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General separability of linear and nonlinear optical susceptibilities

Yasushi Ohfuti and Kikuo Cho
Faculty of Engineering Science, Osaka University, Machikaneyama 1 8, -Toyonaka, 56'0 Japan

(Received 21 February 1995)

It is shown that all components of the electric susceptibilities act as separable integral kernels
in the nonlocal theory of radiation-matter interaction. This reduces the problem of solving the self-
consistent motions of the radiation and matter to a set of polynomial equations for a given order of
nonlinearity.

I. INTRODUCTION

In the usual semiclassical treatment of interaction of
radiation with matter, one solves Maxwell's equations,
which contain the polarization P(r, t) defined as a func-
tion of space time (r, t) . This term plays the role of source
field in the coupled differential equations. Since the po-
larization is induced by the electric field to be solved,
another equation called "constitutive equation, " taking
the form

P (r, w) = f dr'y ( ) (r, r'; w )E(|', w)

is set up for the temporal Fourier transforms. Here, the
induced polarization P is described as a sum of inte-
grals of various orders in the products of the electric field
E(r, io). The relationship between P and E is nonlocal in
the sense that P(r, u) is induced by E, not only at r, but
also at all the points r', where the integral kernels are
nonzero. These kernels are called linear and nonlinear
polarizabilities or susceptibilities, and can be calculated
&om the first principles, as shown later. Their position
dependences are determined by the wave functions of the
excited states of matter.

In usual optical response theory of solids, which deals
with the macroscopic electromagnetic (EM) field, the
susceptibilities are approximated as local quantities.
Namely, P(r, io) is assumed to be induced only by the
field at the same position E(r, u). This type of theory
has been quite successful in various aspects of radiation-
matter interaction in solids and is regarded as the stan-
dard theory of optical responses. However, with the re-
cent appearance of mesoscopic or nano-scale objects as
reproducible samples of physical investigations, it has be-
come essential to study the details of size quantized en-
ergy levels and the corresponding wave functions. This
means that we should keep the nonlocal nature of the
susceptibilities as required &om the first principles cal-
culation.

At first glance, it seems a formidable task to take full
account of the nonlocal nature, even in linear response,

in solving Maxwell equations, which is reduced to an
integro-differential equation of E(r, t) How. ever, when
the integral kernels are separable with respect to the inte-
gral variables, the integro-differential equation turns out
to be a set of polynomial equations, which is certainly
easier to solve. The separability is obvious for the res-
onant part of susceptibility, which is contributed &om
the p - A type term of the interaction Hamiltonian. This
type of approach has been taken by us in various prob-
lems of linear and nonlinear optical responses, and the
consequences of nonlocality have been demonstrated in
the form of the "size, shape, internal-structure" depen-
dence of resonant response of mesoscopic systems.

The purpose of this paper is to extend the range of
validity of the separable nature of susceptibilities. It
will be shown that any components of susceptibilities, ei-
ther resonant or nonresonant, are separable kernels. This
argument will complete the formulation of nonlocal re-
sponse theory, which brings the equations of interacting
radiation-matter system as the Nth order nonlinear re-
sponse into a set of polynomial equations of %th order
in general.

II. SEPARABILITY
OF OPTICAL SUSCEPTIBILITIES

A(r, (u) = Ap(r, (u) + g[j],
j(r, (u) = %[A] .

(2.1)

The first equation is the solution of the (microscopic)
Maxwell's equations with the given source terms includ-
ing charge and current densities. We choose the Coulomb
gauge, divA = 0, by which the scalar potential is de-
termined by the instantaneous charge density. Due to
the continuity equation, the charge density can be elimi-

In order to make the following argument as general
as possible within the semiclassical &amework, we will
pursue the self-consistent motions of radiation field and
matter as those of vector potential A and current density
j, instead of E and P mentioned above.

The fundamental equations of nonlocal response
theory consist of two functional equations for the ~-
Fourier components of A and j as
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g[j] = — dr'Gq(r —r')j(r', u),
e

(2.3)

nated, and the solution is written in terms of the current
density alone. The &ee field Ao usually represents the
incident light. The form of the functional g is rather
simple, and is given as J(re &) = ). [peh(r —re) + h(r —re)pe]

e
2me

g 2

A(r, e)b(r —re) )fAg c (2.iO)

where J(r, t) is the current density operator defined by

where

~iq/r —r'/

G~(r —r') = (1+ q grad div)

1—g grad div
/r —r'/ ' (2.4) A A—N+ divJ = 0,

Ot
(2.11)

Its t dependence arises &om the motion of the particles
and A(r, t) It .should be noted that this definition sat-
isfies the continuity equation,

and q = ur/c . It is on the second equation, (2.2), that we
want to put the main stress in this paper. The functional
X is generally written in a similar form as Eq. (1.1), and
we will show that the integral kernels are all separable.

The current density induced by a given field A(r, t)
is calculated &om first principles in the following way.
The nonrelativistic Hamiltonian of a system of charged
particles in the given vector potential A(r, t) and scalar
potential P(r, t) can be written as a sum of the following
one particle Hamiltonian:

where the charge density operator N(r) is defined as

K(r, t) = ) .eeh(r —re) .
e

(2.12)

Equation (2.11) can be derived by the direct time dif-
ferentiation of Eq. (2.12) and the use of the Heisenberg
equation of motion.

For later use, we note another relationship between J
and the "dipole density" defined by

H=) i- '{eee ——A(re, e)) + cree'e(re)), (2.2) R(r, t) = ) eerh(r —rg) .
e

(2.13)

where (rg, p~) and (eg, m~) are the (coordinate, momen-
tum) and the (charge, mass) of the 8th particle, and c is
the velocity of light in vacuum. If we choose the Coulomb
gauge, divA = 0, the scalar potential represents the in-
stantaneous Coulomb interaction among all the charged
particles. The Hamiltonian of the material system, Ho,
is the A-independent part of Eq. (2.5):

The time derivative of this R is related to J by

—R = —. [R, H] = J; (2.14)

also, the following commutation relation holds for the
((,q) Cartesian components.

Ho —H(~=0 (2 6)
[Bg(r, t), J„(r',t)] = i'„h(r —r')lV(r, t), '

(2.15)

The scalar potential is regarded as a part of the mat-
ter Hamiltonian, which fits well to the usual understand-
ing of matter in nonrelativistic regime. We refer to the
eigenenergies and the corresponding eigenstates of Ho by
(Ep) and (~A) f, which will be used to derive some rela-
tions between matrix elements.

The Hamiltonian of the interaction of the radiation
with matter is defined as the A-dependent terms in H,
namely,

2

H2„, (t) =) I

— A~ pe+ 2Ae
~

2

e
mec 2mec )

(2.7)

where A~ ——A(rg, t) . (Since we treat A as classical vari-
ables, H;„q depends on t explicitly even in the Schrodinger
picture for the material system. ) For a given field A(r, t),
the time evolution of the matter system is described by
the I iouville equation of matter density matrix p,

d
ih —p = [Ho+ H 2 p] .

dt

where

Ã(r, t) = ) h(r —re) .
e

me
(2.16)

If we denote the current density operator in the absence
of A as I, similar relations hold for R and I as

[R(r, t), Hp] = i M (r, t), (2.17)

[Rt(r, t), I„(r', t)] = iMt„h(r —r')Ã(r, t) . (2.i8)
A

The t dependences of the operators R, I, and N arise only
&om the particles motion, so that we omit the argument
t in the following. These two equations will be used later
for the proof of separability.

Now, the solution of the I iouville equation (2.8) is ob-
tained by a perturbation expansion with respect to H;„&,
the result is formally written as5

(2.8)

j(r, t) = Tr(pJ), (2.9)

The expectation value of the current density at (r, t) is
given by

p(t) = exp( —iHot/h) p (t) exp(iHot/h),
p'(t) = U(t) p.U'(t),

U(t) = T exp —— dt'H;„, (t')
h

(2.19)
(2.2O)

(2.21)
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where po is the initial density matrix at t = —oo, T
is the usual time ordering operator, and the interaction
representation of the operator H;„t is defined as

dr()(I, ~N(r)
~
v) A(r, od) A(r, od')

H;„,(t) = exp[iHot/h]H;„t(t) exp[ —iHot/5] . (2.22) ~
- &E~-(~)E-(~') E~-(~')E-(~) &

As to the A dependence of the current density (2.9), there
are three diferent sources, namely, A p and A terms
in H;„t, and the A dependent term in the operator J,
(2.1O).

The expansion of the exponential factor in (2.22) leads
to the expression of p(t) as a sum of linear and nonlinear
terms with respect to A. Each term contains a product
of integral number of A's as an integrand over multi-
ple space-time variables. The use of this form of p in
the evaluation of j(r, t), (2.9), leads to a similar expres-
sion of j as a power expansion form with respect to A' s
under integral signs. Since each factor of A (or A2) orig-
inates &om one of the three sources mentioned above,
we need to examine the matrix elements of the operators
g(ee/mec)ps Ae I P(ez/mec )Aq I and P(ez/mec)Aet
with respect to the many particle eigenfunctions of Ho.
For this purpose, it is useful to rewrite them as

) Iee d. (r t) = e—f I(r) dt(r, t)dr
e

fAgC C
(2.23)

) ~ A(rg, t) = — N(r)A(r, t) dr, (2.24)

) ' A(r t) =e—f (r)Ite(r, et')dr .

e
I c c (2.25)

Since A(r, t) is a c number in the semiclassical frame-
work, we only need to consider the matrix elements of
the two operators I(r) and N(r).

Now we denote the matrix element of the ~-Fourier
component of Eq. (2.23) as

(el~(r)lv)A(r ~) =). I

"E" + "E
TV TP

(2.28)

where I~„(r) = ()L(~I(r)~v) and E „=E —E„. Alto-
gether, all the matrix elements of the three operators
(2.23)—(2.25) are found to be linear or quadratic forms of
I"'s. The current density is calculated by further carry-
ing out time integrals of various products of such matrix
elements, which yield &equency-dependent coeKcients.
Since the A dependence of the current density occurs
only through these three types of matrix elements, we
can conclude that j(r,t), (2.9), is written as a polynomial
series of E's. In other words, the susceptibility functions
of all orders are separable integral kernels.

Substituting the expression of j(r,t) in Eq. (2.1), we
can obtain A(r, t) as a polynomial series of E's. Insert-
ing this result in Eq. (2.26), we get a self-consistent set
of polynomial equations for F s with various combina-
tions of (p, , v) and frequencies. The solution of this set
of equations provides all the necessary quantities of the
interacting radiation-matter system in question. In prac-
tice, we often restrict ourselves to a given order of nonlin-
earity, for example, to the Nth order nonlinear processes.
Then, the equations to be solved are Nth order polyno-
mial equations, which could be solved numerically.

III. DISCUSSION

I'„ (er) = f dr(et~I(r)~r) A(r, er), (2.26)

where A(r, u) is the u-Fourier component of A(r, t) We.
take the eigenstates of Ho as state vectors to form the
matrix elements. Then, the matrix elements (2.24) and
(2.25) can be w'ritten in terms of fE), by the help of
(2.17) and (2.18), as

In the previous section, we have shown that the sus-
ceptibility functions for the current density j(r,t) are
separable integral kernels at any order and the integro-
diKerential equation is reduced to a set of polynomial
equations. If we confine the argument to the case of
linear response, we can give a very simple and general
expression of the self-consistent solution. To first order
in A, j is obtained as

(
j(r, (d)) = —) Ep (M —(I) )

Acr 7

I-~(r)(~Idol~)
E~ )

Ie-(r)(rltrlr) ) ,E~)
(3.1)

where Lu~ ——E~ and p is an infinitesimal parame-
ter for adiabatic switching. The terms without w in the
energy denominator come &om the term proportional to
A in J. The procedure mentioned above gives the self-
consistent equations for the E's as follows:

E„ ((d) = E„" (~))+) [&„,z(~)po)(~)» (~ —~ )
Acr 7

—&„.,A. (~~ po~~)E A(~ —~ -)] (3.2)

where E&~ (w) is defined in terms of the incident electro-
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magnetic Geld by

Fe~ ~(te) = fdrj„(r) . Ae(r, ~) . (3 3)

1 ('(E —4 E

x dr dr'I„„r Gq r —r' I~p r', 8.4

where the dyadic Green's function Gq has been given by
Eq. (2.4).

In particular, if the system initially stays at the ground
state g, the above expressions become further simpler.
Using p() ——Ig)(gI, we obtain

(

(++gj( ) IEE„+~+ 14r(r)I
1

E~g

(3.5)
and

E„(u)) = E~oi(ur)

+ ) [&„.,,j,&~,(~) —&„.,i,+,j, (~)], (3 6)

The coefFicients A's represent the retarded interaction
among the induced current density, and are given by

where either p or v is g because only Epg and Egp appear
in the expression of j, Eq. (3.5). If the electromagnetic
field is resonant with excitation energies of the matter
system, only the Grst term in j is dominant. When we
take u to 0, however, the nonresonant terms have sig-
nificant contribution. To see this, we have to keep in
mind that E's include A linearly and A is proportional
to E/u. If we neglect the nonresonant terms inversely
proportional to E~~ in j, it would diverge as ~ ~ 0 for
a finite electric field even if the matter system has a fi-
nite excitation energy. It is the nonresonant terms which
suppress this unphysical divergence. Moreover, it is eas-
ily shown, by using the identity, (2.17), that the leading
term of j is in proportion to ~ at w 0. This leads to
the fact that the radiated electromagnetic field intensity
is proportional to u at infinity, where only the dipole
component contributes. This is the well known u depen-
dence of Rayleigh scattering.

In numerical application, we can deal with only a lim-
ited number of states. To supplement the contribution
of the neglected states, it is widely accepted to introduce
the background susceptibilities which are usually local.
It is sometimes useful to see that the separability nature
is preserved even the local susceptibility functions are
introduced. To this end, we write the the background
current density in the following form in terms of local
susceptibility tensors, as

jr(r, te) = ) f dr'y& b(r —r')d(r)d(r')eyer. A(r', te)

+ ) ) fdrrf drryP~&d(r —rr)d(r —rr)9(r)0(rr)9(rr)ere„. A(rr, ter)er. A(rr, er)+
~~+~2=~ CnC

is(r ~) = ) .~~'„'e«'(r)G'. (~)

(3.8)

where

'p*'(r) = ~(r)p'(r)

P,',"(r) = ~(r)~'(r)~. (r)

(3.9)

(3.10)

and

G;g(tr) = f drP;(r)eg A(r, tr) . (3.11)

Thus, the separability holds for the background (local)

where eg is the unit vector along ( axis (( = z, y, z)
and 0 is unity in the region which the matter fills and
is zero elsewhere. By expanding the b' function in terms
of a complete set ((p;) as b(r —r') = P,. (p;(r)(p, (r'), the

spatial integration in j~(r, u) can be carried out and we

have

I

susceptibility, too. The coefIicients G's are determined
by a set of polynomial equations in which E's and G's
are coupled. Extension to the general orders would be
obvious.

Before the emergence of mesoscopic systems, the prob-
lem of nonlocal response was a rather special subject,
though it was recognized to be a very fundamental one.
It was discussed in connection with the spatial disper-
sion efFect of excitons and electrons in metals. Both
systems are characterized by the wave number depen-
dent eigenenergies (and hence dielectric function), which
inevitably leads to the existence of two (or more) coupled
modes of EM wave and matter polarization for a given
frequency. This gave rise to the problem of additional
boundary condition (ABC), which has been discussed
for a long time. The very existence of the ABC problem
seems to be connected with the attitude of keeping the
traditional framework of optical response theory, which
deals with the macroscopic electromagnetic field together
with the (bulk) dielectric function of matter. The correct
answer to the ABC problem was the use of the dielectric
function in the site representation, with explicit informa-
tion of material boundary in itself. Among the proposed
forms of such dielectric functions, some have separable
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forms. But the main stress of such models was on the
possibility of carrying out the in6nite summation over
the wave numbers, which gives some tractable forms of
integral kernels. By using such susceptibilities, one could
derive explicit forms of ABC, which depend on the start-
ing models.

The positive use of the separability has lead to an
ABC-free theory of exciton polaritons, ' though the
separable nature of (linear) susceptibility was model de-
pendent at that time. The awareness of the general char-
acter of the separability has led us to the nonlocal re-
sponse theory, which extended the validity range of the
ABC-&ee theory to the arbitrary shape and size of a mat-
ter and to the microscopic treatment of EM Geld. How-
ever, the susceptibility functions considered there were
the resonant components alone, which arise &om Eq.

(2.23), i.e. , one of the three possible origins. The present
result removes this restriction, and allows us to treat all
the components of linear and nonlinear susceptibilities
as separable integral kernels without depending on the
models of samples. In this way, the present argument
contributes to the complete formulation of the nonlocal
response theory.
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