 8 GHz for Pt;) and
no dipolar h6, results that were not observed experimen-
tally.

Li is known to be a superfast difFuser which has an ex-
tremely shallow donor level. In aggregate defects with
noble metal atoms we expect, therefore, that Li, will
loose the outermost electron and predominantly act as
a bare ion. For substitutional Lip, , we find a vacancylike
state in the gap, which transforms according to the t2 ir-
reducible representation of Tg. The total energy of Lis;,
with respect to Li,-, is higher by 4.5 eV for intrinsic Si.
We, therefore, do not expect to have Lis; present forming
aggregate defects with noble metal defects. FurtherInore,
for Lis; the E ~ level is at E„+0.45 eV. Since our sam-
ples are predominantly n type owing to the presence of
Li;, any substitutional Li could be negatively charged.
This prevents the formation of aggregate defects with
the noble metals Au and Pt, which are known for their
electronegativity.

B. The orthorhombic (Pts; —Li,.) and (Aus; —Li,.)
PRlFS

Pt on a Si lattice site can form pairs with interstitial
Li, which either exhibit trigonal symmetry (with Li; be-
ing apart by a nearest neighbor distance from Pts;) or
orthorhombic symmetry (in which case the Pts; and Li,
constituents are separated by a next nearest neighbor
distance). For the orthorhombic pair, we show in Fig.

FIG. 2. Contour plot of the induced
charge density of isolated Pts, (a) and Aus;
(b) in the (110) plane. Positive densities are
indicated by full lines, negative densities by
dashed lines, respectively. The nearest neigh-
bor Si lattice points are connected by straight
lines.
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FIG. 3. Total energies for the orthorhoinbic (Pts; —Li,.)~
pair (a) and the (Aus; —Li,.)( ~ pair (b) in the charge states n,
as a function of the Fermi energy. Lines with positive slopes
correspond to n =1, negative slopes belong to n = —1, and
zero slopes indicate neutral pairs, respectively. Full lines cor-
respond to the low-spin configurations (S = 0, and S = 1/2)
and dashed lines correspond to the high-spin configurations
(S = 2/2 and S = 3/2). The dotted lines correspond to the
sum of the total energies of isolated Pts; and Li, and circles
mark ionization energies.

1(b) the single-particle energies. The main effect of the
pair formation on the Pts,. related electronic states is a
shift of the 5d resonances by about 1 eV to lower ener-
gies, while the DBH states shift by about half this value.
Of course, the lowering of the symmetry from Td to C2„
splits the states that transform according to the t2 and
e irreducible representations of the Tg group into states
that transform according to the a1, 61, and 62 and to the
a1, and a2 representations, respectively, of the C2„point
group, but these crystal f1eld splittings are with 0.1 eV
rather small. The exchange splitting between the spin-
up and spin-down states is even smaller and, therefore,
the ground states of the pairs are low-spin states for all
charge states. This is shown in Fig. 3, where the to-
tal energies of the difI'erent charge and spin states of the
(Pts; —Li;)c,„and (Aus; —Li,.)c, pairs are compared

with the sum of the total energies of the isolated point
defects used to form the pairs. For both pairs in the
neutral and negative charge state, we f1nd bEb;„g 0.5
eV, while for the positive charge state the binding en-
ergy is smaller. Note that the neutral charge state of
the (Pts; —Li,.)c, pair has the paramagnetic S = 1/2
ground state observed experimentally: For a homoge-
neous n-type crystal the negatively charged pair state
will be diamagnetic in thermal equilibrium. For the or-
thorhombic (Aus; —Li,)c, pair, the ground state of the
neutral charge state has zero spin, whereas both the pos-
itive and negative charge states have a S = 1/2 ground
state.

The induced charge density of the (Pts; —Li,.)~, pair
is shown in Fig. 4(a) as a contour plot in the (110) plane.
The main difFerence to the corresponding Fig. 2 arises
from the attractive potential of the Li ion, which in-
creases the electron density in the interstitial region con-
siderably. In contrast, the calculated total spin density,
plotted in Fig. 4(b), is essentially the spin density of a
singly occupied 61 orbital and hardly affected by the pres-
ence of Li. From the spin density shown in Fig. 4(b), one
can directly see that there are two equivalent Si nuclei for
which the hf1 is large, for the Si nuclei on the orthorhom-
bic axis the spin density is extremely small. The spin
density at the Li atom is practically zero.

The pair binding energies hEb;„q of the (Pts; —Li,.)c,„
and (Aus; —Li, )~,„pairs are shown as a function of the
Fermi energy in Fig. 5. We also show corresponding data
for trigonal (Pts; —Li, )~, and (Aus; —Li, )~, pairs in-
volving a single Li ion. Of course, the smallness of the
energy differences of the binding energies for both con-
figurations does not allow us to predict which of the con-
figurations is more stable. In the samples studied exper-
imentally in part I, no trace was found of these trigonal
pairs.

C. The trigonal [Pts; —(Li;)s] and [Aus;-(Li;)e]
aggregate defects

The most intriguing feature of the trigonal aggregate
defects is the prominent hfi with one Si nucleus, which
was resolved by EPR. The fact that a single Si nucleus is

Li

FIG. 4. Contour plot of the induced
charge density (a) and of the total spin den-
sity (b) of the orthorhombic (Pts; —Li,.)o,„
pair in the (110)plane. Positive densities are
indicated by full lines, negative densities by
dashed lines, respectively.

~
a

I

Pt
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FIG. 5. Binding energies 6Eb;„4 for the orthorhombic (bold
line) and the trigonal (light line) (Pts; —Li,.)( pairs (a) and

( s; — ';) pairs (b), as a function of the Fermi energy.Au —I i.s&( )

Pull circles mark ionization energies for the pair while empty
circles mark ionization energies of the isolated Pts; and Aus;,
respectively. The charge states of the pairs are denoted by n.

"highlighted" by a large spin density suggests that this
nucleus is built in on a prominent lattice position. We
have performed theoretical investigations of trigonal. a-ag-
gregate defects containing Si;, which show that for ag-
gregate defects involving Si, , the calculated spin-density
distribution is incompatible with the Si hfi observed ex-
perimentally.

FIG. 7. Contour plot of the induced charge density (a) and
of the total spin density (b) of the trigonal [Pts; —(Li,.)s]oe„
aggregate in the (110) plane [defect A, see Fig. 6(a)]. Posi-
tive densities are indicated by full lines, negative densities by
dashed lines, respectively. The trigonal axis is indicated bY
an arrow.

FIG. 6. Schematic representation of the atomic structures
for the [Pts; —(Li,.)s]o,„aggregate defects A (a) and R (b).

Since we know &om ENDOR that three equivalent Li
nuclei are present in the trigonal aggregate defects, the
"highlighted" Si nucleus could be situated on a regular
lattice position next to Pts; close to the three Li ions.
We present results for two possible aggregate defects with
trigonal symmetry, called aggregate defect A and aggre-
gate defect B. These are sketched schematically in Fig.
6. In aggregate A the three Li atoms are separated by a
nearest neighbor distance from the Pt in (111)directions,
while for aggregate B the Li atoms are apart by a next
nearest neighbor distance in (100) directions.

In the neutral charge state [Pts; —(Li.) ]o of the
l

Si j 3 C3„
p atinum-related aggregate defect, the t2-related single-
particle DBH states are occupied by five electrons, which
allows for a spin I/2 state only. In its negative charge
state, the aggregate defect is spinless as is the ground
state of [Pts; —(Li,.)s]~

The presence of a trigonal crystal field splits the DBH
into states transforming according to the ai and e irre-
ducible representations of the group C3„. In agreement
with most trigonal pairs (see, e.g. , the Fe-Al pairi4&

'l ' ') )

the single-particle state transforming according to aq is
higher in energy than the e state. For the neutral ag-
gregate defect [Pts; —(Li,)s]&, we thus find an orbital
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FIG. 8. Total energies for the trigonal [Pts;
—(Li,.)s]o (a) and [Aus; —(Li,.)s]o (b) aggregate defects
A and H in the charge states (n), as a function of the Fermi
energy. Lines with positive slope correspond to n =1, nega-
tive slopes belong to n = —1, and zero slopes indicate neutral
pairs. Full lines correspond to the low-spin states (S = 0,
and S = 1/2) and dashed lines correspond to the high-spin
states (S = 2/2 and S = 3/2) of aggregate A. For aggregate
B (dash-dotted lines) only the Iow-spin states are shown.

singlet as ground state. The single-electron states for
aggregate A are shown in Fig. 1(c).

The induced charge density for the neutral aggregate
defect A plotted in the (110) plane is shown in Fig. 7(a).
It can be seen that the attractive potential of the three
Li,+ ions leads to a considerable accumulation of elec-
trons at the Pt and in the interstitial region occupied by
the three Li ions. There is an accumulation of electron
density near the Li nuclei, much more than one would ex-

pect for a shallow effective-mass-like state. The induced
charge density at the Si ligand on the trigonal axis is
practically zero and much smaller than that at the other
Si ligands in the vicinity of the Pt atom. However, the
spin density, Fig. 7(b), is centered around the [111]axis
and clearly the Si nucleus on the trigonal axis will show
a hfi that difFers &om the other Si ligands. In contrast
to the charge density, the spin density at the Li nuclei is
very small.

The total energies of the aggregate defects
[Pts; —(Li,)s]o, and [Aus; —(Li,)q]o, are shown in Fig.
8(a) and (b), respectively. For both aggregate defects,
the con6guration A is more tightly bound than conf1g-
uration B by about 1 eV. We, therefore, conclude that
the trigonal aggregates found experimentally are better
described by con6guration A. According to the results
shown in Fig. 8 this charge state is present for p-type
samples only. This result is in perfect agreement with
the observation that for the gold-related trigonal defect
the paramagnetic state is not observed, except during il-
lumination. The binding energies bEb;„g of the trigonal
aggregate defects are rather large and vary strongly with
the position of the Fermi level (Fig. 9). The large binding
energy is compatible with the fact that these aggregate
defects are formed at elevated annealing temperatures at
the expense of the orthorhombic pairs.

D. Noble metal aggregate defects with two and four
Li ions

Having observed the aggregate states of the noble met-
als Au and Pt with one Li ion and also with three Li ions,
one might speculate that there are also aggregates with
two and four Li ions. We, therefore, performed total en-
ergy calculations for an orthorhombic aggregate with two
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FIG. 9. Binding energies for the trigonal [Pts; —(Li,.)s]o,„
aggregate defects A (full lines) and H (light lines), and for
the trigonal [Aus; —(Li,.)q]os„complexes (b), as a function
of the Fermi energy. Full circles mark ionization energies for
the aggregates, while empty circles mark ionization energies
of the isolated Pts; and Aus;, respectively. The charge states
of the aggregates are denoted by n, the charge state of the
noble metal is denoted by m.
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FIG. 10. Total energy for the tetrahedral [Pts; —(Li, )4]

aggregate defects in charge state n (full lines), compared with
the sum of the total energies for the trigonal [Pts; —(Li, )s]
aggregate defects A. and for one isolated Li,+ (dash-dotted
lines).
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Li ions. We Gnd. that the segregation reaction

2 [Pts; —(Li,.)2]: [Pts; —(Li,.) ] + [Pts; —(Li,.)]
is exothermic by about 1.2 eV for all charge states of
the aggregate and also for the aggregates with Au. It is,
therefore, unlikely that [Pts; —(Li,.)2] or [Aus; —(Li,.)2]
aggregates are formed in larger concentrations.

According to our calculations, however, a tetrahedral
[Pts; —(Li,.)4]T; aggregate defect should be quite stable.
We present the total energy of this aggregate defect in
Fig. 10 in comparison with the sum of the total ener-
gies of [Pts; —(Li, )s]c, and of an isolated Li,+. point de-
fect. Obviously the tetrahedral aggregate defect should
be quite stable in Li-rich material. Its observation will be
hindered by the fact that it is paramagnetic in p-type ma-
terial only. Since the state in the gap transforms accord-
ing to the t2 irreducible representation the tetrahedral
aggregate defect could be subject to a Jahn-Teller (JT)
distortion. This aggregate defect has not been observed
to date as no p-type samples have been investigated so
far.

According to our calculations, the analogous tetrahe-
dral aggregate defect with Au should exists in the positive
charge state only, [Aus; —(Li,. )4]z+ . It should be tightly
bound. Since there is no gap state it would be a perfect
end product of a Au gettering process. However, it might
be diflicult to find such an aggregate experimentally.

A. Orthorhombic pair defects

EEectr anic 8tr ucture

AN~
(2P)

AN
2

Alv (2P)

AN
2

AiV
2 z

Our SCF calculations show that for Pt-Li, and Au-Li,
the t2-derived DBH are vacancy orbitals P ' admixed
with p-like and d-like Pt and Au orbitals, i.e. ,

cosPldi& + sinPlp~&,

It2 )=NQ'+M/ ', j=(gg, N +M =l.
(2)

This t2 H manifold is split under the inHuence of an or-
thorhombic Geld into states that transform like ai, bi,
and b2 in C2 . Since for the noble metal d functions
two different states transform according to the ai irre-
ducible representation of the C2 group, we use the lin-
ear combination IP &

= cospldq, & + sinpld, &. We make
the approximation that the spin-orbit interaction in the
t& manifold comes entirely from those parts of the or-
bitals localized on the noble metal atom. ' In the basis
((bq, ib2, aj), (bq, —ib2, —a~) j, the matrix of the total
Hamiltonian —crystal field (tetragonal ED, , rhombic
Z,h) plus spin-orbit interaction (A) —separates into two
identical blocks,

IV. HYPERFINE INTERACTIONS

Our total energy calculations presented in the previ-
ous chapters strongly suggest that the orthorhombic de-
fects observed experimentally (part I) are pairs of one Pt
(Au) on a Si lattice site and one Li on the next nearest
neighbor interstitial site, whereas the trigonal centers are
aggregates of one Pt (Au) on a Si lattice site and three
Li atoms on the nearest neighbor interstitial sites. We
will show that these identifications are supported, if we
extend our calculations to the g factors and hfi parame-
ters.

For the noble metals Pt and Au, spin-orbit interac-
tion cannot be neglected. as has been demonstrated for
isolated. Pts; by Anderson et al. ' We extend their treat-
ment to our aggregate defects in this section. While
our SCF calculations are based on charge densities in
the limiting case of zero spin-orbit interaction taking
full account of crystal field. s, we switch to a description
with LCAO single-particle wave functions. We include
the spin-orbit interaction, using the single-particle wave
functions of the SCF calculations as basis functions.

The eigenfunctions to the crystal fields and spin-orbit
interaction depend basically on the ratio of the crystal
field splitting parameters A, g to the effective spin-orbit
splitting A'. We take these ratios as &ee parameters,
which are optimized to approximate the g factors and hfi
with the noble metal nucleus. With the eigenfunctions
thus determined, we calculate the hfi with the Li nuclei
and with the Si ligand nuclei for both the orthorhombic
and the trigonal complexes.

with z = cos Puq —sin P, q = cos Pu2 —sin P, uq ——

cosp+ v 3 sing, and u2 ——cosy —~3sinp. The crystal
field splitting parameters AD, „and L,h, which Ander-
son et al. used to describe static JT distortions are now
primarily due to the Li+ ion. Diagonalization of (3) leads
to three Kramers pairs I+) and

I

—) described by 8' =
2

(with three sets of coefficients u, v, and tv),

I+) = ulb~& —'vlb. ) + ~la~&

I

—
&

= ulb~&+ ivlb2& —~la~&.

Each pair is split by the electronic Zeeman interaction,

Hz = pa(g. S.B+L.B),

that leads to the following g factors in terms of u, v,
ui y

and u2,

g = g, (l —2v —2n) ) +4N vur[cos Pug —sin P],
g„=g, (l —2v ) —4N um[cos j9u2 slI1 P]&

g, = g, (l —2m ) + 4N uv cos(2P). (6)

The indices x, y, and z refer to a defect symmetry-
adapted coordinate system, which in terms of the crystal-
adapted coordinate system (where x', y', and z' refer to
the cubic axes) is given by x

II [110]', y II [110]', and
z II [oo1]'.

8. Pt and A.u hyperfine interaction

(a) The hfi matrix elements. The Harniltonian repre-
senting the hfi of an electron with a nuclear spin I has
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TABLE I. SCF parameters used for the calculation of the
hfi constants for Pt and Au. All values are in MHz. A = —[u —3uv + 2v —lv vi —uBJvs]N Pd cos Pdd 2 2 2 2 2

7
Element

195pt

197A

Defect
Pt-Li
Pt-Li3
Au-Ll
Au-Li3

Pg
1876
1875

186
180

Pp
6000
6000

720
621

A
—14.8
—9.6
—3.4

2
+—[1+

5

A = ——[2udd= 2 2
uu

2——[1+
5

v + 3uv —3viv]N

Pepsin

P, (9c)

u + 3uv —3uiv]N

Pepsin

P,

3vv —v —zU v2 —vlUV4]N Pd cos P2 2 2 2

the general form

(L S r(S r) 8
II& —2» p»&I I

+ 3 + —7rSb(r)
I

.

(7a)

Here, g~ is the nuclear g factor of the nucleus with spin
I, and p~ is the nuclear magneton. To this, we add the
many-electron correction,

II,p ——A (S.I),
where A, = 2g~p~p~ s ~~ Q,.(Ip+(0)I2 —Irp,. (0) I2) is a
measure of the core polarization. The summation con-
tains all core orbitals. Using the formalism with an ef-
fective spin 8' = 2, the matrix elements of (7) read in the
principal axes system of the orthorhombic pair defect,

'H~ ——4 8 I + Ayy8yIy+ A, 5 I„
where 8, 8&, 8, denote effective spin operators (trans-
forming according to the irreducible representations B2,
Hr, and A2 of C2„, respectively). In the case of hfi with

Pt or Au, the corresponding eigenfunctions are (p-
d)-like, thus the contact term in (7a) does not contribute
while the core polarization (7b) leads to

A' = (1 —2v —2zv )A„
A„„=(1 —2v )A,
A;, = (1 —2rv')A,

(9a)

The contributions of the first term in (7a) are obtained
with the approximation used for the evaluation of (5)

A ' = 4N vut[cos PurPq —sin PP„],
A„'„=—4N urv[cos Pu2Pq —sin PP„],
A,; = 4N uv[cos PPg —sin PP„],

(9b)

with ui, u2 as in (6), and Pd = 2g~p~p~(r )g, P&
2grvp~p~(r )z. We denote the average values of r
with respect to Pt or Au "valence" one-electron d and p
orbitals by (r )g and (r )~, respectively.

The final part of (7a) the dipole-dipole interaction—leads to the following expressions:

A. = —[1 —iv + iv (vi + v2) + uvs + vv4]N Pd cos P

——[1 + iv —3(u + v) n)]N Pp sin P,

with vi ——cos(2p) —v 3 sin(2p), v2 = cos(2p)+ csin(2p),
vs = 3 cos(p) + v 3 sin(p), and v4 = 3 cos(p) —v 3 sin(p).

(6) Comparison urith EPR and ENDOR experiments.
In order to find a reasonable set of parameters, we use
the following procedure: The three eigenvalues of Eq. (3)
and their corresponding eigenvectors are functions of the
parameters bi ——&~", , 82 —— &~',", and P (neglecting p in
a first approximatiori). Since the three Kramers doublets
have to be occupied with three electrons, we only have
to consider the second eigenvalue with its corresponding
eigenvector in a one-electron approximation. %'ith its
coefficients u, v, rv, we calculate the g values (6) and the
hyperfine constants (9). For the hfi parameters A„P„,
and Pd, we take the calculated SCF values listed in Ta-
ble I (Ref. 18) and choose the parametes bi, b2, P, and

to reproduce the experimentally determined data (in
a second step we include p). The results of this proce-
dure are shown in Table II and Table III. Although we
use a rather simple one-electron theory, the calculated
total values are reasonably close to the measured values.
Table III shows that for both pairs the orbital contribu-
tions to the g factors are relatively small compared to the
contribution from the spin magnetism, but that the or-
bital contribution to the hfi constants can be comparable
to the dipole-dipole contributions to the h6 constants.
Thus, the hG constants cannot be identified with spin
densities even in a simple one-electron approximation.
Since the experimental data are determined by EPR, we
cannot compare the signs of our theoretical data to the
experiment. The large deviations of the experimental g„
values from the free electron value g=2 is indicative of a
larger admixture of noble metal t2 orbitals into the DBH,
as compared to the case of isolated platinum. There-
fore, our evaluation of the matrix elements including only
those parts of the DBH that are localized on the noble
metal becomes less accurate. We, therefore, consider the
set of parameters given here as a erst approximation in
a perturbation series. A more appropriate evaluation of
the matrix elements will retain the main features of our
results: a ground state of nearly B~ symmetry with an

b1

4.8
&40

Element
195pt
197A

b2

6.6
)40

—0.2356
—0.3036

TABLE II. Ground state parameters of the orthorhombic pairs as "seen" in EPR.

y

0.9698 0.0
0.9527 —0.05
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TABLE III. Calculated Zeeman and hfi (in MHz) parameters for Pt and Au of the or-
thorhombic pairs. x [] [110]', y ]] [110]', z ][ [001]'.

195p

7A

Contrib.
spin

orbital

total
exp.
spin

orbital
d-d

total
exp.

g~
1.762
0.012

1.775
1.746
1.631
0.0

1.631
1.548

gy
1.984
0.198

2.183
2.250
2.000
0.154

2.154
2.456

gz
1.777

—0.052

1.725
1.769
1.631

—0.003

1.728
1.629

A
—13.0

23.3
220.1
230.4
247.
—2.8

0.2
10.8
8.2
(3

A„y
—14.7
364.6

—235.6
114.3
118.
—3.4
28.7

—11.4
13.9
8.5

A
—13.2
—96.0

39.7
—69.5
134.
—2.8
—0.6

1.2
—2.2
(3

EPR data, sign unknown.
Unresolved but estimated fram EPR linewidth.

admixture of A. i symmetry, which is bigger than in the
case of isolated platinum.

8. "Li and zsSi hyper/inc interaction

The Li and Si hfi (Li-hfi, Si-hfi) are calculated in
our LCAO scheme mixing symmetry-adapted linear com-
binations of ligand orbitals ([s)~, ]p~) ~, with A = Li, Si,
j = x, y, z) into the one-electron functions, which gen-
erate the electronic ground state. As we have found a
ground state with nearly exact Bi symmetry, we neglect
all mixing of orbitals, due to spin-orbit interaction and
deal with a pure 6» orbital to calculate the Li-h6 and the
Si-hfi.

For the calculation of the matrix elements of Eq. (7),
where now I is the ligand nuclear spin, it is convenient to
split the spin density into the part contained within the
ligand atomic sphere, the spin density in the Pt sphere,
and the rest (which is ignored). The first part can be
evaluated directly as A&'s ——sg~spH)aiv(r )„'s, while the

second Part is given by A&s ——2giv P&P~N /R aPProx-
imating the distribution of the magnetic moment in the
Pt sphere by a point dipole.

(a) Lithium hyperfine interaction. Since the Li atom
is located on a twofold rotation axis, we augment the bq

orbital to

]bi) = Po]bi) .+P.~p*)L',

where ]bi)„,is the the eigenfunction of the orthorhombic
crystal field constucted in Sec. IVA1. From our SCF
calculations, we know that Li 8 and p orbitals contribute
with pi (( l.

Calculation of the matrix elements of (7) leads to

~Li + 2p2~Li ~Li
~Li p2~Li ~Li

c 1 loc d

~Li p2~Li + 2~Li

Using the results of our SCF calculations, we obtain h6

parameters, which have the same order of magnitude
as the data determined experimentally (see part I). The
smallness of the overall values prohibit quantitative com-
parison.

(b) Silicon hyperfine interaction. Since one large Si-hfi
is measured experimentally, we restrict our analysis to
this prominent Si-hfi and assign the values to Si(1, 1, 1) .
For shortness, we only explain the Si-hfi of Pt-Li and
refer to the similarities for Au-Li.

According to Anderson et al. the Si(ill)'-hfi, with
respect to the bq orbital, can be written as

(+SH)bq = S T(1 1 1)' I(1 1 1)' & (12)

where

T(. ..)
= (M /2)T(,2 0

M2/2 describes the fraction of Si wave functions in the
total wave function of the defect and

0 0

T(i,],i)
0 0 a+2b)

Here, p, and p„denote the squared prefactors of the 8
and p part of the Si wave function. According to our
SCF calculations, we find about 7.3 jo s and p &action of
the DBH localized on Si(1, 1, 1)' with (M2/2)a = —60.8
MHz and (M /2)b = —7.1 MHz. When we decompose

The Si hyperfine (hf) tensor is written in its principal
axes system, where its z axis may be slightly tilted from
[ill]' towards [001]' [in the (110) plane]. The parameter
a in Eq. (14) describes the contact interaction of the s
part of the wave function of the Si atom, and 6 describes
the dipole-dipole interaction. Neglecting core polariza-
tion, we have

167t. 2gwV~V~]4. (0)l p. ,3
4

b = giv v a px (r ) s—

ipse

5
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the measured values into the parameters a and 6 and
approximately take A~zzo~

——a + 26, we find reasonable
agreement (—84 MHz, —4.8 MHz).

B. Trigonal defects

2. issPt and is"Au hyperfine interaction

(a) The hf matrix elements. The Pt hfi constants
are calculated from the matrix elements of the hf Hamil-
tonian of Eq. (7) taken for the ground state (A3) and
compared with the axially symmetric spin Hamiltonian,

Electranic stt'uctuv e 'R~ = [A(~S,I, + A~($ I + Sylph)]. (18)

'Rz = p~[g)~S, B +g~(8 B +S„B„)],
with

g(~
= g, (g —h ) + 2g;h ,

g~ = g~g + v Sgigh. (17)

For g&, g, and h, , we refer to the Appendix.

The trigonal (Pt-Lis) and (Au-Lis) defects are treated
using a modified vacancy model. Because of the close
similarity of the (Pt-Lis) and the (Au-Lis), we restrict
our discussion to the Pt related defect. We deal with
linear combinations of Pt and vacancylike orbitals trans-
forming according to the t2 irreducible representation of
Tg. The combined eÃect of spin-orbit interaction and
a trigonal field caused by the three Li atoms and also
by lattice relaxations leads to three new Kramers dou-
blets, which have to be occupied with five electrons leav-
ing one single unpaired electron. We approximate the
many-electron ground state in a one-electron theory by
this singly occupied level.

Our SCF calculations reveal an aq DBH as the highest
one-electron level for both trigonal systems. The spin-
orbit interaction mixes e orbitals into the a~ orbitals
leading to the 8' =

2 eigenfunctions I+) and
I

—). For
details, we refer to the Appendix. As in the case of the
orthorhombic pair defects, it is useful to introduce a de-
fect symmetry-adapted coordinate system. We choose
x II [112]', y II

[110]', and z II [111]', where the primed
coordinates x', y', z' give the cubic axes of the crystal.

The calculation of the matrix elements of the Zeeman
Hamiltonian (5) for the ground state functions (A3) of
the trigonal complexes leads to the axially symmetric
spin Hamiltonian,

The results are

Aii ——A, (g —h ),
A~ ——A,g,

A~~'
—

gi 2h (co-s PP~ —sin PP„),

A~ = g;~8gh(cos PPd, —sin PPj, ),
d 2

A~~
——[1+g + v2gh] cos PN Pd,

II

2+—[1+g + 3v 3gh] sin PN Pp,

1+ cos PN Pd
2 2gh
7

——[1 + 2h —v 2gh] sin PN P„.

(19)

P~ and Pz are defined in Eq. (9b).
(b) comparison isith EPR and ENDOR. The proce-

dure to calculate the EPR and ENDOR related parame-
ters follows closely that for the orthorhombic pairs. We
take A„Pd, and P„(Table I) from our SCF calcula-
tions and choose P, P, and N2 (A3) to approximate the
Zeeman and noble metal hfi values. The results are given
in Table IV. For Pt-Li3, we show three diferent sets of
ground state parameters and their corresponding Zeeman
and hfi values. The values of g~ are slightly too small
when compared to the experimental data. The agreement
could be improved at the expense of the agreement of
the hf data. For Au-Li3, we show only one set of ground
state, Zeeman, and hfi data. The g values reveal the
same deficit as the ones for Pt-Li3. The hfi data are too
small when compared to the experimental data but show
correct signs. The experimental data are determined by
ENDOR and have equal signs (the experimental hfi data
for Pt of Pt-Li3 are determined by EPR, thus only ab-
solute values can be determined). However, despite their

TABLE IV. Three sets of ground state, Zeeman, and hfi (in MHz) parameters of (Pt-Li3), and
(Au-Lis).

~~
and J refer to the trigonal axis.

197A

Fit
1
2
3

exp.
1

exp.

—0.1570
—0.1570
—0.0627

—0.1885

—0.40
—0.39

—0.4

0.40
0.45
0.45

0.0

gg
2.0728
2.0597
2.0351
2.1654
2.1380
2.2143

&II

1.8884
1.8900
1.9823
1.8984
1.8314
1.8517

Ag
—237

327
—339

321.
24.2
36.3

A
II

546
600
694
696.

34.5
51.7

EPR data, sign unknown.
Relative sign AII to A~ known from ENDOR.
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TABLE V. Decomposition of Zeeman and hfi (in MHz)
parameter of the third fit for the noble metal atoms of (Pt-Li3)
and (Au-Lip).

TABLE VI. Angular-momentum- and site-projected den-
sity of states of our SCF calculations as covalent admixture
parameters (10 ) for Li.

Con.trib.
SPlIl

l95p orbital
d-d

total
SPlIl

l97A orbital
d-d

total

Ag
—9.6
26.6

—356.2
1.9823 —339.2
1.8595 4.6

—0.0280 37.5
—17.9

24.2

2.0351
1.9297
0.2082

2.1380

gg gll
1.9921 1.9842
0.0429 —0.0020

All
—9.5
—1.2
705.1
694.4

4.5
—5.1
35.1
34.5

(p:)'
5.444

(p:)'
0.059

AP4
—1.507

(A )'
22.93

A~ ~ = —A~' + —(Ps —2 V 2Pz Ps )A,"'„
3 6

(p:)'
22.869

too small absolute values, our calculated data show the
correct tendency (based on the positive sign of A, ).

A decomposition of our calculated data into the diQ'er-

ent contributions (Table V) reveals that the data for the
hfi with Pt of Pt-Li3 is dominated by the dipole-dipole
contributions, whereas the data for the h6 with Au of
Au-Li3 results from a complex combination of spin and
orbital momentum related parts. Bearing in mind that
we deal with a one-electron theory in the sense of erst
order perturbation theory, we see a reasonable agreement
of calculated. and measured values.

8. "Li and Si hyperfine interaction

In this section, we try to explain the antisymmetry
parameter of the Li-hfi and the Si-hfi again restricting
our attention to the Pt related defect. We present the
main ideas and results here and refer to the Appendix
for details.

(a) Lithium hfi. As in the case of the orthorhombic
pairs, we augment the one-electron orbitals of the defect
by Li 8 and p functions, construct with these the eigen-
functions for an effective spin 8' = 2, and calculate the
matrix elements of the hf Hamiltonian (7) with respect
to the electron operators, leaving the nuclear spin as an
operator. Comparison of these matrix elements with the
spin Hamiltonian

&z,.--hf = -&. &I, (2o)

leads to the expressions for A;~ of Eq. (Afi). With the ap-
proximation h, 0 and g —1, the nonvanishing Fermi
contact contributions of Eq. (A7) are

A = A'„„=A = —(Pi) y+ A,"',

A = —A', = —ghP~P;y,3
(21a)

with y = s g~'pgyy~~P, "'(0)
~

and A~ as in (7a). The
nonvanishing aq-restricted dipole-dipole parts of Eq. (AS)
are

r.;A~'+ —l~2(Pz —Ps) —P2P.]Ai.'.,

Ayy
———A~' ——(P2 + Ps + 2V 2P2Ps) A, '„

6 (21b)

A„= ——Aq' + —(pz + 2v 2p2 ps) A) '„

where we omitted the superscript a for all coefficients P;.
The Fermi contact contribution contains an antisymmet-
rical part caused by spin-orbit interaction. Without core
polarization, our SCF values (Tables I and VI) lead to
an isotropic contact contribution of about 1.14 MHz, an
antisymmetry parameter of A = 0.7 MHz, and a dipole-
dipole contribution of (in MHz)

(1.79 O O.5S )
0 —1.16 0

( o.5s o —o.63 )
(22)

The eigenvalues of (22) can be parametrized by 6 =
0.96 MHz and b' = 0.20 MHz in fair agreement with the
measured values. According to our SCF calculations, we
have A = —0.89 MHz. This leads to an isotropic to-
tal value of at~a ——0.25 MHz, which is too small when
compared to the measured value (a,„p ——1.2S5 MHz).
Again, because of the relatively small absolute values and
the complex competition between diferent many-electron
efFects (core and valence band polarization), we cannot
expect perfect agreement of our calculated admixture co-
eKcients: our calculated Pq value is too small when com-
pared to the experimental data. A larger Pq value would
also lead to a larger antisymmetry parameter, in general
agreement with the experimental data.

The relatively small admixtures of e orbitals into the aq
orbital, which turn out to be important for the antisym-
metry just discussed, are unimportant for the calculation
of the dipole-dipole contributions. Here, the major eKect
is caused by A&'. We, therefore, calculate the param-
eters b and b' with full account of those many-electron
eBects, which are treated in our SCF calculations.
We obtain b = 0.541 MHz, b' = 0.285 MHz and the
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Si(1,1)1) gS1, 2 S1
c ~ &2& ~d 4~loc~

( i i ) QSl + 2 Sl+ 2~S1
jj c +2+ & f3 lac (23)

Using our SCF results, we obtain A '+pzy ' ——50 MHz,
Ag = —0.48 MHz, and p&A&', —l7 MHz. Comparing
these values with their experimental counterparts (Io, l

=
166 MHz and lbl = 13 MHz), we find our isotropic value
by about a factor 3 too small, but the anisotropic value
quite close to the measured value.

eigendirection [112]—1.1'.
(6) Silicon hfi. As a candidate for the observed large

Si-hfi, we only have the Si(1, 1, 1)' neighbor to the Pt lo-
cated on the trigonal axis. Augmenting the defect eigen-
functions by the Si(1, 1, 1)' orbitals, we calculate the hfi
matrix elements and compare these with an axially sym-
metric spin Hamiltonian similar to that of Fq. (18). In
the limit of nearly Ai symmetry (P = 0), we obtain the
following hfi parameters:
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APPENDIX. A: VACANCY MODEL FOB.
TB.ICONAL DEFECTS

1. Electronic structure

According to the vacancy model, we Inix Pt p-like and
d-like functions transforming according to the t2 irre-
ducible representation of T~ into the vacancy orbitals,
see Eq. (2). The appropriate linear combinations of
p and d functions are Ip~), Ip~), Ipy), and Ids, 2 2),

-( —', I&. „)+ —,'Id. ,)), -', Id.„) —
—,'Iz„,). with

these functions, we form eigenfunctions of a fictitious an-
gular momentum: / = 1

+ i) = ~" +'",
10) = lo, )

2

V. CC)N CLU 8ION S

We have shown that our a,b initio total energy calcula-
tions (treating many-electron effects in the LSDA to the
DFT and disregarding lattice relaxations) combined with
a subsequent inclusion of spin-orbit interaction efFects
provide a powerful tool for the microscopic defect iden-
tification. Our total energy calculations ruled out cer-
tain classes of defect models (containing interstitial noble
metal atoms, substitutional Li, and Si self-interstitials)
considering geometrical arrangements as well as elec-
tronic states, leaving the model of a pair defect consisting
of a substitutional noble metal atom and a Li ion situ-
ated on an interstitial site at approximately next nearest
neighbor distance along a cubic axis, for the measured
orthorhombic aggregates and a defect model of a sub-
stitutional noble metal atom surrounded by three inter-
stitial Li ions for the measured trigonal aggregates. On
the basis of our total energy calculations, we explained
why there are noble metal ion aggregates with one and
three Li ions, respectively, but none with two Li ions,
and predict the existance of a tetrahedral aggregate with
four Li ions which, for Au as the noble metal, would
have no state in the gap. However, with Pt it should
be observable. IA'e have shown that our calculated elec-
tronic structures of the isolated sustitutional noble metal
atoms, as well as their related defect complexes studied
experimentally (part I), can easily be interpreted in the
vacancy model for impurities of 5d elements in Si G.rst
proposed by Watkins.

In an extended vacancy model treating crystal fields
and spin-orbit interaction in a one-electron approxima-
tion, we were able to calculate g factors and hfi constants
for various nuclei (Au, Pt, Li, Si) that compare reason-
ably well with the measured values of part I.

t',
'R~, ——bt g 5 ——

I + A'l 8,3j
where we use A' = g&A.

Occupation of the three eigenstates of 'Rc, with five
electrons leaves the singly occupied Kramers pair de-
scribed by S' = 2,

I+) = hl1) 4+gl0) &

I-) = bl —» &+glo)»

(A3)

TABLE VII. Unnormalized symmetry-adapted linear com-
binations of Li 8 and p functions. The indices 2,3,4 number
the I.i positions (1, 1, —1)', (—1, 1, 1&', (1, —1, 1)', respectively.

e(23

II', k)
ls'&2+ ls')'+ ls')4
Ip* + pv )2 + I», + p- ):» + I». + p- )4

I» - & + lp* &. +
I p. &

2lp. + p, &~
—I», + p. )s —I». + p. &4

2fp- ) —I»* )s —
lpga &4

8 3 —8

lpv +p. )s —lp* +p")4
I». ). —I». )4

with the efFective orbital g factor of g&
———K cos(2P).

According to the signer-Eckart theorem, the trigo-
nal splitting of the t2 level and the spin-orbit interaction
of the Pt 5d electrons can be written as
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vrith g = cos P and h = sin P, where P is given by
tan(2$) = ~2A' j(—ht„. + A'/2).

2. Lithium hyperAne interaction

Table VII shows the linear combinations of Li orbitals
obtained by our SCF calculations. Because in ENDOR
experiments only nuclear transitions of one nuclear spin
are induced, vre restrict ourselves to Li(1, I, —I)' func-
tions and get the augmented orbitals,

) = po lU), + ) pr, II', k)2, I' e (ai, e(i), e(2)).

Since le(2)) does not contain any Li(l, 1, —I)' orbitals,
the eigenfunctions of / are real and, therefore, we have
orbital quenching. Comparison of Eq. (7a) written as

+

2v 2—(g*s3s4 —h's3s4)) 4i-

+gh3(~&(PsPs+ P4P4)

+2(pape+ p4ps))&i.'

—"*((si)' —(s4) 'l
)~i-'

2papa h2pepe ~Li

+gh — PsP4 +—~2(PsP4 + P4Ps) A(a„
3

= —gA~ —— g 3 +

with the spin Hamiltonian of Eq. (20) leads to

A + i&su =- 2(—IIV' I+) &'. = 2&+IIVil+) (A6)

for j = x, y, z. We get the following nonvanishing Fermi
contact and dipole-dipole interaction contributions:

&:.= &:.= -[(g')(P2)' —h'(P2)']~

&„'„=
3

[(g')(P2)'+ h'(P2)']»

ghP2P2X, —
3

vrith y defined in Eq. (21a), and

+h'((s:)'+ (s:)*l)»".'.

(AS)

+gh — — 2 3 3
—

4

+ , (sts4+ s4si))-»"-'

+ [ 2papa + h2pepe ~Li2

h2~dL'+ gh [p;p;+ p-;p;]~',.'. ,

~d
t

2 h2' ~Li + 2(pa)2 h2(pe)2 ~Li2 ~ 1-

+ I
2papa h2pepe ~Li2
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