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Deducing correlation parameters from optical conductivity in the Bechgaard salts
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Numerical calculations of the kinetic energy of various extensions of the one-dimensional Hubbard
model including dimerization and repulsion between nearest neighbors are reported. Using the sum rule
that relates the kinetic energy to the integral of the optical conductivity, one can detemine which param-
eters are consistent with the reduction of the infrared oscillator strength that has been observed in the
Bechgaard salts. This leads to improved estimates of the correlation parameters for both the
tetramethyltetraselenafulvalene and tetramethyltetrathiafulvalene series.

The problem of 6nding an accurate description of the
electronic properties of quasi-one-dimensional organic
conductors has a long history. Even for the one-
dimensional properties that can be observed at not too
1ow temperatures there is no consensus. One of the ori-
gins of the difhculty is that one can work within two
different kinds of models. The first one is the Fermi-gas
model, also known as g-ology. ' This is the appropriate
framework to describe the low-energy properties, which
are not of the usual Fermi liquid type but of the
Luttinger-liquid type. Most of the low-energy properties
have been extensively analyzed within this type of model,
and some information on the size of the parameters is
available. ' The second kind of model is the Hubbard
model and its extensions. They are described by the
Hamiltonian

H= —t, g (c; c+, +Hc)
i eVen, a.

—tz g (c, c;+, +H.c. )
l Odd, c7

+ Urn, tn, i+ Vg n;n;+, .

The parameters of this model are (i) a hopping integral t,
for the short bonds; (ii) a hopping integral t2 ( ~ ti ) for
the long bonds; (iii) an on-site repulsion U; and (iv) a
repulsion between nearest neighbors V. In the following,
energies will be measured in units of t &, and the basic di-
mensionless parameters are t2lt, for the dimerization
and Ulti and V/t, for the Coulomb interactions. These
parameters are large-energy scales, and such a descrip-
tion is the natural framework to make contact with quan-
tum chemistry or to analyze high-energy properties of the
materials.

Recently, it has been shown that, even for the low-
energy properties, this description in terms of high-
energy scales can be very useful. In the context of the
Luttinger-liquid theory, the central parameter that de-
scribes the low-energy physics, the exponent K, can take
any value from 0 to + ~. However, for the quarter-
filled, extended Hubbard model, which is the appropriate

description of (TMTSF)zPF6 (where TMTSF is
tetramethyltetraselenafulvalene) as far as quantum chem-
istry is concerned, it was possible to show that K cannot
be smaller than —,'. It is actually possible to calculate I(

as a function of the correlation parameters with a reason-
able accuracy using standard numerical techniques,
and an accurate determination of these parameters will
be an important step toward a good understanding of the
low-energy properties of the Bechgaard salts.

How can one determine the correlation parameters? In
systems like transition-metal compounds, the combina-
tion of photoemission and Auger spectroscopy has
proved to be the most powerful tool for answering that
question, but this is hopeless in the case of the
Bechgaard salts because the photoemission spectrum is
itself the subject of much controversy. ' For charge-
transfer salts, more specifically, for TTF-TCNQ (where
TTF is tetrathiafulvalene and TCNQ is tetracyanoquino-
dimethane) and related compounds, a lot of work had
been done on that question in the early 1980s, based on
diffuse scattering experiments and susceptibility measure-
ments. The competition between 2k„and 4k~ in the
charge response function, and the enhanced Pauli suscep-
tibility observed in some compounds, have been shown by
Mazumdar and co-workers' to be consistent with the
nondimerized version of Eq. (1) if U is about 1.5 ev and V
is 0.5 eV. A detailed study of charge and spin response
functions by Hirsch and Scalapino with quantum Monte
Carlo simulations confirmed the important role of the
repulsion between nearest neighbors. " Finally, this
description was also shown to be able to account for the
charge-transfer spectra of many salts. '

Part of this analysis can be transposed to the
Bechgaard salts. However, given the important role
played by dimerization in these compounds, a more
specific analysis that includes different values of t, and t2
would be welcome. The interpretation of the tempera-
ture dependence of the susceptibility ' and of the resis-
tivity' has given some preliminary information, but it is
not very precise: Quantitative calculations are already
very dificult for the Hubbard model with only on-site
repulsion, and accurate estimates for the model of Eq. (1)
as a function of t2/t„U/t&, and V/t& are not available.
Quantum-chemistry calculations of the correlation pa-
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rameters have also been performed for these systems, '

but the reliability of the calculations is again very contro-
versial.

There is however one set of experimental data that has
not been systematically used, namely, the reAectivity
measurements. That these results contain information on
the local correlations has already been explained in great
detail by Jacobsen. ' The idea is the following. On one
hand, one can determine the plasma frequency from a
Drude fit of the reAectivity spectrum. On the other hand,
one can extract the optical conductivity through a stan-
dard procedure. Comparing the integral of the real part
of the conductivity with the plasma frequency yields an
estimate of the reduction of the kinetic energy due to
correlations. To be more precise, let us denote by T the
kinetic-energy operator defined by

case, it was sI own by Maldague' and recently confirmed
by Eskes and Oles' that the sum rule is almost exhausted
by the lower band, and the estimates of the kinetic energy
obtained by integrating over the lower band are only ac-
curate to within a few percent.

Performing such an analysis for the Bechgaard salts,
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The kinetic energy is p(-. en by Ek;„=( T ), where the ex-
pectation value is calculated in the ground state of the
full Hamiltonian H. The kinetic energy per site 6'„;„ is
then defined as liml + Ek;„/L, where I, is the number
of sites. The plasma frequency provides an estimate of
the kinetic energy Dk;„calculated in the ground state of
T, i.e., without correlations, the integral of the conduc-
tivity provides an estimate of 8k;„, and the reduction of
kinetic energy is defined as the ratio 6'k;„/6„;„. The main

difhculty is where to stop in performing the integral of
the conductivity. This can be a serious problem because,
for strongly correlated systems, spectral weight coming
from the conduction band can be found at high energy—
typically around U—and it is impossible to disentangle
this weight from other contributions to the conductivity.
In the case of the Bechgaard salts, this is not too serious
because the system are essentially quarter filled. In that
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FIG. 1. Finite-size scaling of the kinetic energy for t2/t l
= 1,

U/t, = 10, and V/tI =0. Upper curve, closed shell; lower
curve, open shell ~

FICx. 2. Kinetic energy as a function of U/t& for V/tI =O.
(a) t /t, = 1; (b) t /t, =0.9; (c) t /t, =0.7.
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tz/ti
@kin /@kin

TABLE I. Reduction of kinetic energy for U/t, ~+ ~ and V/t, =0.

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 O. l 0.0
0.707 0.711 0.720 0.733 0.752 0.777 0.808 0.845 0.889 0.940 1.0

Jacobsen reached the conclusion that 6'k;„/6k;„ is about
0.85 for (TMTSF)zC104 and 0.73 for (TMTTF) 2PF6
(where TMTTF is tetramethyltetrathiafulvalene) . Vari-
ous estimates of the hopping integrals for (TMTTF)2PF6
and (TMTSF)2C104 have been proposed on the basis of
experimental results and quantum-chemistry calcula-
tions. While there is still some uncertainty concerning
their absolute value, especially in the case of
(TMTTF)zPF6, the ratio t2/t, is believed to be approxi-
mately equal to 0.9 for (TMTSF)2C104 and 0.7 for
(TMTTF)2PF6. ' So, to extract information about the
correlation parameters from Jacobsen's measurements,
one just needs accurate estimates of the kinetic energy in
the ground state of the Hamiltonian of Eq. (1) as a func-
tion of U/t, and V/r, . When Jacobsen published his re-
sults nothing of the sort was available, and he could not
go beyond a qualitative analysis of the results based on
the numerical study of a system of two particles on four
sites. Motivated by Jacobsen's results, Baeriswyl, Car-
melo, and Luther calculated the kinetic energy of the
standard Hubbard model using the Bethe ansatz solution
at half filling and the Gutzwiller ansatz away from half
filling. Their results confirm the trends, namely, that
correlations have to be invoked to explain the reduction
of oscillator strength, but they do not allow for a precise
interpretation of the experimental results. We are not
aware of any further work on that problem.

In this paper, we calculate the kinetic-energy on the
basis of numerical results obtained on finite clusters by
exact diagonalization. For a given cluster, the expecta-
tion value of the kinetic energy is most easily obtained us-
ing the Hellmann-Feynman theorem as

sponding to open shells, and all the results given in the
rest of the paper have been obtained with such boundary
conditions. Besides, we have compared the results ob-
tained by using only L =8 and 12 with estimates ob-
tained using also the results for L = 16 for a few cases,
and the error was always less than 1%. So, unless one
needs a very accurate value of the kinetic energy, it is
sufhcient to use systems with 8 and 12 sites to perform
the 1/L extrapolation. This has been systematically
done in the following.

Let us start with the results obtained in the case
V/r, =0 (no repulsion between first neighbors). The ra-
tio 6„;„/Ei,;„ is plotted as a function of U/t, for three
values of t2/ti in Fig. 2 for a quarter-filled system. In all
cases it decreases with U, in agreement with the intuitive
idea that correlations make the motion more dificult and
lead to a reduction of kinetic energy. What is perhaps
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where the ground-state Eo s
=—(H ) is evaluated with the

Lanczos algorithm. 6k;„ is then obtained from a finite-
size scaling analysis of Ek;„/L. For noninteracting elec-
trons, it is easy to show that the finite-size corrections go
as 1/L, where L is the number of sites. This remains
true for the total energy per site for Luttinger liquids. So
it is quite natural to assume that this is also true for the
derivatives of this quantity with respect to the hopping
integrals, and thus for the kinetic energy. Our numerical
results clearly support this assumption. A typical exam-
ple is given in Fig. 1, where we have plotted Ek;„/L as a
function of 1/L for L =8, 12, and 16. The two curves
have been obtained for di6'erent boundary conditions cor-
responding to closed and open shells, respectively. The
scaling law is quite accurately satisfied, and the two
boundary conditions give estimates in very good agree-
ment, which lends further support in favor of the as-
sumption that the scaling is in 1/L . In most cases
where we have tried both types of boundary conditions,
the slope was smaller for the boundary conditions corre-
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FICx. 3. Large-U behavior of the kinetic energy for V/t, =0.
(a) t2/tl =0.9; (b) t2/t, =0.7.
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more surprising is that, even for very large values of
U/t„ the reduction is not so big. That our results are
still valid for large U/t, can actually be checked quite
easily. The value for U/t, ~+ ~ is the same as for spin-
less fermions at half filling (see Table I), and our results
plotted as a function of t, /U extrapolate nicely toward
that limiting value [see Fig. 3]. So, taking for granted
that tz/t, =0.7 for (TMTTF)zPF6, a reduction of 0.73 is
incompatible with on-site repulsion only. This can be
considered as an alternative proof to that given in Refs.
10—12 that repulsion on neighboring sites is important in
these systems. This conclusion depends of course on the
actual value of 6k;„/6„;„in (TMTTF)zPF6, and a slightly
larger value of this ratio would be compatible with on-
site repulsion only, provided the value of U/t is large
enough. This would be incompatible however with resis-
tivity and susceptibility measurements. ' ' So, in spite of
the experimental uncertainty about the actual value of

0ek;„/~k;„, the fact that a repulsion between nearest neigh-
bors has to be invoked to understand these data seems
quite firmly established.

Let us now consider the general case described by Eq.
(1). The question we would like to answer is the follow-
ing: %'hat are the values of U/t

&
and V/t, that are com-

patible with the known values of tz/t, and of 6k;„I@i,;„
for (TMTSF)zC10~ and (TMTTF)zPF6? The most con-
venient thing to do is to plot the curves of constant

O e

6k;„/Ek;„ in the ( U/t „V/t, ) plane for the values of tz/t i

of interest. Such plots for quarter-filled systems are given
in Fig. 4 for t2/t, =1, 0.9, and 0.7. The basic features of
these curves are again quite natural. The only one that
deserves special comment is the re-entrant behavior for
large V/ti and small U/ti. Another way of looking at
the same e6'ect is to notice that, for a given value of V/t
the kinetic energy first increases before it decreases for
U/t& large enough. This presumably comes from local
pairs, which are known to exist and to be very heavy ob-
jects in the small-U/t„ large V/t, lim-it, ' and which be-
come lighter when U/t& increases.
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FIG. 4. Constant kinetic energy plots from cskin/@»n=0. 99
(bottom left) to 6k;„/6'k;„=0.50 (top right). (a) tp/t] =1' (b)
t2 /t I

=0.9& (c) t2 /t ] =0.7.

FICx. 5. Comparison of the curves giving the correct reduc-
tion of kinetic energy. Crosses, (TMTSF)~C104 (t2/t& =0.9,

0
@kin/@kin 0.85); squares, (TMTTF)qPF6 ( t2 /t I

=0.7,
Dk;„/8„;„=0.73).



4792 FREDERIC MILA

There is now no problem to find parameters that give a
reduction of kinetic energy of 0.85 for (TMTSF)2C104
and of 0.73 for (TMTTF)zPF6. The corresponding curves
of possible pairs ( U!t„V/t, ) are reproduced in Fig. 5.
This is not very useful unless we can decide where the ac-
tual parameters are located on these curves. This is actu-
ally possible on the basis of general arguments coming
from quantum chemistry. Unlike the g parameters of the
Fermi-gas model, U and V have a simple microscopic
meaning: U is the energy needed to put two particles on
the same site, and V is the energy needed to put them on
neighboring sites. Now, the molecules TMTSF and
TMTTF are very similar, the only difference being that
the 3p orbitals of sulfur in TMTTF are more concentrat-
ed than the 4p orbitals of selenium in TMTSF, and
quantum-chemistry calculations predict that the
ratio U(TMTTF)/U(TMTSF) is the range 1.0—1.25. We
also know from different sources' ' that
t, (TMTTF)/ti(TMTSF) is in the range 0.7—0.8. So the
ratio U/t, is at most 80% larger for TMTTF than for
TMTSF. But from Fig. S we know that this ratio is at
most 8 for TMTSF, so it is at most 15 for TMTTF.
Looking again at Fig. 5, this means that V/ti is at least
equal to 2 for TMTTF. Now, on the basis of quantum
chemistry, V is expected to be roughly the same for both
types of compounds, which implies that V/r

&
is at least

1.S for TMTSF. But, according to Fig. 5, this means that
U/t, cannot be larger than 6 in that compound. This
again puts a constraint on U lt, in TMTTF, and so on.
Finally, if we use the constraints given by quantum chem-
istry, we end up with the parameters given in Table II.
These values are just estimates, and one should put error
bars on them. The main source of uncertainty probably
comes from the experimental results. In particular, the
saturation value of the integral of the loss function gen-
erally gives numbers in good agreement with the plasma
frequency deduced from a Drude fit of the reAectivity
spectrum. However, in the present case, the values ob-
tained from the loss function are slightly larger, ' leading
to smaller values of 8k;„/6k;„[0.67 for (TMTTF)2PF6,
0.80 for (TMTSF)2C104]. Another source of uncertainty
lies in the values used for the ratios tz/t„but the depen-
dence of 6'k;„/8k;„on this parameter is smooth (see Fig.
4). Finally, the location on the curves is only approxi-
mate because the arguments derived from quantum
chemistry are only qualitative or, at best, semiquantita-
tive.

Anther legitimate question about the parameters of
Table II is whether they are consistent with the spin
Peierls transition that takes place in (TMTTF)2PF6 at low
temperature. As pointed out by Ung, Mazumdar, and
Toussaint, this is incompatible with a 4k~ charge-
density wave (CDW), a natural instability of the extended
Hubbard model at quarter filling. For the nondimerized
version of the model of Eq. (1), and for U infinite, it was

TABLE II. Estimates of the basic parameters t&/t&, U/t,
and V/t).

Compound

(TMTSF)2ClO4
(TMTTF) 2PF6

0.9
0.7

U/t )

5.0
7.0

V/t i

2.0
2.8

I am very grateful to Jean-Paul Pouget, who en-
couraged me to look at the optical data of Jacobsen.

shown by Ovchinnikov that a metal-insulator transi-
tion to this type of order takes place at V, =2t. The gen-
eralization of that result to finite values of U has been
performed by Mila and Zotos, and for U =7t, the transi-
tion is at V, =2.6t, a value smaller than our estimate of
V. This does not imply, however, that the ground state of
Eq. (1) with the parameters of (TMTTF)zPF6 is a 4k~
CDW because of dimerization. In fact, when t2&t„ the
system is effectively half filled, and the ground state of
Eq. (1) is already insulating for infinitesimal values of the
repulsion parameters, the instability corresponding to a
2kF spin-density wave as in the case of the half-filled
Hubbard model. In the weak-coupling case, electrons sit
on dimers and there is no CDW. However, it is likely
that a 4kF CDW will appear when V is large enough.
Whether the critical value for t2/t, =0.7 and U/t, =7 is
larger than our estimate is unknown at the moment, and
more work is needed to decide whether a value of V/t,
slightly smaller than 2.8 is appropriate for (TMTTF)iPF6.

In spite of these sources of uncertainty, two points
seem to be clearly established. First, the reduction of os-
cillator strength reported for TMTTF implies that the
repulsion between first neighbors is not negligible.
Second, U/t, is larger in TMTTF than in TMTSF. If
that were not the case, V would have to be much larger in
TMTTF than in TMTSF, which can be rejected on the
basis of quantum chemistry. This last conclusion should
be contrasted with the interpretation of the temperature
dependence of the susceptibility of Wzietek et al. , which
led them to conclude that U/t, is about the same in both
series. Recent calculations of the susceptibility' suggest,
however, that the temperature dependence is actually
consistent with our present conclusion that U/t, is larger
in TMTTF than in TMTSF.

In conclusion, the reduction of oscillator strength re-
ported for the Bechgaard salts by Jacobsen leads to pre-
cise and useful information on the size of the correlation
parameters in these compounds. The main difference
with respect to the microscopic models used so far in the
interpretation of various experimental results (susceptibil-
ity, minimum of resistivity, etc.) lies in the presence of a
relatively large value of the repulsion between nearest
neighbors. Whether the estimates proposed in the
present paper are consistent with the other experimental
data remains to be seen.
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