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Ab initio calculations of two-photon absorption spectra in semiconductors
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Degenerate and nondegenerate two-photon absorption spectra and their anisotropy are evalu-
ated for various semiconductors, by using ab initio full-band-structure and microscopic-nonlinear-
susceptibility calculations. It is shown that most semiconductors have abundant spectral structures
originating from the critical-point transitions similar to one-photon absorption. The calculated spec-
tra are in good agreement with recent accurate experimental results, demonstrating the usefulness
of ab initio approach in the two-photon-absorption calculations.

I. INTRODUCTION

Two-photon absorption (TPA) is a powerful tool to
study the optical and electronic properties of materials.
Because TPA follows the unique selection rules, TPA pro-
vides complementary material information to the one-
photon absorption (OPA). ~ 2 On the other hand, in the
application field, TPA plays a crucial role in limiting the
optical transparency of materials and in causing laser-
induced damage to compounds. It has also been recog-
nized that nonlinear re&action can be related to TPA
through a nonlinear Kramers-Kronig transformation. '

Although a number of experiments have been car-
ried out to evaluate TPA spectra of various materials,
the measurements were limited to particular photon en-
ergies and the determination of TPA magnitude and
anisotropy was difficult due to its sensitivity to exper-
imental variables, such as laser-pulse duration, peak
power, laser coherence, and the presence of free carri-
ers. However, the recent developments of laser equip-
ment and the superior experimental method such as "Z-
scan" and "two-beam coupling" have eliminated these
disadvantages, thus enabling the precise measurement
of TPA in a wide photon-energy range.

From the theoretical viewpoint, numerous model-band
calculations of TPA spectra have been performed, whose
results strongly depend on band parameters adopted.
The two-parabolic-band model by Wherrett provides
the proper scaling of TPA with material parameters and
photon energy. The TPA calculational scheme based on
the Kane band-structure model by Hutchings and Van
Stryland explains well the recent experimental data of
various zinc-blende semiconductors. Recently, Hutch-
ings and Wherrett have calculated TPA anisotropy of
GaAs and InSb using the Luttinger-Kohn band-structure
model. However, these calculations are limited to the
TPA around the center of the Brillouin zone of direct-
gap materials having the zinc-blende structure, where the
band parameters are well known. In order to evaluate
the TPA spectra of materials having transitions at the
Brillouin-zone boundary and various crystal structures,
including the heterostructures, the developments of the
ab initio TPA calculations coupled with the full-band cal-

culations are indispensable.
To our knowledge, there are very few calculations

of nonlinear optical properties in materials using the
full-band structures. Moss, Sipe, van Driel, and
Ghahramani calculated both the second- and third-
harmonic-generation (SHG and THG) spectra for a num-
ber of cubic semiconductors and superlattices, using
the empirical tight-binding model and the 8emi-ab-initio
linear-combination-of-atomic-orbitals method. Levine
and Allan have calculated the zero-frequency-limit
SHG magnitude of Si, Ge, AlP, AlAs, GaP, and GaAs,
using the ab initio pseudopotential method in the local-
density approximation (LDA) with a self-energy correc-
tion in the form of a scissors operator including local-field
effects. Huang and Ching have calculated the SHG
and THG spectra of various cubic semiconductors, using
the orthogonalized linear-combination-of-atomic-orbitals
method in the LDA with a scissors operator but without
the corresponding self-energy correction. With respect
to the TPA, Vaidyanathan, Guenther, and Mitra were
the only ones who used the empirical pseudopotential
method but obtained TPA coefficients much larger than
the measured data for GaAs, InP, CdTe, and ZnSe at
particular photon energies.

In the previous communication, " we have demon-
strated the usefulness of the ab initio TPA calculation
by computing the degenerate (e.g. , single-beam) TPA
spectra of Si, ZnSe, and GaAs in a wide photon-energy
range. In this calculation, however, two nonlocal correc-
tions to the local momentum operator, which originate
from the nonlocalities of the ab initio pseudopotentials
and self-energy, have not been incorporated into the
evaluation of momentum-matrix elements. The purpose
of the present paper is to present in detail the method
of the ab initio TPA calculation, which fully includes the
above-mentioned nonlocal corrections, and to compare
calculated results with available experiments, including
a variety of TPA properties such as the nondegenerate
(two-beam) TPA spectra and anisotropy. Our ab ini-
tio TPA calculation is performed by first computing the
band structures of semiconductors by means of the ab ini-
tio pseudopotential method in the LDA, followed by the
numerical evaluation of the third-order nonlinear suscep-
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tibility, y~ ~, based on the microscopic response theory.
The rest of the paper is organized as follows. In Sec. II,

after giving the expression of the TPA coeKcient, we de-
scribe numerical details of the TPA spectra calculation,
especially the evaluation of momentum-matrix elements
in y~ ~. The exact formula of y~ ~ is given in the Ap-
pendix. In Sec. III the calculated results with respect
to the degenerate and nondegenerate TPA spectra and
the anisotropy of various semiconductors are presented
and compared with previous experiments and theoretical
works. Section IV is devoted to a brief summary.

II. METHOD OF CALCULATIONS

A. Two-photon absorption coe6icients

Nonlinear optical processes can often be described in
terms of the nonlinear susceptibilities, y~"~, which are
the response functions of the induced polarization with
respect to the products of applied electric fields. In the
TPA process in cubic-symmetry materials, one has to
know the third-order polarization, P (qi, uri), which is
written by

('ql ~1) = &X."...(qi, ~i; —qi, —~i, qi, ~i, qi, ~i) lE (qi, ~i) ~'E.(ql ~1)

+6y bb (qi, ~i, —q2, —ur2, q2, ~2, qi, ~i) ~Eb(q2, ~2)
~

E (qi, (ui) (1 —b bb~, ~,h, , ) .(3) 2 (2.1)

Here E (qi, ~i) and Eb(q2, ~2) are complex amplitudes of the probe- and pump-light fields having wave vectors and
&equencies, (qi, ~i) and (q2, u2), respectively. Polarization directions, a and b, denote the crystallographic axes, z,
y, and z. The numerical prefactors are the degeneracy factors determined by the number of distinct permutations of
the applied fields. ' From now on, the long-wavelength approximation (q = 0) is adopted because the light considered
in this work has a wavelength large compared to the crystal unit cell, and the q variables are omitted in the following
expressions.

The TPA coefficient, P, is a linearly dependent part of the total absorption coefficient, n, on the light intensities,
I (wi) and Ib(u2), and defined by

(~1) —Paa(~l j ~l)Ia(~1) + 2Pab(~li ~2)Ib(~2)(1 ~ab'4g~g) ~ (2.2)

where n( )(~i) is the third-order absorption coefficient. P (cui, ~i) corresponds to the first self-action term in Eq.
(2.1) and is called the degenerate TPA coefficient, while P b(ui, wq) corresponds to the second cross-action term in Eq.
(2.1) and is called the nondegenerate one. Together with the degeneracy factors in Eq. (2.1), this definition ensures
that the degenerate P (wi, ui) can be obtained continuously from the nondegenerate P (wi, w2) as u2 approaches

In the absence of linear absorption where the probe-light energy is below the band-gap energy (~i ( Eg), we

express P exactly as

6(2')'~i (,)p b(&1' Ld2) =
2 Imp bb (&i, —&2 &2, Ml),

gaa (~1)ebb (~2)&
(2.3)

where rI (cui) and ebb(w2) are the frequency-dependent linear refractive indices, c the light velocity, and we have used
familiar relations, I (wi) = cg (wi)~E (wi)~ /2vr, etc.

The general formula of Imp~ ~ is derived from the microscopic response theory and given in the Appendix. Especially
in the TPA case, neglecting the local-field efFect and adopting the one-particle approximation,

2).(P„(k)P,(k) „(),( ))
g ~~~(k) —~i ~~+(k) —~2 )

(2.4)

Here e(mo) is the electron charge (mass), v, c, and m
are band indices for the valence, conduction, and inter-
mediate states, respectively. P„(k) is the a-component
matrix element of the momentum operator, P„(k)
(vk~p ~mk), u „(k) is the energy difference between two
Bloch states, ~mk) and ~vk).

Many-body effects beyond one-particle approximation,
such as local-field efFect and excitonic efFect, are some-

times important for optical excitations in semiconduc-
tors. However, studies of these eÃects on the nonlin-
ear optical properties in semiconductors are few at the
present stage. Levine and Allan ' showed by the ab
initio calculation that the local-field efFect decreases the
static SHG magnitude of semiconductors by about 10%,
as well as their static dielectric constants. On the other
hand, the model-band studies by veiler and Lee and
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Fan showed that the excitonic eQ'ect enhances the TPA
magnitude by a factor of 2 near the absorption edge. All
these eKects are not included in the present calculation.

B. Numerical details

TABLE I. Convergence of Imp (u; —u, w, u) as a func-(3)

tion of the number of conduction bands included. Data are
for the case of ZnSe at ~ = 1.8 and 2.6 eV using 36 x 36 x 36
k points in the fcc Brillouin zone. Unit is 10 esu.

Number of bands
1
4
8

20
26
38

1.8 (eV)
3.3324
3.2612
3.7881
3.8363
3.8526
3.8521

2.6 (eV)
4.8493
6.4866
7.0925
7.2119
7.2367
7.2486

To evaluate the momentum-matrix elements and en-
ergy denominators in Imp~ ~, we carried out the self-
consistent pseudopotential band-structure calculation
within the LDA, ' using the ab initio pseudopoten-
tials constructed by Bachelet, Hamann, and Schluter.
For the exchange-correlation potential, we adopted
the density-functional form of Ceperly and Alder
as parametrized by Perdew and Zunger. The spin-
orbit interaction is not included. The momentum-space
formalism is employed, where the wave functions are
expanded in plane waves with energy less than 12.96 Ry.
The details are described elsewhere. " A scissors opera-
tor is applied to the conduction-band states to address
the problem of the band-gap underestimation associated
with the LDA. The shift values are 0.668 eV for Si, 0.430
eV for ZnSe, and 0.823 eV for GaAs, which are evaluated
to coincide with the experimental values: ' the indirect
band-gap energy, 1.17 eV for Si, and the direct band-gap
energies, 2.82 eV for ZnSe and 1.52 eV for GaAs. This
correction is justified for the present level of study be-
cause accurate quasiparticle calculations show a more or
less uniform shift in the conduction bands without a sub-
stantial change in their wave functions.

On calculating Imp~ ~, two kinds of numerical conver-
gence must be checked carefully. The first one is related
to the number of intermediate bands taken in Eq. (2.4).
As for the sum of the valence bands, all calculated ones in
the pseudopotential scheme are included. This is prac-
tically because we use pseudopotentials and physically
because the eBect of core states on the polarization is
small. Therefore we have only to check the convergence
of Imp~ ~ as a function of the number of intermediate
conduction bands included. The result is given in Ta-
ble I for ZnSe at two particular photon energies. It is
seen that more conduction bands should be taken into
the calculation when we consider the higher-energy light;
the higher-energy transition. We found that 26 conduc-
tion bands are appropriate for zinc-blende semiconduc-
tors studied in this work. The residual errors due to this

TABLE II. Convergence of Imp (u; —cu, u, w) as a func-(3)

tion of the number of k points in the fcc Brillouin zone. Data
are for the case of ZnSe at Ru = 1.8 and 2.6 eV using 26
conduction bands. Unit is 10 esu.

Number of k points
24 x 24 x 24
36 x 36 x 36
48 x 48 x 48

1.8 (eV)
3.7621
3.8526
3.8703

2.6 (eV)
7.0949
7.2367
7.2686

truncation are estimated about l%%uo.

The second convergence is related to the sum over the
Brillouin zone in Eq. (2.4). In this work the tetrahedron
method is adopted and a whole fcc Brillouin zone is
divided with n x n x n mesh k points. Table II gives
the convergence of Imp~ ~ as a function of the number of
these k points. This table shows that 48 x 48 x 48 mesh k
points are appropriate, which corresponds to 2769 points
in the irreducible Brillouin zone and 663 552 tetrahedra
in a whole Brillouin zone. This truncation is estimated
to have 3—5 %%uo errors in the calculated Imp( ).

To calculate the TPA coeKcient, the linear refractive
index rI (u) also needs to be evaluated. For this pur-
pose, we first calculate the imaginary part of the dielec-
tric function, e'2 (w), in a similar manner to Imp
Then its real part, sq (w), is obtained from s2 (w)
by the Kramers-Kronig transformation. In this way,
rI (cu) is given by [e'r (w)] ~ when Ru is below the
band-gap energy.

C. Momentum-matrix element

In the calculation of momentum-matrix elements,
P (k), two nonlocal corrections should be added to the
local momentum operator, p&, ——5/i V', in order to pre-
serve the gauge invariance of an optical transition rate
such as

p = pP, + —[v„),ix ] + —[z, ix ]. (2.5)

I, -, m(0 0
(ql ~ [&- i& llq') =

~ I ~ .+ ~,. I (ql&. Iq') (2.6)
(Oq~ Oq' )

Here V„~ and Z are the nonlocal pseudopotential and the
nonlocal self-energy, respectively, and x is the a compo-
nent of the position operator.

The pseudopotential correction is intrinsic to the non-
local pseudopotential scheme. Systematic analysis of this
correction was performed by Read and Needs for the
optical momentum-matrix elements between the orbitals
of various isolated atoms. For the optical properties of
bulks, its relevance was demonstrated in the calculation
of the static dielectric constant e'q(0). s To calculate this
correction the analytic form in the momentum space de-
rived by Hybertsen and Louie is employed, where the
matrix element between the plane waves, lq) and lq'), is
given by
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On the other hand, the self-energy correction is in-
trinsic to the calculation of optical momentum-matrix
elements using one-particle wave functions, which is
called the velocity renormalization based on the Ward. —

Takahashi identity. Levine and Allan pointed out its
significance in the realistic calculation, proposed the sim-
ple recipe to evaluate this correction, which is useful in
the case of using the scissors operator as the addition
of self-energy, and demonstrated its relevance in the cal-
culations of the lower-energy si(~) and y(2)(0).is i4 In
the present work, we follow their approach using the
factorized-replacement form for the momentum-matrix
element between the valence- and conduction-band states
such as

~LDA (k) ~LDA (k)

x (vk!p, .+ —[V„i,ix j!ck), (2.7)

where ur LDA (k) is the LDA energy of the state !ck) and
4 is the scissors-shift energy.

First we display the numerical importance of these two
nonlocal corrections in the present optical-transition-rate
calculations. Figures 1(a)—1(c), respectively, show the
calculated Imp (w; —tu, (u, (u), ei (w), and e'2 (w)

(3)

for ZnSe in the TPA photon-energy region, where the
values with and without corrections are displayed. It
is clearly seen that both the pseudopotential and self-
energy corrections change the transition rates in Imps ~,

si, and s2 by definite ratios (5—30%).
To clarify the material and transition-energy depen-

dence of these corrections, the calculated (partially cor-
rected Imp( ))/(fully corrected Imp( )) ratios are shown
in Fig. 2 for GaAs, ZnSe, and Si, as functions of photon
energy.

First, we note that the pseudopotential correction
strongly depends on the materials; the correction value
is negative and large (20—30%%uo) for Si, while positive and
small (5—10%) for ZnSe and GaAs. This feature is also
seen in the calculated momentum-matrix elements be-
tween s- and p-pseudo-orbitals of isolated atoms. Sec-
ond, the effect of the pseudopotential correction is nearly
independent of the transition energy, thus the individ-
ual types of transitions (Eo, Ei, etc.) in the Bril-
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FIG. 1. EfFects of the nonlocal yseudopotential and
self-energy corrections on (a) Imp (u; —u, ~, u), (b)(3

(u), and (c) s2, (~) for ZnSe. Dotted lines are eval-
uated by using only matrix elements of local momentum op-
erator, dashed lines with nonlocal pseudopotential correction,
and solid lines with full (pseudopotential + self-energy) cor-
rections. Filled circles are experimental data from Ref. 36.

1 1.5 2 2.5 2 2.5 3

Photon EnergyNcu [eV]

FIG. 2. Material dependence of the eKects of
nonlocal pseudopotential and self-energy corrections on
Imp (cu; —cu, u, &u) for Si, ZnSe, and GaAs as a function
of photon energy. Dotted lines, Imp with only the lo-
cal momentum operator; dashed lines, Imp with the non-
local pseudopotential correction; and solid lines as a unit,
fully-corrected Imp with the nonlocal pseudopotential and
self-energy corrections.
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only p, ,
with m[V„(, ix ]/5
with m[V ( + Z, ix ]/h
direct calculation

Si
10.18
8.79

11.64
11.73

ZnSe
5.02
5.24
5.90
5.90

GaAs
6.96
7.49

10.77
10.88

TABLE III. Static dielectric constants sq, (0) calculated
with and without the nonlocal corrections on the momentum
operator. The results in the upper three rows are obtained
as the static limit of sq, ~~(cu) transformed from sq, (~). The
results described as direct calculation and by Levine and Al-
lan are evaluated directly by using the real-part formula of

(0). Experimental results are also presented.

reported. Thus, here, we confine our attention to the
comparison of the present improved results using two
nonlocal corrections with previous results without cor-
rections and experiments. Figures 3(a), 3(b), and 3(c),
respectively, show the calculated degenerate TPA coeK-
cients, P (u; u), for Si, ZnSe, and GaAs as a function of
the probe-light energy. In these figures, down arrows in-
dicate the calculated interband energies corresponding to
the onsets of Eo, Eo, Eq, Ez, and E2 transitions, which
are summarized in Table IV. As seen in these figures, for
ZnSe and GaAs, the TPA magnitude is greatly increased

Levine and Allan
without local Beld
with local Geld

11.8
11.3

11.54
11.00

experiment

Reference 13.
"Reference 14.
Reference 28.
Reference 29.

12-1,' 11-7' 10.9'
40 — SI

20—
3

louin zone. This may be explained by considering that
most such transitions have the single character of transi-
tions from the bonding-p-like upper-valence bands to the
antibonding-s-like lower-conduction ones.

On the other hand, the self energy correction in-
creases the transition rate in Imp& ~ for all semicon-
ductors. This is because in the present treatment
of self-energy the positive energy shift of conduction
bands always increases the momentum-matrix elements
between valence- and conduction-band states by the
factor 4/[w, D (k) —ur„" +(k)]. With respect to the
absorption-edge transitions in various semiconductors,
such factors are 0.668 eV/2. 578 eV 0.26, 0.430
eV/2. 390 eV 0.18 and 0.823 eV/0. 697 eV 1.18 for
Si, ZnSe, and GaAs, respectively. Thus the self-energy
correction is largest for GaAs. Moreover, the self-energy
correction strongly depends on the transition energy such
that it decreases the transition rate with increasing the
transition energy.

Finally, the test of our calculation is presented by corn-
paring the calculated linear optical properties with pre-
vious calculation. Table III shows the calculated and
observed static dielectric constants, eq (0). The above-
rnentioned features of two nonlocal corrections are also
seen in the present results in this table. Considering that
difFerent values are used as scissors-shift energies between
the present and previous calculations, the present results
with full corrections are in good agreement with early
ones.

III. NUMERICAL RESULTS

A. Degenerate TPA

With respect to degenerate TPA spectra, the calcu-
lated results and detailed discussion have already been

0—
I

1.5
I

2.5

ZnSe

xy

0—
I

2.5

30—
G

() e

{c)

20—E

Photon Energy%i~ [eV)

I

1.5

FIG. 3. Calculated degenerate TPA coefficients, P(w; w), of
Si (a), ZnSe (b), and GaAs (c) as a function of photon en-
ergy. Solid and dotted lines are, respectively, P (cu; cu) with
and without nonlocal corrections, the latter of which corre-
sponds to the previous publication. (Ref. 37) Experimental
data (open circles)& a, 6, c, d, e, and f, are from Refs. 38, 39,
40, 41, 42, and 43, respectively. Dashed lines show the difer-
ent polarizations, P „(cu; u).
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E. (r„—r,.„)
E,' (r...—r,.„)
Ei (Li. —Ls )
Ei (Ls, —L&„)
Eg (%is, —As )

Si

3.246
3.431
5.247
4.186

ZnSe
2.820

4.413

GaAs
1.520

TABLE IV. Calculated interband energies (eV) in various
critical-paint transitions observed in TPA.

3Eo) and the steplike Ei peak in z2 (~) at Ru = Ei
shifts to higher energy [2Ru = 5/(5 —x)Ei] and broadens
in P (w; w), while the E2 peaks in s2 (w) and P (cu; w)
have the same position at E2. These results clearly ex-
plain the calculated spectral features in Si, ZnSe, and
GaAs. [With respect to s2 (w), see the figures in Ref.
17.]

B. Nondegenerate TPA

(2n /E. —I)~'--I/2+*
/3TH (

.
) ~ TA

(~/Ec I) )i—m(/2

(hu)/E )
2

(3.1)

(3.2)

where m = 0 and 1 correspond to a positive sign, whileI = 2 corresponds to a negative one, and x repre-
sents the degree of forbidden transition. Figures 4(a)—
4(c), respectively, illustrate these forms for m = 0,
1, and 2. From these figures, it is easily recognized
that the Eo peak in P (w;w) appears at lower energy
[2hcu = 10/(9 —2x)Eo] than that in s2 ~~(w) (Ru = 4/

by the nonlocal corrections and the improved results are
in excellent agreement with reliable experimental data.

Although two nonlocal corrections significantly in-
crease the TPA magnitude, our previous analysis of
the spectral shape and peak position in P (w;w) and

(u) is available for the present results. According
to Ref. 17, their scaling-functional forms on the photon
energy Lu are written for the M transition above its
critical-point energy, E', as follows:

Off-diagonal tensor elements such as P z (w; w) are
classfied as nondegenerate TPA coeKcients. In
Figs. 3(a), 3(b), and 3(c), we have shown the calculated
P „(w; w) as a function of photon energy for Si, ZnSe, and
GaAs, respectively. As seen in these figures, P „(w;w)
is always smaller than P (w;tu) but has no remarkable
spectral characteristics compared with P (w; ur). The
former feature will be discussed in detail when we con-
sider the anisotropy in the next section.

P (wi, w2) and P „(ui,w2) belong to another type of
nondegenerate TPA coefBcient having difI'erent probe-
and pump-light energies. Figure 5 shows the calculated
nondegenerate P(wi,'u2) for ZnSe as a function of the
probe-light energy, ~~, where the pump-light energy is
Axed at hcu2 ——1.759 eV. Down arrows indicate the ab-
sorption onsets, Eo and Ez, which are 1.061 and 2.654
eV, respectively. As compared with the degenerate TPA
results for the same material in Fig. 3(b), the Eo and
Eq absorption edges move to lower and higher energies,
respectively, and the spectrum has no apparent peak in
the Eo-transition region below the Eq edge. These are
because the resonance in P(cui, tu2) occurs at the sum fre-

quency, uq + u2, in the nondegenerate TPA case, and
P(cui, tu2) has the difFerent ui dependence from that of
the degenerate P(wi, wi). Comparing with the previous

(c}

O
LL

6$

O
0

LL

I I I I I I ~ I I
I

I ~ I I I I I I

]0— ZnSe
%~, =1.759 Iev]

xQ
~@&@"x x,

0—
I I I I i I I I I I I I I I I I I I I

Photon EnergYNo~, [eV]

Photon Energy

FIG. 4. Scaling-functional forms of P (cu; u) (solid lines)
and e2 (u) (dashed lines) for transition types, m = 0, 1, and
2. P (u;u) is shown as a function of 2fuu/E', while s2 (u)
is shown as a function of bur/E' . Down arrows indicate the
peak positions. The value x in Eqs. (3.1) and (3.2) is taken
to be 0.5.

FIG. 5. Calculated nondegenerate P(uri, w2) of ZnSe as a
function of probe-light energy ~z. Pump-light energy Ru2 is
fixed at 1.759 eV. Solid and dashed lines show the different
polarizations, P ~(wi, m2) and P „(cui, ws), respectively. Open
diamonds and. crosses are experimental data with different
pump-light intensities, while the filled circle is the result of
an independent degenerate TPA experiment. These data are
from Ref. 41.
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measurements shown in Fig. 5, the calculated results
look slightly small but are within the experimental accu-
racy.

The nondegenerate P (wq, w2) spectra of ZnS were
also measured for a zinc-blende sample, which are
shown in the inset of Fig. 6. However, in this exper-
iment, the possibility of the sample being polycrystals
made of zinc-blende and wurtzite structures was sug-
gested. The present ab initio approach applies to ma-
terials having any crystal structures. Therefore, in order
to clarify the TPA-spectra difference between zinc-blende
and wurtzite structures, we have evaluated P (wq' , cu2) in
the zinc-blende structure and P (~q, ~2) and P, (~q, ~2)
in the wurtzite structure. Note that p„(wq,'w2) is equal
to P (cuq, u2) in the zinc-blende structure. The results
are shown in Fig. 6, where down arrows indicate Eo
(1.924 eV) and Eq (3.369 eV) onset energies in the zinc-
blende structure. The calculated band-gap energy in the
wurtzite structure, I'q, —I'6„, is slightly larger than that
in the zinc-blende one, I q

—I'~5„, by 0.025 eV.
As seen in the inset of Fig. 6, the calculated spectra

p (tug', w2) in zinc-blende and wurtzite structures have
comparable magnitude around the absorption edges.
This is because the electronic-structure difference be-
tween both crystal structures is small for semiconductors
having large ionicity such as ZnS. As a result, these
spectra are within the experimental accuracy, and thus
it is difBcult to judge the degree of polycrystallization
in an experimental sample by comparing the calculated
results with experimental ones. However, the definite
difference of magnitude is recognized. between the cal-

culated P (uq, w2) and P„(wq., u2) in a higher-energy
region for wurtzite ZnS. Then, as one way to clarify the
polycrystallization, we propose the measurements of both
P~~(wz., w2) and P,~(tug' , w2) in a higher-energy region.

C. Anisotropy

For materials having cubic symmetry such as Tp
(43m), y( ) has four independent nonzero tensor el-

(~) (3) (3) d (3) 1,2ements, y~~~& & p&yy~ & p~y&y &
and y&&yy Espe-

cially in the frequency-degenerate TPA described by
(elf& (if

& M& cc)) I &&y&y 1s equal to y&yyz 1 thus there ex-(3) . (3) ~ (3)

ist only three independent elements. In this subsection,
we consider the anisotropy in such frequency-degenerate
TPA.

First we consider the calculated ratios:

(3)
Im&&yy~

(3)Imp

(3)
Imp&~yy

(3)Im+~~~~

which are shown for GaAs, ZnSe, and Si in Fig. 7. The
following common features are found among these semi-
conductors. (1) In the Eo-transition regions of GaAs and
ZnSe, with increasing the photon energy, the ratio A de-
creases sharply in the lower-energy side and gradually in
the higher-energy side. On the other hand, the ratio B
displays the opposite change, thus increasing sharply and
gradually in the lower- and higher-energy sides, respec-
tively. (2) In the Eq-transition regions of ZnSe and Si,
B decreases with increasing the photon energy while the
variation of A is small. (3) In the lower-energy sides of
the Eo- and E2-transition regions of Si, both A and B
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FIG. 6. Calculated nondegenerate P(~q,.cu2) of zinc-blende
and wurtzite ZnS as a function of probe-light energy ~~.
Pump-light energy ihu2 is 6xed at 1.759 eV. Solid and
dashed lines show the different polarizations, P (urq, wq) and

P y(mz, w2), respectively. Open diamonds, open triangles, and
crosses are experimental data with different pump-light inten-
sities from Ref. 41.
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FIG. 7. Ratios, A = Imp „ly /Imp (open circles)
and B = Imp y„/Imp (filled circles), in the fre-
quency-degenerate TPA for GaAs, ZnSe, and Si as a function
of photon energy.
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increase with increasing the photon energy.
Some of these features are qualitatively explained by

considering the symmetry of the respective two-photon
transition. For example, only the transition, I q5„
I'z5 —+ I'~, caused by two photons with diferent po-
larizations, such as x and y, is allowed at the center
of the Brillouin zone. Thus we expect g „„g0 but

0 at the Eo absorption edge, which explains(3)

why the ratio A has large values at the Eo absorp-
tion edge. On the other hand, because the transition
L3 M L3 ~ L l is allowed for two photons with arbi-
trary polarlzations, y~~~ as well as y» has nonvan-(3)

ishing values at the E~ absorption edge. This explains
that the ratio A does not have such large values at the
E~ edge as those at the Eo edge.

An experimental setup generally posesses the electro-
magnetic fields with arbitrary propagation and polariza-
tion directions. Therefore, from a practical viewpoint,
it is useful to define two independent parameters that
describe the TPA anisotropy as follows:

(3)Imp

(3)Imp~~~~

(3) (3)2 Im+&yy~ Imp&~yy
(3)Imp
(3) (3)2 Imp&yy~ + Imp&~yy
(3)2 Imp~~~~

(3.4)
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FIG. 8. Calculated TPA anisotropy parameter, —cr, for
GaAs, ZnSe, and Si as a function of photon energy. Filled
circles are the present results and open circles are experimen-
tal data from Refs. 46 (a), 47 (b), and 45 (c).

Here o is called the anisotropy parameter while b is
the dichroism parameter. In experiments, 0 corresponds
to the coefIicient of the propagation-polarization-angle-
dependent part of the TPA magnitude, while b is relat-
ing to the difI'erence of absorption magnitude between
the linearly and circularly polarized lights. Especially in
isotropic materials, b=cr=0.

The calculated —o and b are shown in Figs. 8 and 9,
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FIG. 9. Calculated TPA dichroism parameter, b, for GaAs,
ZnSe, and Si as a function of photon energy.

D. Comparison to previous works

Now we preface the discussion of the comparison of the
present calculations to previous works. Although numer-
ous model-band calculations of TPA spectra have been
performed, several recent calculations are noteworthy be-
cause these calculations were successful in giving the TPA
magnitude comparable to recent accurate experiments.
Hutching and Van Stryland have presented the TPA-
coefficient calculation by using the second-order pertur-
bation theory and a Kane band-structure model consist-
ing of three valence bands and one conduction band.
Although this model-band calculation explains well the
TPA magnitude of various semiconductors, it gives no
anisotropy for the TPA spectra, i.e., o = 0, contrary
to experimental observations. In order to explain the

respectively, for GaAs, ZnSe, and Si. It is seen that —o
gradually increases in the Eo-transition region with in-
creasing the photon energy. This is because the compen-
sation occurs between the variations in the ratios, A and
B, while rr decrease—s/increases sharply in the Eq/E2
transition region due to the cooperative variations in A
and B. With respect to b, these features, compensa-
tion and cooperation, are found to be opposite to —0,
thus showing sharp change in the Eo-transition region
while showing no characteristic change in the Eq- and
E2-transition regions.

The experimental data are available only for —0 in
GaAs, which are shown in Fig. 8. Compared with these
experiments, the calculated results show good agreement
in the lower-energy region, while they give slightly small
values in the higher-energy region. The reason for this
discrepancy is not clear at present.



4994 MISAO MURAYAMA AND TAKASHI NAKAYAMA

TPA anisotropy, Hutchings and Wherrett introduced a
Luttinger-Kohn band-structure model consisting of three
valence bands and four conduction bands.

First we compare the TPA spectra evaluated by us-
ing the above-mentioned band-structure models ' with
those by the present ab initio approach. Figures 10(a)
and 10(b), respectively, show the calculated P (cu;u)
for GaAs and ZnSe, as a function of photon energy. The
overall agreement on the spectral shape and magnitude is
obtained among these calculations. However, the follow-
ing differences should be noted. (1) The spectral struc-
tures originating from the Brillouin-zone-boundary tran-
sitions, such as the E~-transition peak in a higher-energy
region of ZnSe, can be evaluated only by the present ap-
proach. (2) The incorporation of more than four con-
duction bands into the calculation is necessary to obtain
the fully convergent TPA magnitude. This statement is
easily recognized by recalling the results of band-number-
convergence check shown in Sec. IIB, or by viewing the
magnitude difference between model calculations using
one and four conduction bands (lines b and a in Fig.
10).9

Figures ll(a) and 11(b), respectively, show the calcu-
lated photon-energy dependence of TPA-anisotropy pa-
rameters, —o and b, in GaAs by the Luttinger-Kohn
band-structure model and the present ah initio ap-
proach. Note that the dip structure in a lower-energy
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ated in Ref. 9 using the Luttinger-Kohn band-structure model
with four lowest conduction bands (line a) and with a single
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region of b by the model calculations originates from the
valence-band splitoff due to the spin-orbit interaction,
which is not included in the present ab initio calcula-
tion. Comparing the calculated b and —o by the four-
conduction-band model with those by the ab initio ap-
proach, good agreement is seen in a lower-energy region,
while a definite difference exists in a higher-energy region.
As one of the reasons for this discrepancy, we point out
the limitation of the model-band description; although
the band-structure range well described by the Luttinger-
Kohn model is not well elucidated, such a range is known
to be limited around the band-gap energy.

(b)
IV. SUMMARY

1.5 2.5
Photon Energy% co [eV]

FIG. 10. Comparison to previous calculation. s for (a) GaAs
and (b) ZnSe. Solid lines correspond to the present calcu-
lation, dashed lines (a and b) are evaluated using the Lut-
tinger-Kohn band-structure model in Ref. 9, dot-dashed lines
(c) using the Kane band-structure model in Ref. 8. Lines, a
and 6, respectively, correspond to the results using four and
one lowest conduction bands.

Two-photon-absorption (TPA) spectra of various semi-
conductors have been evaluated by using the ab initio
full-band structures and the exact microscopic formula
of nonlinear susceptibility, y~ ~. We have obtained the
following conclusions.

(1) Two nonlocal corrections, the pseudopotential and
self-energy corrections, to the momentum-matrix ele-
ments are essential for the calculation of Imp~ &. The
effects of both corrections strongly depend on materials.

(2) The calculated degenerate and nondegenerate TPA
spectra for Si, ZnSe, GaAs, and ZnS are in good agree-
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ment with the latest experimental data. This fact demon-
strates the usefulness and reliability of ab initio approach
in the TPA-spectra calculation.

(3) Most semiconductors show abundant TPA-spectral
structures similar to one-photon absorption (OPA). How-
ever, the spectral shape is quite di8'erent between TPA
and OPA, which can be analyzed using a simple scaling
formula for the respective type of critical-point singu-
larity. Moreover, the spectral shape and magnitude are
different between degenerate and nondegenerate TPA for
the same semiconductor.

(4) The TPA anisotropy is observed in all semicon-
ductors studied here. Its magnitude and photon-energy
dependence are found. to be quite difFerent among various
critical-point transitions. Some of these features can be
understood by considering the symmetry of two-photon
transitions.

Finally, we expect that availability of the present ab
initio approach will be important in studying nonlin-
ear optical properties of various materials having com-
plicated crystal structures such as superlattices, surfaces,
and microcrystals.
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APPENDIX: MICROSCOPIC FORMULA OF y~3&

In this appendix, we present the microscopic formula of y~ ~ which has the full dependence on the polarizations,
wave numbers, and frequencies of applied electromagnetic fields. Using the microscopic response theory or the density-
matrix theory, y~ ~ is given by

(3) 1 (1) f e 5 -1
X. . (ql ~1 q2 &2 'q3 &3 'g4 &4)

IPs ~I (~) (~o) &i&2~3~4
&&

„g,-s.~ ("I& (—&i) I")(kl&'(q2) I&)(&l& (&3)l~)(~l&"(q4) l~)
M jg~ &2 Q)3 EO4 (4J)~ 4)3 Q)4 &~~ (L)4

(Al)

where qi ——q2+ &3+q4 and ui ——uz+cu3+(d4. Ik)'s are
many-body electronic states, Lop = ~1, —~ is the
energy difFerence between lk) and In), and P = 1/(k~T)
is the inverse thermal energy. The applied (input) elec-
tromagnetic fields are characterized by the sets of polar-
ization, wave number, and frequency such as (6, q2, u2),
(c, q3 &3), and (d, q4, (d4), while the scattered (output)
electromagnetic field by (a, qi, wi). 7 "' is the full per-
mutations operator on the above-mentioned four sets,
while IP '

I
is the number of intrinsic permutations of

the input three sets. P (—qi) is defined as

infinitesimal-damping limit, I'A, ~ 0.
Here the low-temperature limit (P -+ 0) is assumed

and the many-body states are approximated to single
Slater determinants of one-particle Bloch states, rp i, (x),
where n is the band index and k the Bloch wave number.
Then the field operator of electrons is expanded in terms
of Bloch states such as

@(x) = ) C„gp„i,(x),

I' (—ui)—:f ~"~4' ("~)' ' '"'p@("~) (A2)

where p = h/i '(7 and @(xi) is the field operator of
electrons. Damping factors of electronic states, I', and
photons, p, can emerge in the denominator of Eq. (Al)
such as uI, —+ cuA,. —iI'k and w2 ~ ru2 + ip2, respec-
tively. However, it should be noted here that the com-
pressed expression (Al) with the full permutation op-
erator is available only when such damping factors are
additive; I A,

——I'I,
~ + I'~„. This is especially true in the

and each bracket in the numerator of Eq. (Al) is
evaluated by separating Bloch states into valence- and
conduction-band states. In this case, the sum of many-
body states is reduced to the sum of 24 transition pro-
cesses, each of which is made of four successive one-
particle transitions. However, 18 of these processes can-
cel each other out mathematically because they have the
apparent system-size dependence described by the diver-
gent delta functions b(0) for wave numbers and physi-
cally because each of them is made of noncorrelated one-
particle transitions. The remaining six processes are
arranged into five terms such as
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3

X b.~(qi (di qz (d2 q3 (d3 q4 (d4) = -b.~ I & I

— ).) .).).m o uaiu2u3u4

P (1",4')P (4', 3 )Pb(3", 2')P"(2' 1")
[(d (4 t 1 ) (d2 (d3 Cd4]Q [(d (4 t 3 ) (d3]tt), [(d(2 t 1 ) (d4]Q

Pa(1v 4c)Pb(4c 3c)Pc(3c 2c)Pd(2c 1v)

[(d(4, 1")—(d2 —(d3 —(d4]~[(d(3', 1")—(d3 (d4]~[(d(2', 1")—(d4]~

P (1 4 )P (4 3.)Pb(3', 2')P"(2, 1")
[(d(3 t 4 ) (d2 (d3 (d4]~[(d(2 t 4 ) (d3 (d4]~[(d(2, 1")—(d4]ttt

P'(1, 2")P'(2",3")P (3",4')P (4, 1')
[(d (1', 2") —(d4] ~ [(d (4', 2") —(d3 —(d4] ~ [(d (4', 3") —(d2 —(d3 (d4] +

Pd(1c 2v)Pc(2v 3v)Pb(3v 4v)Pa(4v 1c)
+ (A4)

[ (1 2") - .] [ (1,3")- .—
] [ (1., 4") - .— .—

]

where

1 A1

P (1",4") —= (n, k, ~e-'~ "
P ]n,k4),

(d(4', 1") = (d("-4k4) '-'(v). k&)t

(A6)

(A7)

1 E(k4 —kg —qz —q3 'q4)

[(d (4, 1 ) —(d2 —(d3 —(d4] ~ (d (4 1")t—(d2 —(d3 —(d4
(AS)

Here we adopt the compressed notation 1 = (nq, k) ) to display the dependence on the Bloch band state, ~n) kq) =
y„,~, (x), and its energy, (d(nqkq). Also 1' and nz (1" and nz) indicate that the summation is carried out over only
the conduction (valence) bands. A is the three-dimensional 8 function having the periods of reciprocal-lattice vectors.
Note that the k integration over the Brillouin zone in Eq. (A4) is effectively single because each term in Eq. (A4) has
three b functions with respect to wave numbers, which rejects the fact that four successive one-particle transitions in
respective term should be fully correlated to each other. The overall negative sign in three terms in Eq. (A4) comes
from the exchange of two electrons. In the literature, the first, the second, and. the other terms are sometimes called
"three state, " "virtual electron, " and "virtual hole" processes, respectively.

The imaginary part of y~ ~ represents the energy resonance between the electromagnetic fields and electronic states,
and it can be expressed much more compactly by combining five terms in Eq. (A4). For example, the resonant terms
with the electromagnetic-Geld energies, u2 + w3 + ~4, w3 + cu4, and u4 are

(3)Imp b,& (qq t (d q, q2, (d2, q3, (d3, q4, (d4)

where

[(d(l, V) —(d3 —(d4]~[(d(m, V) —(d4]~)

( bP -(v, l)Pb(l, c) ) ( -,„P'(c,m)P" (m, v) )+ 'P P 8 (d c, V —(d3 —(d4 ~
[(d(l, v) —(d2 —(d3 (d4]~) ( [(d(m, t v) —(d4]n j

+~~P ~ P (, l)P'(l, )P (, ) IP ( )~[ ( ) ] +
Iw(tv) —w2 —ws w41,&fw(m, v) —w3 ru4)a j ' ' )' (A9)

b[(d(ct V) —(d2 —(d3 —(d4]tt, = b[(d(C, V) —(d2 —(d3 —(d4]A(kc —kv —q2 —q3 —q4). (A10)

Here c = (n„k ) and v = (n, k„), respectively, indicate the conduction- and valence-band states, while l = (n~, k~)
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and m = (n, k ) are the intermediate states including both the valence and conduction bands.
Two-photon absorption originates from the second term in Eq. (A9). Taking the longwavelength limit, all band-

state quantities have the wave number k as the integral variable. Equation (2.4) in the text is obtained through the
replacements such as P (v, I) ~ (vk~p ~lk) = P„&(k) and ~(l, v) -+ ~(lk) —~(vk) —= ~~„(k).
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