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Two-dimensional Hubbard-Holstein model
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The interplay of electron-phonon coupling and strong electronic correlations is studied in the frame of
the two-dimensional Hubbard-Holstein model. Static and dynamic properties are determined by quan-

tum Monte Carlo simulations and by Migdal-Eliashberg theory. The comparison allows us to assess the
diagrammatic approach. The competition between the phonon-mediated electron-electron attraction
and the local Coulomb repulsion leads to a rich phase diagram, which we study in detail for a wide range
of parameters. We address the question, to which extent the systems can be described by an e6'ective

negative- U Hubbard model.

I. INTRODUCTION

The two-dimensional Holstein model' has been the
subject of intense numerical and analytic studies. It is
particularly appealing, as, on the one hand, its physical
properties can be determined for a wide range of parame-
ters by approximation-free quantum-Monte-Carlo (QMC)
simulations, which allow us to study both the physics of
the model and the reliability of standard diagrammatic
techniques; on the other hand, the Holstein model
possesses a rich and interesting phase diagram covering,
e.g., charge-density wave (CDW) and superconductivity
(SC) as observed, e.g., in Ba, K„Bi03,which exhibits a
CDW-driven metal-insulator transition and which, upon
doping with Pb or K, becomes superconducting. The
Holstein model is also particularly interesting as it
represents one of the rare models in which a departure
from Fermi-liquid behavior occurs. Here the electronic
spectral density loses the quasip article peak and is
swamped by an incoherent background with increasing
electron-phonon coupling. ' The significance of the Hol-
stein model is strongly increased by the fact that the one-
dimensional model with linear electronic dispersion is
one of the very few many-body models which has been
solved exactly. Much of the physics of the bare Holstein
model in two dimensions has been elaborated by QMC
simulations and diagrammatic studies, based on Migdal-
Eliashberg theory. ' ' For half filling and strong
electron-phonon coupling the Holstein model maps onto
an efFective-attractive Hubbard model. Consequently,
CDW and on-site s-wave superconductivity coexist.
Away from half filling, the superconducting phase dom-
inates. Likewise, with decreasing electron-phonon cou-
pling or increasing phonon frequency, superconductivity
is favored. Recent progress in the field of QMC simula-
tions has made it possible to determine dynamic proper-
ties. Those computations established a gap in the elec-
tronic spectrum at the Fermi surface. ' '" As far as
Migdal-Eliashberg (ME) theory' is concerned, Marsi-
glio found a strikingly good agreement with QMC
data, if only the ME equations are solved without further
approximations. Even the departure from Fermi-liquid
behavior can be reproduced. The CDW gap, however,

cannot be described by ME as long as translational in-
variance is retained.

Here we supplement the discussion of the physical
properties of the Holstein model. A feature missing in
the Holstein model is the Coulomb repulsion of electrons.
Particularly in view of the high-temperature supercon-
ductors, the question arises, to which extent strong elec-
tronic correlations inAuence electron-phonon mediated
superconductivity. Put differently, how does the
electron-phonon coupling act in a system which departs
from a Fermi liquid? To study these questions, we add a
repulsive Hubbard term to the Holstein model. Exact re-
sults for the combined Hubbard-Holstein model are only
available for two sites, which are studied in great detail
by Ranninger and co-workers' ' and for the dilute limit
of 1 and 2 electrons in a one-dimensional (1D) chain by
exact diagonalization. ' Here we will extend these stud-
ies to 2D systems and explore the vicinity of half filling.

II. MODEL

The Hubbard-Holstein model is described by the Ham-
iltonian

H= t g c; c +—Ugn &n i
&i j),a i

k \

kin Hub

+coo+a, a, +ggn;(a, t+a, ) .

V

e-ph

The various parts are as follows: nearest-neighbor hop-
ping of electrons Hk;„,' Hubbard interaction HH„b with
on-site Coulomb repulsion U; kinetic energy of Einstein
phonons of frequency coo, and electron-phonon interac-
tion of strength g summarized vari H, „. c; (c; ) are the
ubiquitous creation (annihilation) operators for electrons
of spin cr at site i, and a, (a, ) are the analogous operators
for phonons. In the model under consideration, the elec-
trons couple through the density n; =c; c; to the local
phonon displacement (a, +a,. ). The Holstein model

h and the Hubbard model Hk;„+HH„b are lim-
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iting cases for g =0 and V=0, respectively. In the fol-
lowing, all energies are expressed in units of t. The model
shows a rich variety of different phases. Charge- and
spin-density waves, as well as a metal-insulator transi-
tion" and SC, are found in numerical and analytical
treatments. Upon integrating out the phonon degrees of
freedom, an efFective electron-electron interaction is ob-
tained that contains the Hubbard and a phonon-mediated
part. It is determined in second-order perturbation
theory by

2g cop
yefF ( ) U.

~o

In the antiadiabatic 1imit cop —+ ~ the retarded interaction
maps onto an instantaneous Hubbard interaction with

V,'~= U —2g2yup .

Hence there is a competition between the Coulomb repul-
sion U and the electron-phonon interaction, but, due to
the retardation of the phonon-mediated part, the physics
of the Hubbard-Holstein model is expected to deviate in
general from that of an effective Hubbard model.

III. FORMALISM AND MEASURED QUANTITIES

A. Migdal-Eliashberg theory

In ME theory, electron and phonon Green's functions
are determined for imaginary frequencies by

2

II(q, iv„)= G .(k'+q, ice„+iv„)G .(k', iso„.) .
k', n', a'

(&)

We treat electron correlations on the same footing by
neglecting vertex corrections and by including only densi-
ty fluctuation (RPA) diagrams. ' ' Figure 2 shows the
diagrammatic form of the Migdal-Eliashberg equations
for the Hubbard-Holstein model. In addition to the dia-
grams for the bare Holstein model, we take into account
the screening of the electron-electron and the electron-
phonon interaction. Summation of all combinatorically
possible diagrams to infinite order yields

1 g G (k k', ice—„iv„—)X (k,ice„)=—
k', n'

g D(k', iv„)
[1—Uy(k', i v„.)]

U y(k', iv„)
1 —[ Uy(k', iv„)]

are partly included through an efFective electron-phonon
coupling g' . The self-energies for electrons and phonons
in ME, entering Eqs. (2) and (3), are

2
X (k, iso„)=— g D(k k—',iso„i—co„)G (k', iu„.),

k', n'

(4)

G (k, iso„)= 1

i co„—Ek +p X(k,i co„—)

2~o
D(q, iv„)=

(iv ) uo 2cooll(q 'v

(2)

(3)

) I )

with Matsubara frequencies co„=(2n+1)m/p for fer-
mions and v„=2n nip for boson. s. We use renormalized
Migdal-Eliashberg theory for computing the self-
energies. The diagrams of the renormalized ME equa-
tions for the bare Holstein model are shown in Fig. 1. In
this approximation vertex corrections are neglected.
Routinely, unrenormalized phonons are used (UME),
which amounts to ignoring the phonon self-energy. In
the usual approach phonon renormalization is accounted
for —in an uncontrolled way though —by using experi-
mental phonon dispersions. Likewise, vertex corrections c)

a)

b)

FIG. l. The Migdal-Eliashberg equations in diagrammatic
form for electrons (a) and phonons (b). The single (double) solid
line represents the noninteracting (interacting) electron Green's
function, the single (double) wavy line the noninteracting (in-

teracting) phonon Green's function. The vertex point
represents the emission and absorption of a phonon.

FIG. 2. The ME equations for the Hubbard-Holstein model
for electrons (a) and phonons (b). The single (double) solid line
represents the noninteracting (interacting) electron Green's
function, the single (double) wavy line the noninteracting (in-

teracting) phonon Green's function. The vertex point
represents the emission and absorption of a phonon. Also de-

picted is the screened electron-electron interaction (c) and the
efFective electron-phonon interaction (d).



4808 E. BERGER, P. VALASEK, AND W. von der LINDEN

2g y(q, iv„)
II(q, „)=

with

g(q, ivn)= g G(k'+q, ice„+iv„)G(k',ico„) .

One-particle excitations are described by the spectral
functions

A (k, co) = ——ImG (k, co+p)sgn(co)
1

and

18 (q, v) = ——ImD (q, v)sgn(v),

respectively. G (k, co+@) and D(q, v) are the analytic
continuations of the Matsubara functions to the real-
frequency axis. They are routinely performed in this con-
text by the Pade approximation. It should be noted
that the analytic continuation does not have a unique
solution, since data are only available for a limited num-
ber of imaginary frequencies. If applied carefully, i.e., us-
ing enough Matsubara frequencies and performing a
thorough study of the P dependence, the Pade approxi-
mation works, however, extremely well. The poles of
Eq. (3) define the renormalized phonon frequency

Q(q, iv„)= 1/ coo+2cooII(q, i v„) .

The regular Migdal-Eliashberg theory is recovered for
U =0. The chemical potential p is fixed by the filling

(n ) =1+ g G .(k', ico„.) .1

susceptibilities is remarkably close if phonons are renor-
malized and Green's functions are evaluated self-
consistently.

B. Projector quantum Monte Carlo

Beside the diagrammatic technique, we employ the
projector quantum-Monte-Carlo (PQMC) method to
compute ground-state properties. It is an
approximation-free numerical method which gives exact
results up to a statistical error, which can be reduced by
increasing the sample size. The basic idea of PQMC is to
project the exact many-body ground state
~0) =lime e ~%T) out of a suitable trial function
~ %T ) . For a numerical treatment one chooses a large but
finite 0. The result will be a mixture of low-lying excited
states within an energy window of width —1/0. 8 is
chosen such that the ground-state plateau is reached.
The electronic part of the PQMC scheme has already
been discussed in great detail by Sorella et al. The
phononic degrees of freedom are treated in the same way
as proposed by Hirsch. In first quantization we in-
tegrate out the phonon momenta. This procedure leads
to an e6'ective local potential for the electrons depending
on the phonon displacements. Hence, expectation
values

(e, ~e
i' Ae i' ~q, )

(e, ~e
'i'

~q )

are mapped onto megadimensional sums over Ising vari-
ables from the Hubbard-Stratonovich transformation and
over continuous phonon displacements. Each of these
quantities is defined on a (2+1)-dimensional space-time
lattice. The sums are determined by importance sam-
pling Monte Carlo. The phonon Green's functions in
real space with T as time-ordering operator read

The static electronic density-density susceptibility shows
that the Holstein mode1 has a tendency towards a CDW
phase. Within ME theory, the CD%' susceptibility is
found by summing all bubble diagrams, as indicated in
Fig. 3. This yields

D(i,j,r) = —T(x, (r)x (0)),
D(q, r)= —T( A (q, r)A ( —

q, O)),
with

(12)

(13)

+cDw( q )—

With

+cDw(

2 ~CDW(q)
COO

+cDw(q)— II(,0)
(10)

g 2

It has been pointed out by Marsiglio ' that, based on
CDW susceptibilities, the self-consistent phonon renor-
malization plays a crucial role in accounting for a proper
phase transition. The agreement between QMC and ME

FIG. 3. Bubble diagrams representing the CD%' susceptibili-
ty.

A (q, r)=e' (a~+a ~)e (14)

In order to measure time-dependent quantities —which is
amenable in this scheme only for imaginary times —we
discretize the time-evolution operator exp( rH) into—
small time slices. The phonon Green's function for imag-
inary times ~„=nA~, on the time grid provided by the
Trotter-Suzuki decomposition, reads

D ( ) ( ip
~

—mhrH nhrHA
( ())

—nhrH

XA( —qO)e ' ~4 ) . (15)

This means we have m Trotter times to project out the
ground-state function and a time window of n time slices
to measure the dynamics of the system. Detai1s are given
in Ref. 26. For T =0 the phonon Careen's function is re-
lated to the spectral weight B(q, )avnd the density of
states F(v) via
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D(q, w)= —f dve '"8(q, v),
Q =C)0,

D (i,i;~)= —f dve "F(v),
0

respectively. The inversion is utterly ill posed due to in-
complete and noisy data, which hampered the determina-
tion of dynamic properties from QMC simulations for
many years. Recently, Silver and co-workers suggested
the maximum entropy method (MaxEnt), which had
proven successful in a wide range of data-analysis prob-
lems before. It is based on Bayesian probability
theory and provides a consistent theoretical frame for
using probability theory as logic. The static Green's
function is obtained from the imaginary time data by

D(q, iv„=0)=f D(q, r)d~ .P

0

» PQMC simulations equal-time correlation functions
are most easily accessible:

c=(oo') .

For the charge- and spin-density waves the operator 0
reads

1
OcDw Pq

Off-diagonal long-range order (ODLRO) is detected by
the zero-momentum pair-field operator

(17)

The latter is used to measure spatial coherence between
pair-field creation and annihilation for three different
symmetries a: (a) on-site s wave,

b,,(i)=c, tc; t, .

(b) extended s wave,

and therefore tends to a SC phase in the thermodynamic
limit.

IV. RKSUI TS

A. Charge- and spin-density eaves

%"e start out with the analysis of charge-density waves.
To allow for a comparison of QMC and ME data, results
are given for 4 X4 lattices with periodic boundary condi-
tions. QMC and ME predict unanimously a CDW phase
at half filling with a pronounced peak in the CDW struc-
ture factor at qo=(m, m). The peak height increases with

increasing electron-phonon couphng g. This behavior is

depicted in Fig. 4, where we plot the dependence of y
versus g. There we also show the filling dependence.

decreases rapidly with hole doping and is negligibly

small for ( n ) =0.5, due to a general decrease of the sus-

ceptibility and a shift of the peak away from qQ. This
tendency is observed in the CD%' correlation function as
well. For fixed g /coo the CDW susceptibility increases

with decreasing co& as the effective electron-electron in-

teraction becomes more and more retarded. The Hub-

bard interaction, which reduces charge fluctuations,
counteracts the formation of charge-density waves. This
behavior is predicted by QMC and ME. Figure 5 shows

the result obtained by ME. The U dependence of the
static susceptibility can be described accurately by an ex-—U/ Up
ponential dependence y» ( U}=y~ ( U =0) e

For g =coQ=0. 5, ME yields U&=0.75. The situation is,
however, different away from half filling. For n =0.875
and U =0, QMC data' reveal that the peak in the CDW
structure is shifted away from the nesting-vector qo to-

wards q =(n./2, n/2}. In this instance, the influence of
the local Coulomb repulsion is opposite: it shifts the

6 +(i)=g(c;+s tc; &

—c;+s &c; t)/&8,
80.0

and (c) d 2 i wave,
X

hd(i)=icos(ir5„)(c;+s tc,. & c;+s tc; t—)/v 8 .
5

The sums are restricted to nearest-neighbor vectors 5.
Results will be depicted for the vertex correlation func-
tions, in which single-particle renormalization effects are
removed by subtracting the zero-order bubble. A posi-
tive (negative) pair-field vertex indicates an efFective at-
tractive (repulsive) interaction. We are particularly in-
terested in the distance dependence of the pair-field
correlation function

60.0

40.0I)
CP'

20.0

0.0
l

0.0
I

0.5
l

1.0 1.5

y(x&)= —g(h (i+1)b, (i)),1

to study whether the system has ODLRO, i.e.,

FKs. 4. The g dependence of the CD%" susceptibility for the
fillings (n ) =1, 0.875, and 0.5, for parameters q =qo, coo=0. 5,
and P=10 on a 4X4 lattice.



4810 E. BERGER, P. VALASEK, AND W. von der LINDEN 52

15.0

10.0

5.0

0.0

OMF

'P ————- - exp(U/U, ); U, = 0.75

~O

yp

Wp

%q

5~

0 ~
p

O 0
OO~p (5 g ~O~ P-Q. 0 O

CO
II

II 0.5

0.0

q = (Z,7I;)

~, ME

Q QMC

S

'6- ~ —Q —~~
I

0.0 1.0
I

2.0 3.0 0.0
I

0.5
I

1.0
9

I

1.5 2.0

FIG. 5. The dependence of the CD%' susceptibility upon U
for the parameters q =qo, g =0.5, coo=0. 5, and P=10 on a
4 X4 lattice.

FIG. 6. The effective phonon frequency Q as a function of g
for parameters coo=1, p=10, q =qo, and (n ) =1. The straight
line shows the RPA result, the circles are obtained with ME,
and the squares are QMC data.

CDW peak back to q0, leading to an increasing g
Within ME we determined the CDW transition tempera-
ture from the T dependence of 1/y ( ) for a 4X4 lat-
tice and parameters coo= 1, g /coo= 1, and U =0. QMC
simulations for an 8X8 system yield kTc =0.1, which is
greatly overestimated (kTc=0.7) by RPA or UME. A
significant improvement (kTc =0.2) is achieved by an ex-
act treatment of ME theory. Nonetheless, the result is
still a factor 2 off, which has to be attributed mainly to
vertex corrections.

The spin-density wave shows the expected behavior for
large Hubbard interaction. In the half-611ed case the an-
tiferromagnetic structure factor increases with increasing
Hubbard U and it vanishes with doping or increasing
g /CO 0.

Vi

~ 0.5
II
O

(

0.0

0.0 0.5

q = (z,z/2)

1.0
g

ME

0 S
S ~-o

QMC

1.5 2.0

B. Renormalized phonon frequency FIG. 7. The effective phonon frequency 0 as a function of g
for parameters coo = 1, P= 10, q = ( m, m /2 },and ( n ) = 1.

Due to the pronounced susceptibility of the system to-
wards a staggered density Auctuation, the frequency of
the q0 phonon is weakened and approaches zero at the
CDW phase boundary. We have calculated the efFective
phonon frequency

1.5

QMC

Q(q, i v„=O)=Qcoo+2nioii(q, i v„=O)

with QMC, ME, and RPA for two diFerent wave vectors
q: q=qo and q =(rr, ~/2). In Figs. 6 and 7 the results
are depicted for half filling. ME and QMC yield that for
q =q0 the frequency approaches zero very rapidly,
whereas for q =(m, vr/2) it remains at finite value. It ap-
pears that the efFective phonon frequency in the Holstein
model is fairly well described by renormalized ME
theory, while the RPA results start to deviate as soon as
the system approaches the CDW phase. The U depen-
dence of the phonon frequency is depicted in Fig. 8 for
half fI11ing and q0. The Hubbard repulsion increases the
phonon frequency, since U counteracts the efFect of the
electron-phonon interaction. With doping, the CDW

CO
II

0

II

0.0

,o.eO-6'
O.C7

O.O

,Q'
.0'

.0'
,0

ME.()
.oo

O-0'
C, O.OO&

O-g GG.O-&&&'O +

I

0.0
I

1.0
)

2.0
U

I

3.0 4.0

FIG. 8. The U dependence of the renormalized phonon fre-
quency for q =(m, n)and q =(vr, n/2. )

. coo=4, g = 1, P= .10, and
&n & =1.
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peak is shifted away from qo, which brings back the fre-
quency of the qo phonon towards coo. In this case the
Coulomb repulsion leads to a significant softening of the
phonon mode.

15.0

U= 3
I )

I

f

I

I

I

I
/

I/
/

/
/ I

10.0
U=0C. Phonon spectral function

Also, the behavior of the phonon spectral density
8 (q, v) [Eq. (16)], as obtained by QMC and ME theory,
depends strongly on the wave vector q. Figure 9 shows
the g dependence of 8(q =qo, v) for U=0 and half
filling. For g =0, the spectral density is peaked at the
bare phonon frequency co&. The finite width is due to the
Pade approximation. Turning on g leads to a broadening
and a slight shift to a lower frequency. Simultaneously, a
second peak develops at co=0 which dominates the spec-
tral density for g ~ coo. This scenario can be explained in
a single-mode approximation. ' Turning on U (Fig. 10)
causes a reversed behavior: The peak at co=0 disappears,
while the peak at co ~ ~o shifts back to higher frequencies
and becomes sharper. For q vectors away from qo,
B (q, v) retains a pronounced single pole structure, which
is merely shifted to lower frequencies with increasing g.
With increasing U the peak in the spectral density is
shifted back towards coo. Away from half filling the
behavior is different. In Fig. 11 we show the phonon
spectral density for (n ) =0.875 and qo. Increasing U
leads in this case to a softening of the phonon peak, con-
trary to our finding for half filling. The behavior is due to
the shift of the peak in the CDW structure factor as de-
picted in Fig. 12.

5.0

0.0
I

0.6
I

0.4
I

0.2
I

0.0 0.8

FIG. 10. The spectral density of the phonons as found by ME
for different values of the Hubbard interaction U for cop=0. 5,
g =0.5, P=10, (n ) =1, and q ={n,m). The dotted line corre-
sponds to U =0, the dashed line to U =1, the long dashed line
to U =2, and the dot-dashed line to U =3.

20.0

15.0

10.0
II

CQ

5.0

/r
r lD. Electron spectral function

0.0Next, we consider the effect of the electron-phonon
coupling and the electron-electron interaction on elec-
tronic properties. It has been shown by QMC studies for

I

6.0
I

4.0
I

2.0
I

0.0 8.0

0,0
g = 0.0

K/2, 1t/27t/2, z0,7tO,n/20,030.0

U=0
4x4

U=2

20.0

II
CX'

CCI

g =0.2 I
I
I

I
I

I
I

I

I
I

10.0
0)o = 4.0

Xo =0.5
g = 0.4

n = 0.875

0,0

I

0.6
I

0.4 rt/2, z/2

I

0.2 n/2, n

I

0.0 O,rtO,z/2

FIG. 9. The spectral density of the phonons as found by ME
for different values of the electron-phonon coupling g for
coo=0. 5, P=10, (n ) =1, and q =(n.,m). The dotted line corre-
sponds to g =0, the dashed line to g =0.2, the long dashed line
to g =0.4, and the dot-dashed line to g =0.6.

FIG. 12. The CDW structure factor for (n ) =0.875, g =1,
A0=2g /6)p cop=4 on a 4X4 lattice and U =0 with its incom-
mensurate peaks obtained by QMC. An increasing repulsion
shifts the electron density structure back to qp =(m, ~).

FIG. 11. The phonon spectral weight function 8(q, v) as ob-
tained by QMC for ( n ) =0.875 with g = 1, coo =4 on a 4 X 4 lat-
tice. The momentum is q =qp=(m, m). The lines show the
behavior of the phonon renormalization with increasing local
repulsion U.
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2.0

g = 0.2 0.075
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co, = 4.0
coo = 3.5
Q)0 = 3.0
G)0 = 2.5
0)„=2.0
coo = 1.5

0.05

0,00 ------e--e- ~--+---+ - -----

0.0 2.0 4.0

0.025

0.0
I

—1.0
I

0.0
CO

g =0.6

I

$.0 2.0

0.000

0.0 2.0 3.0

FEG. 13. The ME electronic spectral density for different
values of g for parameters coo=0. 5, P= 10, (n ) = 1, and
k =(m/2, m/2). The straight line gives the result for g =0.2,
the dotted line for g =0.4, and the dashed line for g =0.6.

U =0 that the electronic self-energy behaves di6'erently
depending on the k vectors. For k's on the Fermi surface
the self-energy diverges upon approaching m=0 along
the imaginary axis, which indicates the existence of a
CDW gap. For wave vectors away from the Fermi sur-
face the gap vanishes. The ME results yield the same
behavior of the self-energy. It should be mentioned that
in a finite 4X4 system there cannot be a real divergency
in the self-energy. We observed, however, that with in-
creasing g it tends more and more towards a divergence.
The temperature and g dependence of the gap have been
studied directly in terms of the spectral density for real
frequencies upon combining QMC and MaxEnt. " The
electronic spectral density obtained by ME theory for
U =0 and a wave vector on the Fermi surface is shown in

FIG. 15. The on-site s-wave pair-field correlation vertex for
different values of co0 of a 4X4 system with U =0, g =1, and

(n ) =1 found by QMC. The inset shows the on-site value (dia-

monds) and the mean long-range value (circles) dependence of
6)0.

Fig. 13. For g =0 the spectral density consists of a delta
peak at co=0. Turning on g leads to a reduction and
broadening of the quasiparticle peak. In addition, struc-
tures appear at +coo resulting from phonon
(de)excitations. For suKciently large g the spectrum be-
comes completely incoherent. In Fig. 14 we depict the U
dependence of the electronic spectral density at half
511ing. Again, electronic correlations partly reverse the
e6'ect of the electron-phonon interaction. The parame-
ters, given in the 6gure caption, are chosen such that the
quasiparticle peak is completely swamped by the in-
coherent background in the U =0 case. Interestingly, in-
creasing the interelectronic correlation recovers partly
the quasiparticle peak, and, also, the phonon peaks at
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FIG. 14. The U dependence of the electronic spectral density
for parameters coo=0. 5, g =0.5, P=10, (n ) =1, and
k =(m/2, m/2) as obtained by ME for a 4X4 lattice. The
straight line gives the result for U=O, the dotted line for
U =0.4, and the dashed line for U =0.9.

FIG. 16. The U dependence of the on-site s-wave pair-Geld
correlation vertex of all possible lengths of a 4X4 system with
coo= 1, g =1, and (n )=1 obtained by QMC. The inset shows
the decreasing on-site value for different Hubbard U.
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FIG. 17. U dependence of the extended s-wave pair-field
correlations vertex for diFerent lengths of a 4X4 system with
coo=1, g =1, and (n ) =1 found by QMC. The inset shows the
on-site value increasing with U.

I

FIG. 18. U dependence of the d 2 2-wave pair-field correla-

tions vertex for diFerent lengths of a 4X4 system with ~0=1,
g =1, and (n ) =1 obtained by QMC. The inset shows the on-
site term value increasing with U.

co=+coo show up again. However, increasing U beyond
U = I, which corresponds to the phonon-mediated
negative-effective U, leads again to a destruction of the
quasiparticle features. It can be concluded from these re-
sults that the effects of the local electron-phonon cou-
pling can to a large extent —but not entirely —be de-
scribed by an effective negative Hubbard interaction.
This description does not, e.g., account for the phonon
(de)excitation peaks, nor does it explain the departure
from a 5 peak for V' =0.

K. Superconductivity

Supplementary to previous studies of the supercon-
ducting features of the Holstein model, ' in which a
diverging on-site s-wave pairing susceptibility has been
found in the range g (2coo, we performed QMC simula-
tions to study the inAuence of the Coulomb repulsion. In
agreement with the aforementioned diverging susceptibil-
ity, we find ODLRO in the equal-time pair-field correla-
tion function [Eq. (17)) for on-site s waves (Fig. 15). The
inset shows the increase of the on-site term and the con-
stant value for long distances with increasing coo. For
U =0 the vertex decreases from a large on-site value to a
positive (attractive) constant for larger distances. We
find that the vertex correlations for pair-field symmetries
other than local s wave are negligible. It is needless to
say that OLDRO in the small systems accessible by QMC
studies can merely hint at the possible physical behavior
of the model. Figure 16 illustrates the U dependence of
the pair-field correlation vertex for the on-site s-wave
channel for a different parameter set. For these parame-
ters the system shows a strong CDW character, leading
to a modulation of the r dependence of the pair-Geld
correlation. The local repulsion U reduces charge Auc-
tuations and leads to a strong reduction of on-site s-wave
pair correlations and eventually to a repulsive interac-
tion. At the same rate at which the attractive interaction

vanishes in the on-site s-wave channel, we observe an in-
creasing signal in the extended s-wave (Fig. 17) and d-
wave channels (Fig. 18). In spite of a strong increasing
on-site value, the vertex drops to zero within one or two
lattice distances in the half-filled case. In conclusion, we
found no ODLRO at half filling; however, preliminary re-
sults indicate ODLRO in the d-wave channel away from
half filling for (n ) =0.875. Unfortunately, the signal-
to-noise ratio is poor due to the ubiquitous sign problem,
and further studies are necessary for definite conclusions.

V. SUMMARY

In summary, we performed PQMC simulations and
evaluated Migdal-Eliashberg theory for the Hubbard-
Holstein model. We also showed a way of calculating dy-
namic phonon Green's functions within the PQMC algo-
rithm. In agreement with observations of previous stud-
ies of the bare Holstein model, we found that ME theory
also yields fairly good results for the Hubbard-Holstein
model if phonon renormalization and self-consistency are
properly accounted for. The phonon-mediated electron-
electron attraction leads to a charge-density wave and a
strong renormalization of the phonon frequency. The
phonon-mediated electron-electron interaction can partly
be described by an effective negative-U Hubbard model;
but not entirely, as has been demonstrated by various dy-
namic properties and by the effects caused by the Hub-
bard interaction. It has been shown that the local
Coulomb repulsion is detrimental for local s-wave pair-
ing, while it generates attractive pairing for extended s-
wave and d-wave symmetry, but no ODLRO for half
filling.

ACKNOWLKDGMKNTS

We would like to thank W. Hanke, A. Muramatsu, F.
Assaad, R. Hetzel, J. Gubernatis, and R. Silver for stimu-
lating discussions.



4814 E. BERGER, P. VALASEK, AND W. von der LINDEN 52

T. Holstein, Ann. Phys. {Leipzig) 8, 325 (1959).
S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131,993 (1963).
F. Marsiglio, Phys. Rev. 8 42, 2416 {1990).

~V. Meden, K. Schonhammer, and O. Gunnarsson, Phys. Rev.
8 50, 11 179 (1994).

5R. T. Scalettar, N. E. Bickers, and D. J. Scalapino, Phys. Rev.
8 40, 197 (1989).

F. Marsiglio, Physica C 162-164, 1453 (1989}.
7R. M. Noack, D. J. Scalapino, and R. T. Scalettar, Phys. Rev.

Lett. 66, 778 (1991).
~M. Vekic, R. M. Noack, and S. R. White, Phys. Rev. 8 46, 271

(1992).
9R. M. Noack, and D. J. Scalapino, Phys. Rev. 8 47, 305 (1993).

M. Vekic, R. M. Noack, and S. R. White, Phys. Rev. 8 46,
271 (1992).
M. Vekic and S. R. White, Phys. Rev. 8 48, 7643 (1993).
P. Niyaz, J. E. Gubernatis, R. T. Scalettar, and C. Y. Fong,
Phys. Rev. 8 48, 16011 (1993}.

~sA. B.Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys.
JETP 7, 996 (1958)]; G. M. Eliashberg, ibid 38, 966. (1960)
[11,696 (1960)].
J. Ranninger and U. Thibblin, Phys. Rev. 8 45, 7730 {1992).
A.S. Alexandrov and J. Ranninger, Phys. Rev. 8 23, 1796
(1981); A. S. Alexandrov, J. Ranninger, and S.
Robaszkiewicz, ibid. 33, 4526 (1986); A. S. Alexandrov and J.
Ranninger, Physica C 198, 360 (1992).
F. Marsiglio, Physica C 244, 21 (1995).

I7J. R. Schrieffer, Theory of Superconductiuity (Benjatnin, New
York, 1964).
D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev.
148, 263 (1966).
D. J. Scalapino, in Superconductivity, edited by R. D. Parks

(Dekker, New York, 1969)~

~ E. Berger, Diploma thesis, University Wurzburg, 1994.
H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179
(1977).
G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 {1986);S.
Sorella, E. Tosatti, S. Baroni, R. Car, and M. Parrinello, To-
tuards the Theoretical Understanding of the High T, S-upercon

ductors, Proceedings of the Adriatico Research Conference,
edited by S. Lundqvist, E. Tosatti, M. Tosi, and L. Yu (World
Scientific, Singapore, 1988); S. R. White, D. J. Scalapino, R.
L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. Scalettar,
Phys. Rev. 8 41, 9301 (1990).
W. v. d. Linden, Phys. Rep. 220, 53 (1992), and references
therein.

~4M. Frick, W. v. d. Linden, I. Morgenstern, and H. de Raedt,
Z. Phys. 8 81, 327 {1990).
J. E. Hirsch, Phys. Rev. 8 38, 12023 (1988).

~ P. Valasek, Diploma thesis, University Wiirzburg, 1993.
~7R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Phys. Rev. 8

41, 2380 (1990).
J. Skilling, in Maximum Entropy and Bayesian Methods, edit-
ed by J. Skilling (Kluwer Academic, Dordrecht, 1989), p. 45;
S. F. Gull, ibid. ; J. Skilling, in Maximum Entropy and Baye-
sian Methods, edited by P. F. Fougere (Kluwer Academic,
Dordrecht, 1990); B.Buck and V. A. Macauley, in Maximum
Entropy in Action (Clarendon, Oxford, 1991);W. v. d. Linden,
Appl. Phys. A 60, 155 (1995).

~9A. O'Hagan, in Kendall's Aduanced Theory of Statistics 28,
edited by E. Arnold (Cambridge University Press, Cam-
bridge, 1994).
S. R. White, D. J. Scalapino, R. L. Sugar, and N. E. Bickers,
Phys. Rev. Lett. 63, 1523 (1989).


