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We study the dynamics of coherent emission of a semiconductor within the framework of the
semiconductor Bloch equations, both in the time domain and in real space for various excitation
conditions. We find that the spatial properties of the four-wave-mixing (FWM) response reflect
the well-known temporal dynamics. For excitation high above the band edge, the FWM signal is

emitted as a photon echo.

This photon echo from continuum states of a semiconductor has the

same dynamical properties as a photon echo from inhomogeneously broadened uncoupled two-level
systems. However, unlike the case of two-level atoms, the polarization of the photon echo from the
semiconductor continuum extends over macroscopic distances in real space. The implications of the
large spatial extent of the photon echo polarization are discussed. In particular, we show that, in
spite of the macroscopic size of the photon echo polarization, the wavelength of the exciting light

can still be neglected.

I. INTRODUCTION

Photon echo experiments are a powerful tool to deter-
mine the homogeneous linewidth of an inhomogeneously
broadened optical transition.! This experimental tech-
nique overcomes the difficulty that, in the case of in-
homogeneous broadening, the dephasing-induced decay
of the polarization is masked by destructive interfer-
ence between the various frequency components in the
inhomogeneous line. In the simplest implementation of
a photon echo or four-wave-mixing (FWM) experiment,
an inhomogeneously broadened optical transition is ex-
cited by two short time-delayed laser pulses. The decay
of the macroscopic polarization generated by the first
pulse is reversed by nonlinear interaction with the sec-
ond one. This leads to the generation of a nonlinear
polarization, which is the source of a time-delayed signal
pulse, known as photon echo. The decay of the photon
echo, with increasing time delay between the excitation
pulses, yields information on the dephasing and the ho-
mogeneous linewidth.

In semiconductor physics, photon echo experiments
have been widely used to study dephasing processes and
the underlying scattering mechanisms in disordered sys-
tems such as mixed crystals?® ™ or quantum wells with
pronounced well width fluctuations.5% In this situation,
extrinsic disorder gives rise to inhomogeneous broaden-
ing. For disordered semiconductors, the photon echo dy-
namics has been discussed in terms of uncoupled two-
level systems,” thus neglecting Coulomb correlation.

Another approach to the photon echo phenomenon in-
volves the continuum states of an ideal and perfectly or-
dered semiconductor crystal. The continuum states can
be viewed as two-level systems inhomogeneously broad-
ened in k space, if Coulomb correlation is neglected.
Here, the inhomogeneous broadening is intrinsic to the
semiconductor. For a realistic description, however,
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Coulomb interaction has to be included, e.g., in the
framework of the semiconductor Bloch equations.® In a
pioneering work, Lindberg et al.® have solved the semi-
conductor Bloch equations for excitation at the band
edge of a two-band semiconductor. Their numerical re-
sults show that a photon echo is emitted in this situation.
Later on, the theory was refined to take into account the
valence band structure of a real semiconductor,'® and the
simultaneous influence of extrinsic disorder and Coulomb
correlation.! Experimentally, the intrinsic photon echo
from the semiconductor continuum states has been ob-
served in bulk semiconductors!? and quantum wells.!3

The theoretical interest, so far, has been focused on
the temporal behavior of the intrinsic photon echo from
semiconductor continuum states rather than on the spa-
tial behavior. One aspect of the space dependence is the
propagation of the fields. Very recently, the consequences
of polariton effects in four-wave-mixing experiments have
been studied by Bakker and Kurz.'* In the present pa-
per, we focus on the dependence of the polarization on
the relative coordinate.

We have studied the spatially resolved polariza-
tion within the framework of the semiconductor Bloch
equations,® at fixed time delays and fixed real times.
Furthermore, we have calculated the spatially integrated
nonlinear polarization generated in a FWM experiment
both as a function of real time for fixed time delays (time-
resolved FWM: TR FWM) and integrated over the real
time as a function of the time delay (time-integrated
FWM: TI FWM). Experimentally, the TR FWM signal
can be obtained by upconversion of the FWM signal pulse
with a reference pulse.

In order to be more general and to characterize the in-
trinsic photon echo in comparison to the FWM response
of the homogeneously broadened exciton transition, we
have calculated the FWM response in time and space for
various excitation conditions. For excitation of the exci-
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ton only, we rederive the well-known exciton dynamics in
the time domain.'>"!% As expected, we find a free polar-
ization decay of the excitonic polarization, with a slow
rise due to exciton-exciton interaction. In real space,
this is reflected by an exciton polarization, which is es-
sentially confined to a volume of the order of the exciton
Bohr radius.

Moving the excitation energy to the band edge, bound
and unbound states of the exciton Rydberg series are
excited simultaneously.2®:2! Here, the expected quan-
tum beating between the 1s exciton and higher excitonic
states is found in the time domain. In this situation, the
polarization is no longer confined in space, but starts to
expand due to the excitation of continuum states.

Only continuum states are excited for excitation high
above the band edge. The TR FWM signal now shows
all the characteristics of a photon echo, i.e., it is emitted
with a time delay that equals the time delay between the
excitation pulses, and is corrected by the influence of the
dephasing and the finite width of the pulses. We fur-
ther demonstrate that the dynamics of the photon echo
are not changed by Coulomb correlation. The temporal
evolution of photon echo from continuum states of a semi-
conductor is very similar to that of the photon echo from
two-level systems. In real space, the delayed emission of
the echo signal manifests itself by expansion and subse-
quent contraction of the polarization. At the maximum
of its spatial extent, the polarization occupies a macro-
scopic volume. This has important consequences for the
dephasing. The macroscopic size of the photon echo po-
larization also raises the question of whether it is still
valid to neglect the finite wavelength of the excitation
pulses, which is the common practice in the treatment
of FWM experiments. We show that the wavelength can
still be neglected in this situation.

The paper is organized as follows: to introduce our
notation, in Sec. II, we first summarize the treatment of
photon echoes for the model of uncoupled two-level sys-
tems; the analytical and numerical results for the spatial
and temporal dynamics of excitons and continuum states
in semiconductors as well as a discussion of the implica-
tions of the finite wavelength of the excitation laser pulses
in view of the macroscopic extent of the polarization in a
photon echo experiment are presented in the main part of
the paper, Sec. III; our conclusions are given in Sec. IV.

II. INDEPENDENT TWO-LEVEL SYSTEMS

The basic mechanism of photon echo dynamics can
be explained by the model of inhomogeneously broad-
ened and uncoupled two-level systems.” Such an ideal-
ized model, however, is only appropriate for a qualitative
description of a real configuration. In this section, we
briefly summarize the results for two-level systems and
introduce our notation. The analytical results for two-
level systems will be compared with the full numerical
results for a semiconductor in the following section.

We consider a set {A} of independent two-level systems
with transition energies Aw(*), equally distributed in a
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normalization volume 2. Assuming that each of the two-
level systems is coupled to the electric field E by a dipole
matrix element pu, the equation of motion for the density
matrices N(}) is given by the von Neumann equation,

nd NG = [FOE, NOW],

where

L™ LB
2

N (—c0) = diag(0,1).

We have assumed zero temperature and no dephasing
in order to obtain an analytical formula for the FWM
signal. The influence of a finite dephasing time T will be
taken into account later. Consistent with the assumption
of independent systems, local field effects are neglected.
The influence of dephasing will be discussed later. The
polarization,

L1
P(t)=p" g > n (),
A

is given by the number of dipoles per unit volume.
Equation (1) can be solved analytically in arbitrary
orders in the field strength.” The first order yields

w1

PO =~ g

t

/ dt e 19 =) gyr)
A — 00
Introducing the Fourier transform of E,

Bw) = / T gttt p(r),

— o0

and P, we find for the linear optical susceptibility x(w) =
P(w)/[e0 E(w)] that

tmx(w) = 45 2 5 oo =) = P b, @

where D is the density of states of an ensemble of two-
level systems with energies Aw®).

In order to calculate the FWM signal, we have to take
into account the dependence of the field strength on the
space coordinate. We assume an electric field consisting
of two pulses nonoverlapping in time with a time delay
At between the first and the second one:

E(r,t) = Eq(t) et ¥rT | By(t) etiKer

, (3)
suppE; N suppE; = @ ;
E\(t) = E(t); E2(t) = E(t— At).

Here, “suppf” means the support of a function f, i.e.,
the interval where f is different from zero. As an exact re-
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sult, the FWM signal, i. e., the contribution to the third-
order polarization proportional to EZ E} (in the sense
of a variational derivative), is emitted in the direction
2K, — K; and its amplitude is given by

l/l’|4 1 t ts t2
—92 — E
(iﬁ)3 Q B [mdt3/;wdt2[wdtl

x By (t3) By (t) Et (tl)e—iw('\)(t—ts—tz-f-tl) . (4)

PO(¢t) =

Based on our assumptions (3), for ¢ > max(suppFE>)
Eq. (4) considerably simplifies to

H —iw(®)
P(S)(t) (l ﬁl - Q Z (t—2A¢)

x E(w®) ]E(WW)[ . (5)

The latter sum can be evaluated using the density of
states introduced in Eq. (2). For an absorption coefficient
that is constant in the frequency range of interest, i.e.,
Im x(w) = Im x(@), where @ is the center frequency of
the pulse, we obtain the analytical result:

1.60 2 +oo +oo
xE(t—ZAt—t E(t t”)E*( Y.  (6)

To simplify the notation, we define the convolution “x”
by

—

[f(-)*g(-)](5)=/d"‘£’f( ) (),

where E is a vector in an m-dimensional space. The con-
volution satisfies the following relations: f*g = g* f and

f*(g*h) = (f *xg)xh. With this definition, Eq. (6) reads
2igo|p|?
®3) k] Vo B8
PO 1) = 280 m (@)

x[E(.)*xE(.)xE*(—.)](t — 2At).

Now we consider a Gaussian pulse with a width o, i.e.,
E(t) = E exp [ — t?/(202) ]e~***. For At > o, the con-
dition of nonoverlapping pulses is fulfilled and the evalu-
ation of Eq. (6) yields a polarization of a Gaussian tem-
poral profile with a width v/3 o, centered at 2 At. This
polarization is the source of the photon echo.

A simple analytical formula, like Eq. (6), cannot be
given for the polarization if we take into account a finite
dephasing time T, = 1/v. From an approximate treat-
ment, we obtain an additional shift of —4 o2+ O(y?% 03)
for the polarization, i. e., the polarization is centered now
at 2At—4~v02+ O(y2 02). The shift can be of the order
of the pulse width and has to be accounted for a quanti-
tative analysis of photon echo experiments.

III. TWO-BAND SEMICONDUCTOR

If Coulomb interaction is neglected a semiconductor
can be viewed as an ensemble of inhomogeneously broad-
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ened and uncoupled two-level systems in k space. The
FWM signal from a semiconductor exhibits the proper-
ties of a photon echo in this approximation, as shown in
the previous section. However, it is known that neglect-
ing or treating the Coulomb interaction as a small per-
turbation is an inadequate description. This is already
obvious from an inspection of the first-order polarization,
where Coulomb effects produce excitonic features that
drastically change the linear absorption in a relatively
large spectral region around the absorption edge.

The semiconductor Bloch equations® provide a more
sophisticated description of the interaction of light with
a semiconductor. This formalism includes Coulomb cor-
relation within the Hartree-Fock approximation. In this
section, we study the FWM response of a semiconductor
within the framework of the semiconductor Bloch equa-
tions for excitation at the 1s exciton, between the 1s
exciton and the absorption edge, and far in the contin-
uum. Special emphasis is put on the relationship between
spatial and temporal behavior, and on the comparison to
the noninteracting case where Coulomb correlation is ne-
glected. In Sec. IIT A, we establish the semiconductor
Bloch equation in real space and derive a hierarchy of
differential equations that allows us to successively calcu-
late the third-order polarization. Numerical solutions are
discussed in Sec. IIIB. We also show that the Coulomb
potential contributes significantly to the intensity of the
photon echo. The temporal line shape of the signal, how-
ever, is hardly changed by Coulomb correlation. This is
due to the fact that the electron-hole pair amplitude of
interacting particles is essentially determined by multi-
plying the amplitude of the noninteracting system by a
complex factor which slowly varies in space and time.

A. Semiconductor Bloch equations in real space

Within the Hartree-Fock approximation, the time de-
pendence of the density matrix in a semiconductor is de-
scribed by the semiconductor Bloch equations. Their for-
mulation in real space is

iﬁ%N(r,t) — [H(.,t) % N(.,8)] (x)
.. ON(r,t)
+Zh \_ 8t )ext ’

where

H(r,t):( —im A “E(t)>5(r)

wE*(t) +4.A
"V(I‘) [N(I"t) - N(!‘, —oo)] s (7)
M — 0 for 7 = J
ot ext* —yn;i(r,t) for i # 7,
2
— e Mh : V(r) _ e
Me+mp 4dmwepe T

N(r,—o0) = diag(0, 1) 6(r).
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Here, €¢ is the vacuum dielectric constant and € is the
static dielectric constant of the semiconductor. We have
assumed that relaxation and recombination can be ne-
glected in comparison to dephasing, i.e., T1 > Tp = 1/4.
We expect from the last section that the changes due to
a finite relaxation time are small.

., 0 K2
in g o) = | -
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Now, we successively evaluate Eq. (7) up to the third
order in the field strength. We use the notation n = nc.
and 7 = mn.. The latter quantity is known as the
electron-hole pair amplitude and gives rise to the polar-
ization of the semiconductor.

We have to solve the set of differential equations,

LN CE z-rn] ¥ (r,0) — pEra(t) 8(r) (8a)

i g n®(e,0) = { [0 Ba() 6(.) = V()P0 + 9" (1) } ()
{00 [ B0 5() -V (0] @), (%)

iﬁﬁz/;(”(r t) = _B A —V(r) —ihy
ot ’ 2m

¥ (1) +2{ [~V ()@ (0]« (,8) } ()

—2{ [—uEa(t)6(.) = V() $P (1) ] xn@ (. ,8) } (r), (8¢)

for functions F,, E; defined in Eq. (3), and initial con-
ditions 1/)§’12)(r,—oo) = n®(r,—oc0) = ¥ (r,—00) = 0.
The only input parameters are the width of the Gaus-
sian pulse o, the time delay At, and the homogeneous
broadening Ay, fixed at 0.2 Eg throughout the paper,
where Ep is the exciton binding energy. The third-order
polarization, P®)(t) = p*4)(0,t), is not directly ac-
cessible in experiments. However, the TR FWM signal
TR(t) o« |[P®)(t)|? for a fixed time delay and the TI
FWM signal TI(At) fj:.fdt|P(3)(t)|2 can be deter-
mined experimentally.

The above equations show that Coulomb interaction
affects the dynamics of the FWM signal in two ways: (i)
The potential V is part of the differential operator in
Eqgs. (8a) and (8c). This Coulomb enhancement is re-
sponsible for the creation of bound states, i.e., excitons,
and modifies the continuum wave functions in the neigh-
borhood of the origin r = 0. (ii) The Coulomb potential
contributes to the source terms of Egs. (8b) and (8c).
This is known as polarization interference.®

In the linear spectrum, the Coulomb enhancement
manifests itself by the formation of exciton transitions
below the band edge and by a significant increase of the
continuum absorption (Sommerfeld factor) over a spec-
tral region of the order of tens of Ep.

Polarization interference changes the nonlinear opti-
cal properties of a semiconductor. This is the dominant
term in the FWM signal for excitonic states that leads
to deviations from a strictly exponential decay of the TR
FWM signal and to a nonvanishing signal for negative
time delays.'®1° The influence of the Coulomb interac-
tion on the FWM signal from the continuum has not
been studied. This point will be addressed in the next
subsection. Intuitively, we expect an amplification of the
signal due to Coulomb enhancement, but only a small
effect due to polarization interference in the case of the
continuum.

B. Numerical results

Since analytical solutions for the full problem are not
available, we integrate the differential equations (8a)-
(8c) numerically. All explicit results are given in excitonic
units, i. e., the binding energy Ep = /; me*/[(4mweoe)?h?]
of the exciton and the Bohr radius ag = 4weoe h%/(me?).
We use the parameters of gallium arsenide, which are
Ep ~ 4.7meV, ap ~ 10nm, and i/Ep ~ 140 fs.22

The linear optical susceptibility x is related to the
first-order polarization, P(1)(¢) = u*¢(1)(0,1), by

p(1)
2(w) = @)
. E()E ((d)
Although this equation has analytical solutions,?® we
choose to solve Eq. (8a) numerically for reasons that be-
come clear in the next paragraph. The imaginary part of
the optical susceptibility, taking into account Coulomb
effects, is depicted as solid line in Fig. 1. The lower solid
line in Fig. 1 shows the imaginary part of the optical sus-
ceptibility, neglecting Coulomb effects. The numerical
solutions are in excellent agreement with the analytical
ones. The comparison of the absorption spectra demon-
strates that, even far in the continuum, the Coulomb
enhancement is important. At Aw = 10 Eg the absorp-
tion is still more than twice as high for the interacting
system, compared to the free-particle result.

In the remaining part of this subsection, we show how
the spatial properties of the electron-hole-pair amplitude
1) are related to the temporal behavior of the third-order
polarization, i.e., to the FWM signal. It is worthwhile
to recall that only the polarization at r = O is moni-
tored in an optical experiment. Thus, the FWM signal
reveals only the electron-hole pair amplitude at zero ra-
dius, while the spatially resolved polarization provides a
more complete picture.
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Absorption (arb. units)

L

-2.5 0.0 2.5 5.0 75 10.0
hw (Eg)

FIG. 1. Solid lines: Optical absorption Im x(w) vs energy
hw for interacting and noninteracting particles. The dephas-
ing rate /T% is 0.2 Eg. Dashed lines: Power spectra |E|? of
Gaussian excitation pulses with width o = 2.5 5/ Ep centered
at energies iiw = —1.25, —0.5, and +1 Ep. Dotted line: Ex-
citation spectrum with o = 0.5 i/ Ep centered at iw = 5 Ep.

We have solved the set of Eq. (8) for various excita-
tion conditions. The spectral intensities |E(w)|? of the
exciting pulse are shown by dashed and dotted curves in
Fig. 1.

First, we consider the real-space dependence of the lin-
ear polarization as the spectrum of the excitation laser is
shifted from the exciton to the continuum (cf. dashed ex-
citation spectra in Fig. 1). In Fig. 2, the evolution of the
first-order electron-hole pair amplitude is shown for ex-
citation at the exciton resonance, between the 1s exciton
and the continuum, and in the continuum. The normal-
ized functions 721! (r,t)|? are plotted versus radius r
for different times t = 2.5, 5, 7.5, ..., 22.5A/Ep. The

(b) (©

r2 |w<1)(r,t)\2 (arb. units)
T

0 15 0 30 0 60

r (a)

FIG. 2. Normalized functions 72 |/(!)(r,t)|? vs radius r at
times t = 2.5, 5, 7.5, ..., 22.5i/Ep (from bottom to top).
The excitation spectra are centered at iw = —1.25 (a), —0.5
(b), and +1 Ep (c). The duration of the excitation pulses is
o = 2.5%/Ep and the dephasing rate is /T2 = 0.2 Ep.
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center frequency of the pulse is fiw = —1.25 (a), —0.5 (b),
and +1 Ep (c), respectively.

For excitation at the exciton resonance [Fig. 2(a)], the
spatially resolved polarization has essentially the shape of
the exciton wave function. There is a small contribution
from higher excitonic states at early times, i.e., right af-
ter the polarization has been created. This part becomes
larger if the whole Rydberg series is excited [Fig. 2(b)].
The contribution from higher excitonic states expands
with increasing time. The main contribution, however,
still has the form of the 1s exciton wave function even
for excitation of the whole Rydberg series.

A different situation is encountered when the contin-
uum is excited [Fig. 2(c)]. The pulse spectrum is chosen
such that virtually no overlap occurs with discrete states
(cf. Fig. 1). Figure 2(c) shows that the polarization is
created in a narrow region around r = 0, but that it ex-
pands rapidly. At later times, the polarization occupies
a large volume. For example, the effective diameter d of
the polarization in GaAs increases to about 1 um within
3000 fs, i.e., the polarization extends over macroscopic
distances. As a consequence of the spatial dynamics, for
excitation of the continuum the first-order polarization
PO, which is proportional to %(})(0,t), shows an in-
stantaneous temporal response and decays on the time
scale of the exciting pulse.

The function 1/J§1) is responsible for the creation of
the elements n(2) and 9 of the density matrix. This
process is demonstrated in Fig. 3 where the function
72 |3 (r,t)|? is shown for times ¢t = 20, 22.5, 25, ...,
40%/Eg. The time delay At between the first and the
second pulse is fixed at 16 i/Ep. The other parameters
are the same as in Fig. 2.

Again, for excitation at the exciton resonance
[Fig. 3(a)], the electron-hole-pair amplitude resembles
the exciton wave function, but the deviations are larger
than in the first order. The source term for the third

23 (r,1)|2 (arb. units)

r (a)

FIG. 3. Normalized functions 2 [ (r,)|? vs radius r at
times t = 20, 22.5, 25, ..., 40 5/Ep (from bottom to top).
The excitation spectra are centered at hiw = —1.25 (a), —0.5
(b), and +1 Ep (c). The time delay At is 16 £/ Ep. The width
of the exciting pulses and the dephasing rate are the same as
in Fig. 2.
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order (8c) is no longer proportional to a Dirac function
in space, d(r), as it is the case for the first order (8a), but
is delocalized due to Coulomb interference and the finite
extension of n(2).

A remarkable difference between first and third order
can be observed for excitation between the exciton and
the continuum [Fig. 3(b)]. Now, a much larger portion of
the third-order spatially resolved polarization is created
at a finite radius. It moves towards r = 0, where a 1s-
exciton-like function is formed at later times. This func-
tion continuously interferes with higher excitonic states,
which form a quasicontinuum. Parts of the wave packet
move away from the point r = 0.

A more regular behavior is observed for the continuum
response [Fig. 3(c)]. Essentially, no part of the third-
order polarization is created at r = 0. In the course of
time, the wave packet moves as a whole to the point r =
0, where interference takes place between the incoming
and the reflected part. Later, the volume occupied by
the wave packet increases again.

The third-order spatially resolved polarization is re-
lated to the four-wave-mixing signal, which is propor-
tional to |43 (0,¢)|2. In Fig. 4, the TR FWM signal is
plotted versus time. The solid, dashed, and dotted lines
correspond to the excitation conditions (a), (b), and (c),
respectively, of Figs. 2 and 3.

The FWM signal from the exciton (solid line) can be
well described by TR(t) = const x (t — At)? exp(—2~t)
for t > At. It shows the expected slow rise and an ex-
ponential decay in the long-time limit. Only a slight os-
cillation is observed, which stems from interference with
higher excitonic states. For varying time delay, the po-
sition of the maximum, ¢ is approximately given by
tmax(At) = At +1/~. The slow rise of the TR FWM sig-
nal is due to polarization interference, which dominates
the generation of the third-order polarization.17 19

The signal maximum shows an additional delay for ex-

At =16 ﬁ/EB

TR FWM Signal (arb. units)

1

10 15 20 25 30 35 40 45 50
t (h/Ep)

FIG. 4. Normalized TR FWM signals TR(t) vs time ¢, for
the same excitation conditions as in Fig. 3. Solid line: Exci-
tation centered at Ao = —1.25 Eg. Dashed line: Excitation
centered at Aiw = —0.5 Ep. Dotted line: Excitation centered
at Aw = +1 Ep. The signal from the continuum is about 500
times weaker than that from the exciton.

1
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citation between exciton and continuum (dashed line),
because the spatially resolved third-order polarization is
mainly created at » > 0 and needs a certain time to reach
the point r = 0. The signal is characterized by an irreg-
ular and nonperiodic beating, which can be explained by
interference between the excitonic contribution and con-
tributions with a larger spatial extent.

An instantaneous FWM response is not observed for
excitation in the continuum (dotted line in Fig. 4), since
the third-order spatially resolved polarization is created
at 7 > 0. A photon echo is emitted at the time t = 2At
when the wave packet has reached the point r = 0. As
expected, the time-resolved echo signal drops rapidly and
contains no slowly decaying contributions. Importantly,
the qualitative behavior of the photon echo is not changed
even if we assume Ay = 0. This is striking in contrast
to the FWM signal from the exciton, where the neglect
of dephasing results in a diverging signal. Recalling that
the divergence of the excitonic FWM signal in this sit-
uation is due to polarization interference, this indicates
that polarization interference does not play a significant
role for the FWM response from semiconductor contin-
uum states.

The dephasing and the finite pulse width lead to a
noticeable shift of the photon echo pulse from the ideal
position t = 32 A/ Eg. The maximum of the photon echo
is found at tax = 26.4 i/ Epg, in good agreement with the
value 2 At — 4y 0?2 = 27 h/Ep predicted by the model of
a two-level system in Sec. II. The overall behavior of the
maximum position as function of the delay is ¢pax(At) ~
2At + ¢ for t — 400 , where ¢ ~ —4+ 02, as found from
the numerical data. This shows, once more, the difference
to the excitonic polarization decay.

The TI FWM signals are shown in Fig. 5. We
find, for excitation at the exciton (solid line), that
TI(At) ~ const exp(—2+y At) for t — +oo and TI(At) ~
const exp(+4+ At) for t -+ —oo, in agreement with ear-
lier works.!®16 For excitation between exciton and con-

TI FWM Signal (arb. units)

At (h/Eg)

FIG. 5. TI FWM signals TI(At) vs time delay At for the
same excitation conditions as in Fig. 4. Solid line: Excitation
centered at hw = —1.25 Ep. Dashed line: Excitation cen-
tered at Aw = —0.5 Ep. Dotted line: Excitation centered at
hiv = +1Epg.
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tinuum (dashed line), the expected quantum beating is
observed. The beating is less pronounced than in the
corresponding TR signal, since the integration averages
over the quantum beat modulation of the TR FWM sig-
nal. The TI signal from the continuum is proportional to
exp(—4+v At), as in the case of inhomogeneously broad-
ened and independent two-level systems.

Summarizing the above discussion, we note that the
temporal dynamics of the FWM signal is reflected by
the spatial dynamics of the polarization. In particular,
our results demonstrate that the delayed emission of the
photon echo corresponds in real space to expansion of
the first-order and subsequent contraction of the third-
order polarization. In contrast, the third-order polariza-
tion of the exciton is essentially created at r = 0. As
a consequence, the excitonic FWM signal starts to rise
immediately after the excitation.

Now, we focus on the comparison between the photon
echo dynamics in the interacting and noninteracting sys-
tem, i.e., we treat the semiconductor with and without
Coulomb correlation. For this purpose, we choose a much
shorter excitation pulse than previously, with the width
o = 0.5 i/ Epg, whose spectrum is centered far in the con-
tinuum at the energy hw = 5 Ep (cf. dotted excitation
spectrum in Fig. 1). The time delay is At = 10%/Ep.
The pulse spectrum covers a large region of the contin-
uum absorption under these excitation conditions. We
study the functions r Re{")(r,t) and r Rey®(r,t) in
order to obtain information about the amplitude and
the phase. For reasons of graphic representation, both
functions are multiplied by the factor exp(++vt) to com-
pensate the exponential decay due to dephasing. The
influence of the homogeneous broadening Ay is thus com-
pletely eliminated for the first-order polarization. This
is not the case in the third order, since the homogeneous
"broadening has an effect on the delay of the photon echo
as discussed in Sec. II.

In Fig. 6, the first-order spatially resolved polarization

T T T

rRe«/)(l)(r,t) (arb. units)

0 20 40 60 80
r (ap)

FIG. 6. Function 7 Re®)(r,t) vs radius r at times t = 0
(a), 5 (b), 10 (c¢), and 15 (d) %&/Ep for interacting (solid line)
and noninteracting particles (dashed line, multiplied by a fac-
tor 1.74). The excitation pulses have the width o = 0.5%/Ep
and are centered at the energy fiv = 5 Ep. The dephasing
rate is /T2 = 0.2 Ep.
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is shown for interacting (solid line) and noninteracting
(dashed line) particles at times t = 0 (a), 5 (b) 10 (c),
and 15#k/Fp (d). The free-particle result is multiplied
by a factor 1.74. We observe wave packets with a slowly
varying amplitude, but a rapidly changing phase. Sur-
prisingly, for » > 10ap, the first-order spatially resolved
polarization of the interacting system is nearly given by
multiplication of the free-particle result with a constant
complex factor. This result is by no means trivial be-
cause the comparison of the linear spectra (cf. Fig. 1)
reveals an essential influence of the Coulomb interaction
both on the magnitude and on the functional form of
the absorption profile. The reason for the small differ-
ence between the free-particle result and the result for
the interacting system is that the spherical symmetric
eigenfunctions of the hydrogen problem are asymptoti-
cally equal to those of free particles (up to a phase factor)
and that the Coulomb enhancement takes place only in
a small region around r = 0. This effect should be even
more pronounced for a short-range potential, i.e., when
screening is important.

The function r Re () (r, t) is plotted in Fig. 7 at times
t =10 (a), 15 (b), 20 (c), and 25%/Ep (d) for the same
parameters as in Fig. 6. The time delay is At = 10 5/Ep.
Here, the free-particle solution is multiplied by 5.6 . The
third-order polarization is created at the location of
z/;gl)(r,At) [cf. Fig. 6(c) where ¢ = 10%4/Eg] and con-
tracts with increasing time. It reaches its smallest extent
at t = 2 At, where the photon echo is emitted. The am-
plitude of the signal from the interacting system is about
125 more intense compared to the noninteracting case.
The radius increases again for ¢ > 2 At. The wave pack-
ets at time ¢ > 2 At are very similar to those at early
times ¢.

Figure 8 shows the time-resolved (a) and time-
integrated (b) FWM signals for the same excitation con-
ditions as in Figs. 6 and 7. The normalized TR FWM
signals are compared for interacting particles (solid line),

rRew(?’)(r,t) (arb. units)

L 1 L
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r (ag)

FIG. 7. Function r Re%®)(r,t) vs radius r at times ¢t = 10
(a), 15 (b), 20 (c), and 25 &/ Ep for interacting (solid line) and
noninteracting particles (dashed line, multiplied by a factor
5.6). The time delay is At = 10 4/Ep. The other excitation
conditions and the dephasing rate are the same as in Fig. 6.



4948 S. GLUTSCH, U. SIEGNER, AND D. S. CHEMLA 52

FWM Signal (arb. units)
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FIG. 8. FWM signals for the excitation conditions of Fig. 7.
(a) TR FWM signal TR(t) vs time t for interacting particles
(solid line) and noninteracting particles (dashed line). (b) TI
FWM signal TI(At) vs time delay At for interacting particles.

interaction-free particles (dashed line), and independent
two-level systems (data not shown in Fig. 8). Since the
pulse is much shorter in this calculation than in the one
shown in Fig. 4, the position of the photon echo is much
closer to 2At. There is no difference between the normal-
ized TR FWM signals from the interacting and the nonin-
teracting system besides a small shift of about 0.2%/Ep.
The TI FWM signal [Fig. 8(b)] from the interacting sys-
tem decays with the excitation pulse for negative time
delays At in the case of continuum excitation. Since
polarization interference causes a finite FWM signal at
negative time delays if the exciton is excited, this result
confirms that polarization interference does not signifi-
cantly affect the dynamics of continuum excitations in
a semiconductor. For positive time delay, we observe
the expected relation TI(At) ~ const x exp(—4+ At) for
At — +o0.

We, finally, note that no difference can be observed be-
tween the free-particle result and the analytical solution
for the two-level-system model in Sec. II. This confirms
our predictions from Sec. II, because of the one-to-one
correspondence of free particles and independent two-
level systems. The next-order contribution to fmax is,
in fact, extremely small since v2 o2 = 0.001 25.

The numerical results shown in Figs. 6-8 demonstrate
that the semiconductor continuum has essentially the
dynamic properties of a system of noninteracting par-
ticles. In particular, the functions ¥ and ¥® for the
interacting system are obtained by multiplication of the
free-particle result with a constant factor. Although the
FWM signals for interacting and noninteracting systems
have very different amplitudes, their temporal line shape
is almost the same. This line shape is, essentially, deter-
mined by the solution for independent two-level systems.
Whereas polarization interference dominates the behav-
ior of the FWM signal for excitation at the exciton res-
onance, those contributions are unimportant in the case
of the continuum.

In the last part of this subsection, we discuss implica-
tions of the spatial dynamics on dephasing. We have
shown that the polarization extends over macroscopic
distances if, for large time delays, a photon echo is gen-
erated from continuum states of a semiconductor. This
may have important consequences for the dephasing time
measured in a TI FWM experiment. It is plausible that
excitations with a large size are more likely to dephase
than smaller ones because of the higher probability of in-
teraction between them as well as with “defects” present
in a real crystal. In fact, the excitonic polarization, which
occupies a small volume in space, dephases on a picosec-
ond time scale,2* whereas the spatially larger polariza-
tion of continuum states dephases on the time scale of
100 fs.25

C. Influence of dispersion

In the last subsection, we have found that the spa-
tially resolved electron-hole-pair amplitude occupies a
large volume if continuum states are excited. The spa-
tial extent of the polarization is already of the order of
the wavelength of the exciting pulses for typical material
parameters. This raises the question whether the finite
wavelength of the light can still be neglected.

An exact solution for the third-order polarization can
be found for noninteracting particles, solving the equa-
tion of motion for the two-point density matrix. Assum-
ing a pulse of the form (3), the Kth Fourier component
of the third-order polarization, proportional to E2Z E7, is
given by

3 () — _ Jul* T [ oo .
PR (0) =~ -, (i (%)3 / / / dts / dty Ea(ts) Ba(ts) B2 (t1) )

Xe

Here, hwc,(k) = h2k2/(2m,,,) is the dispersion of the
conduction and valence band, respectively. Equation (9)
shows that the FWM signal is emitted only in the direc-
tion 2K, — K;, due to momentum conservation.

In k space, the ﬁrst—order polarizations of the first and
second pulse, ¢1 2(k) differ by the vector K; — K;. As-
suming K, — K; =0 Eq. (5) follows, where the en-

—iwc(2K2—K1+k) (t—t2) g—iwy (Ka2— Ki+k) (t2—t1) —1wc(K2+k) (t1—ts) g—iwy (k) (ta—t)

[

ergy Aw®) has to be replaced by the energy Aw(k) =
Bwe(k) — Aw, (k) + A2 K2/(2m, + 2my,) of the interband
transition.

The above approximation is valid if K; — K3 is much
smaller than the correlation length of the first-order po-
larization in k space. By virtue of the sampling theorem,
this is equivalent to 27/ |K; —K2| > d, where d is the di-
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ameter of the first-order polarization in real space. This
is a much weaker condition than the condition that the
wavelength of the light itself has to be much larger than
d. The weaker condition is fulfilled in all practical cases,
and there is no influence of the finite wavelength on the
FWM signal, apart from the tiny change of the transi-
tion energy, which is irrelevant in the limit of a constant
absorption coefficient in the region of interest.

An analytical solution cannot be given for interacting
particles. If excitonic states are excited, the characteris-
tic extent d is of the order of the exciton Bohr radius, as
demonstrated by the numerical results in Figs. 2 and 3.
Hence, we are in the limit 27/K; = 2x/K,; > d, so
that the finite wavelength can be neglected. For exci-
tation of the continuum, we make use of the fact that
the first-order polarization of the interacting system is
proportional to the solution for free particles as found in
the last subsection. Therefore, the above result for free
particles can be applied, i. e., the finite wavelength of the
excitation light can be neglected as well. In summary,
the above discussion shows that, both for interacting and
noninteracting particles, and for all excitation conditions
treated in this paper, the finite wavelength of the excit-
ing pulses is negligible in spite of the large spatial extent
of the polarization.

IV. CONCLUSIONS

We have investigated the spatial and temporal dynam-
ics of the electron-hole-pair amplitude generated in FWM
experiments in a semiconductor for excitation at the ex-
citon resonance, between the exciton and the band edge,
and far in the continuum. In all cases, we find that the
spatial dynamics of the polarization reflect the temporal
dynamics of the FWM signal.

The first-order and the third-order polarization of the
exciton are confined to a narrow region around r = 0,
where r is the relative coordinate between electron and
hole. The third-order polarization is created at r = 0O
and, consequently, the TR FWM signal starts immedi-
ately after the excitation. The rise of the TR FWM is
slow, due to polarization interference.

The FWM signal is emitted as photon echo for excita-
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tion of continuum states, i.e., it is delayed in time with
respect to the exciting pulses. The spatial dynamics are
characterized by expansion and contraction of wave pack-
ets. The time delay with which the photon echo is emit-
ted equals the time the third-order polarization needs to
propagate to r = 0, where it can be monitored in an
optical experiment.

Our results demonstrate that the polarization, in the
case of continuum excitation, can occupy a volume in
space that is larger than the typical wavelength of the
exciting light. Therefore, we have explicitly verified that
it is still valid to neglect the finite wavelength of the
exciting light in this situation.

We have shown that the photon echo from semiconduc-
tor continuum states has essentially the same dynamic
properties as the photon echo from a system of noninter-
acting particles where Coulomb interaction is neglected.
This is due to the fact that both the first-order and the
third-order polarization in a semiconductor for contin-
uum excitation differ only by a constant complex factor
from the results for a noninteracting system. Therefore,
the photon echo from semiconductor continuum states
has a much larger amplitude than the one from the non-
interacting system, but the temporal shape and the tem-
poral position of the echo pulse are almost the same as
in the noninteracting case. The shape and position are
determined by the solution for independent two-level sys-
tems. We conclude that polarization interference does
not significantly change the dynamics in FWM experi-
ments for excitation of the semiconductor continuum, in
contrast to the results for excitons. The intensity of the
photon echo from semiconductor band states, however,
is considerably enlarged by Coulomb enhancement.
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