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We investigate the interactions of collective excitations with vortices in superAuid systms, including
He and superconductors. The dynamical equations are obtained by the aid of the many-body wave

function and the density-density correlation function. The scattering cross section of collective excita-
tions with a vortex is calculated in the Born approximation (valid at long wavelengths), and is expressed
in terms of the Feynman model spectrum co(q) of the collective excitations by the simple and general for-
mula o =(m /2) Iq/[cv'(q)] Icot (8/2), where q is the wave number of the excitation, and 8 is the scatter-
ing angle. At short wavelengths, the classical equations of motion are derived.

I. INTRODUCTION

The motion of vortices is thought to be the main
source of dissipation in superAuid systems. At finite tem-
peratures, the existence of collective excitations and their
interactions with the vortex lines create the phenomenon
known as mutual friction. ' The phenomenological pa-
rameters of mutual friction can be derived from the two-
dimensional (2D) scattering cross section of the collective
excitations. '

Different methods have been used in the literature for
the calculation of the scattering cross sections. One
method is based on the classical dynamics of phonons or
rotons' ' treated as particles. In the presence of a vor-
tex, the Hamiltonian for such a particle is given, for in-
stance, by H=eo(p)+V(r). p where eo(p) is the energy
spectrum of the collective excitations, and the second
term represents the Doppler shift of energy due to the ve-
locity field V(r ) associated with the vortex. Effects of the
vortex core and density modulations have also been con-
sidered. Another method is to treat such a particle quan-
tum mechanically by introducing a quantum wave func-
tion for it, using the operator version of the above Hamil-
tonian to describe the dynamics. This method has been
applied to the roton case, with the cross section calculat-
ed in the Born approximation. There is then the more
conventional method based on the hydrodynamic wave
equations. Born approximation ' and phase-shift
analysis' have been used for the calculation of phonon-
scattering cross sections.

We observed that the phenomenon can be considered
in more general terms. Besides He, there are other sys-
tems, such as superconductors, quantum Hall systems, "
quantum spin systems, that support vortices and collec-
tive excitations with different microscopic structure and
ground-state properties. The purpose of this paper is to
establish the relation between the different methods, and

to present a calculation of the scattering cross section
that does not refer to the details of the microscopic struc-
ture of the systems. For long-wavelength scattering, the
cross section may be calculated using the Born approxi-
mation, and we found it to be given by the simple and
general expression:

o (q, 8)=— cos —,1 20

where q is the momentum, co is the Feynman excitation
spectrum related to the static structure factor 4(q ) by
q2/2g(q ), and 0 is the scattering angle of the excitations.
We also show that a classical interpretation of the
scattering is possible in the opposite limit, i.e., at short
wavelengths.

In Sec. II, we will give the basic ingredients of our
method. In Sec. III, we will calculate the cross section in
the Born approximation, and present the classical ap-
proach. In Sec. IV, we will apply the results we have de-
rived on some systems. In Sec. V, we will present our
conclusions.

II. DYNAMICAL EQUATIONS

In this section we will lay out the general formulation
of the problem, and obtain the dynamical equations for
the elementary excitations in the presence of a vortex.
The core of the idea is to obtain a Hamiltonian for the
elementary excitations, and use the Hamilton's equations
to describe the motion of the excitations.

A. General formulation

The elementary excitations are represented by small
variations in the local density and phase, and are de-
scribed by the following many-body wave function' '
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%=exp g a(x;)+iS(x, ).
i=1

(2)

where %'o is the ground-state wave function, S and a are
arbitrary real functions with ~a(x) ~

((1,and they do not
vary rapidly over the characteristic length scales of the
system, such as the interparticle spacing in He and the
coherence length go in superconductors.

We set fi=m =1 in the rest of the discussion unless
otherwise stated, and follow the lines in' to obtain the
energy in this state as

d 5p(x, t ) dH=
as(., t)

= "'""'
dS(x, t ) dH

dt d5p(x, t )

V g 'x —x'g 'x' —x"
4po

(10)

The first term can be considered as the kinetic energy and
the second one as the potential energy of fluctuations.
The Hamilton's equations are just functional derivatives
of the Hamiltonian

E Eo=——fp( x)I iVS( x)i + iVa(x)i Jdx,1
(3) X 5p(x" )d x'd x", (11)

=(%o~p(x)exp 2f p(x')a(x')dx' ~%0), (4)

with p(x) =+,5(x—x;).
We want to express Eq. (3) in terms of the canonically

conjugate variables 5p=p —
po and S,' and regard it as

the Hamiltonian of the collective excitations. Equation
(3) is exact, but we have to make an approximation in or-
der to make progress. Thus we will linearize the density
in n using the assumption that the fluctuations are small,
yielding

p(x) =pa+2 f ( +Dip(x)p(x') i%o)a(x')dx

=po+2po fg(x x')a—(x')dx', (6)

where po is the density of the system in the ground state,
and the function g(x —x') is the density-density correla-
tion. ' We can invert this relation and solve for a(x)

a(x)= f 5p(x')g '(x —x')dx',= 1

2po
(7)

where the integration is over the spatial dimensions of the
system, and p(x) is the density

p(*)= & +(p(x) ~'p &

S(x t)= Ae' '"

5p(x, t ) =Be'"'"

which immediately requires the conditions

—t8a)= kapok

(12)

(13)

i A~=B fg '(x)e'"'"dx
4po-

k=8
4poeP( k )

(14)

where S(k ) is the structure factor defined as the Fourier
transform of g(x). A nontrivial solution to these condi-
tions is

where we have used the fact that for an isotropic system
g(x) depends only on ~x~, and omitted some boundary
terms. If we recall that V'S is the velocity field, we can
easily recognize the first equation as the continuity equa-
tion, and the second one as the generalized Euler equa-
tion of hydrodynamics in a form that also takes into ac-
count the density correlations in the system.

We can try a plane-wave solution to these equations

with the definition of the inverse function by

fg '(x —x')g(x')dx'=5(x), with

k
2$(k )

(15)

Relation (7) enables us to write the energy function Eq.
(3) in terms of the variables 5p(x), S(x) and the correla-
tion function g(x). The properties of the ground state
and the interactions between particles are included in
g(x). The normal modes of these equations will be the
excitation spectrum of the fluctuations.

B= 2i p0$( k ) A . (16)

The first relation is the famous Bijl-Feynman formula for
the collective excitation spectrum, ' and the second gives
the relation between the phase and amplitude fluctu-

ations.

B. Collective excitations in the absence of a vortex

After substituting Eq. (7), the Hamiltonian of the sys-
tem without any vortex in it can be written as

H= po f IVS—(x)l'dx1

2

+—
po f V f 5p(x')g '(x —x')dx' dx .

2 2po

C. Eft'ective Hamiltonian in the presence of a vortex

Thus we have shown that Eq. (3), when used as the
Hamiltonian of the collective excitations, gives us the
correct spectrum. Now we want to put a vortex into the
system and obtain an effective Hamiltonian for the long-
wavelength excitations. For simplicity we assume a sin-
gle, straight, fixed vortex line at the origin. The many-
body wave function in Eq. (1) can now be written as
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N Ie,.%=exp g a(x;)+iS(x;) Qf(lx, l)e 'q'o, (17)
i=1 j=1

i—co5p(x) = —poV S(x)——V5p(x),0
(22)

where f is a function that becomes 1 outside the vortex
core but goes to zero at the origin. 0 is the polar angle
at the position of particle j. A full treatment of the prob-
lem should take into account the core structure through
the function f. However we will make the further
simplification of taking f equal to 1 everywhere, thus
disregarding the e6'ects of the vortex core. Then the
efFect of the vortex is to simply cause a shift in the canon-
ical phase variable by 0

VS~V'S+ —,0

0id(x) =—.VS(x)
r

+ 7 g X—X g X —X
4Po

X5p(x")dx'dx" . (23)

The vortex terms have position-dependent coefficients
and prevent an exact solution. We will use a Born ap-
proximation, in which we will assume that we can replace
the S(x) and 5p(x) in the vortex terms by the free solu-
tions obtained previously:

where 0 is the polar angle and r is the distance to the vor-
tex line. Under these circumstances, the Hamiltonian up
to second-order terms in 5p(x) and VS(x) is

So(x)= Ae

5p (x)=Be'&'", (24)

H= p, f—IVS(x)l'dx+ f 5p(x) VS(—x).dx
I 0

0 r

with the same dispersion relation. We will also restrict
ourselves to two dimensions in the plane perpendicular to
the vortex line, since there is no scattering parallel to the
line. The dynamical equations now contain inhomogene-
ous terms

+ po f V f 5p(x')g '(x —x')dx' dx,
2 '

2Po ico5—p(x)+p V S(x)= iB qe—'q'",—
0 (25)

where we have ignored some boundary terms and terms
second order in the vortex field. As discussed above, the
first and last terms describe the collective excitations.
The scattering of excitations is caused by the second term
which, in classical terms, looks like a Doppler shift in the
energy. The correlation function g(x) is unchanged by
the inclusion of the vortex because the function f
representing the vortex core was taken to be 1 every-
where. For the same reason the vortex couples to the
kinetic term but not the potential energy term. This is
why the vortex interacts with the excitations in quite a
universal way, as a result of which a simple and general
expression for the scattering cross section will be ob-
tained in the next section.

III. CALCULATIGN GF THE SCATTERING AMPLITUDE

Now we can analyze Hamilton's equations, and calcu-
late the scattering amplitudes. The Hamilton's equations
in this case di6'er from the previous ones only by the ap-
pearance of the vortex terms

d5p(x, t) 2 8= —poV S(x, t) ——V5p(x, t),
r

dS(x, t) 8
VS( )

dt r

(20)

V~f fg '(x —x')g '(x' —x" )
4Po

X5p(x")dx'dx" . (21)

The time dependence of the solutions can still be fac-
tored by e ' ', then the equations read

id(x)+ V f fg (x x )g (x —x )
4Po

X5p(x")dx'dx"=iA —qe'q" .
0
r

(26)

By taking Fourier transform of both sides we turn the
coupled equations into a linear matrix equation

k
4S (k )po S(k)

5p(k)

i—.qe q. 0
r

(27)

where a tilde denotes the Fourier transformed quantities.
It is simple algebra to perform the necessary Fourier in-
tegral on the right-hand side of the equation. The result
is

.8;q.„z.(q Xk)
l 'qe =2&

32m z (qXk)
—co (k)+co (q) lq

—kl

aP(k )

p I 2

g

co(q )
(29)X

Po

where z is the unit vector in the direction of the circula-
tion. We invert Eq. (27), replace S(q) by the Feynman
excitation spectrum, q /[2'(q)], and then obtain the
Fourier transform of the scattering amplitudes

S(k)
5p(k)
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The transformation back to normal space variables is
given by

S(x) .„ S(k)
5p(x) ~ 5p(lc) (277)&

(30)

z.(qxk)
/q

—lc/'
(31)

We will first keep k~ constant, and evaluate the kII in-
tegration. We can take care of the boundary conditions
at infinity by supplying a small imaginary part wherever
necessary. The boundary conditions require that the out-

The integrals cannot be evaluated exactly. Since our pur-
pose is to calculate the cross section we only need the am-
plitudes in the radiation zone, kr »1. A separation of
the k integral over components, kII and k~, parallel and
perpendicular components of k to x, respectively, is help-
ful. Then specifically for S(x) we get

dk dk ' II"
II

(2~)2 co( k )—co(q ) co( k ) +co( q )

co'(k )q'+co (q )k'
co(q )k

going scattering amplitudes should behave as e'""/&r, so
the relevant poles are at the values of kIIo
=+K —ki +iq, where K satisfies

co(q)=co(K), (32)

dk
co(k ) =co(q )+co'(q ) ~/, (k((

—
k)(p ) .

dk
II

IIo
(33)

Then we place it into the integral and obtain the simple
result

S(x, t ) = —/Ie '"'Res(q ),
with

(34)

and g is a positive infinitesimal constant.
We have to note that K is not necessarily equal to q, as

might be expected from energy conservation, since the
spectrum may exhibit a behavior such that several k
values can correspond to the same energy. A very well-
known example is the roton spectrum, which we will in-
vestigate in the next section. For the time being we will
work with the case X=q.

Expanding around the pole to linear order in (k~~
—

k~~0)

gives

q(k~~0 sin8 —ki cos8)
Res(q ) = — dkze

0 kiio+ki+q' —'q iio- 8—qk"in8
(35)

and keeping in mind that k~~0
=Qq —k f . Now we have

to evaluate the integral over k~. In the radiation zone
where we take r —+ 00, the integral will be dominated by
the stationary point of the exponential, which is located
at kj =0. Assuming that the integrand other than the ex-
ponential behaves smoothly, we can set kj =0 every-
where except in the exponential. A stationary phase ap-
proximation gives

;i /4i& /2
e'~" q sin8
v'r co'(q) 1 —cos8

(36)

cr(q, 8)=— cot —,e q zO (3g)

which is the central result of this article. Note that the
angular dependence is universal, which is symmetric with
respect to O—+ —O, and diverges at small angles. The
spectrum function enters in a simple form, and only
a8'ects the q-dependent factor.

One can evaluate the integrals in the general case
where there may be more than one possible value of K. A

Combining with Eq. (34) we get the desired result

iqr
S(x r)=He ' 'e ' v' /2 (37)

&r co'(q) 1 —cos8

The cross section is given by the square of the amplitude
of the outgoing wave

1 sinO

co'(K) K +q —2Kq cos8
(39)

However we must note that one has to pay more atten-
tion to the degenerate case when co'(K) =0. In that case
the idea is still the same, only we need to expand to quad-
ratic order in Eq. (33), which forces us to evaluate the
derivative of the integrand in Eq. (35).

The Born approximation is valid if the scattered ampli-
tude is small when compared with the incoming ampli-
tude. We can expect this to be violated most where the
potential is strongest, which is the origin in our case. A
simple calculation after setting x=0 in Eq. (31) leads to
the requirement

q «1 . (40)

Thus if the excitation spectrum vanishes with a power
less than 2 as q —+0 then Born approximation is valid in
this limit.

similar calculation leads to the scattering amplitude given
by the sum of residues satisfying Eq. (32)

IKr X +—itot y —t(m/4) e

K r K
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Classical Hamiltonian

The other approach which is mostly used for rotons is
the classical equations of motion for the collective excita-
tions. It is possible to show that one can obtain the clas-
sical Hamiltonian, thus the classical equations, from Eqs.
(20) and (21). These equations are like wave equations for
the amplitudes S and 5p. The classical equations follow
from the geometrical optics approximation or the %'KB.
We replace the amplitudes S and 5p in Eqs. (20) and (21)
by

S(x, t ) = Ae'~'"'"

5p(x, r ) =Be'~'*" (41)

where A and B in general have spatial variation, but in
the spirit of the WKB approximation they can be taken
as constant. Then from Eqs. (20) and (21) we obtain

(42)

(43)

The reader is reminded that we are still using units
4=m =1. The momentum and energy of classical parti-
cles corresponding to wave packets of the amplitudes are
given by

8
at

and p=vg .

Thus we obtain the relation

(44)

0E=co(p ) +—.pr
(45)

where we identified the energy spectrum of the excita-
tions, co(p) as in the Bijl-Feynman formula. This is obvi-
ously the classical Harniltonian for the collective excita-
tions with the Doppler shift in the energy due to the vor-
tex. The equations of motion that follow from this Ham-
iltonian have been used extensively in the literature for
rotons, ' ' and recently for scattering of phonons from a
classical vortex.

The &KB approximation is valid, if the spatial varia-
tion of P(x, t ) satisfies

v'y«lvyl'. (46)

For this approximation to be valid the wave packets have
to satisfy

v p «
I p I

Thus WKB is appropriate for large momentum. This is
the opposite limit of validity of the Born approximation
given in Eq. (40).

IV. APPI.ICATIQNS

The results of the previous section are quite general in
the sense that as long as we know what the collective ex-
citation spectrum of a system is, we can find the scatter-
ing cross section of these excitations from a vortex. In
this section we will show their use in superQuid helium
and superconductor thin films.

A. SuperAuid He

1. phonon seatterjng

cot —.pO
2

' (51)

This result was obtained by Fetter' using phase-shift
analysis of the scattered wave in the hydrodynamic equa-
tions. The other results in the literature vary. Pitaevskii
and Sonin have difFerent results from the one above al-
though they both use Born approximation and similar
equations. However we have found that Pitaevskii's cal-
culation su6'ers from an algebraic error. In his paper Eq.
(25) does not follow from the substitution of Eq. (24) into
Eq. (19). Instead when correctly done the result is the
same as what we have obtained above. The calculation of
Sonin is a more complicated one that it takes into ac-
count the curvature of the vortex line. His calculation
must be also incorrect, however, as it gives the result of
Pitaevskii in the limit of a straight vortex line.

2. Roton scatterj gag

We can employ formula (39) to obtain the cross section
of rotons. There are two values that satisfy Eq. (32). The
spectrum near the roton minimum can be written in the
Landau form

In the phonon part of the spectrum —the long-
wavelength low-energy part —the relation between k and
co is one to one, and is given by

co(q ) =sq,
where s is the speed of sound. The only pole satisfying
co(q ) =co(K) is at IC =q. Thus from Eq. (38) we obtain

or as an estimate on the left-hand side we can use the un-
certainties of momentum and position

9o)
cg(q) =b, +

2p
(52)

Qp
Ax

P «Ipl' (48)

We can take bp —1/b, x and b,x-g. The classical ap-
proximation is valid if E& =q and K2 =2qo q

Now using Eq. (39)

(53)

where 6 denotes the energy and qp denotes the wave vec-
tor at the roton minimum. The roton has two poles that
satisfy co(q ) =co(IC ), which are
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S( )=A ' '& /2e q sm8
~r Iq q—,i" 1 —cos8

2i(p —po)r V q sinO
(54)

2qo q 1 —[2q(2qo —q)/(2qo —q)~+q~]cos8

a (q, 8)=n. cot-
(q —qo)'

(55)

This is also the same result obtained long ago by Hall and
Vinen.

We immediately notice that the scattered wave has two
parts, one cylindrical wave with momentum q and one
echo with 2qo —q. The cross section will not only involve
the individual contributions of each part but also the in-
terference. For ~q

—
qo~ &&(1/r) the interference can be

ignored and the cross section will be given by
2

ing cross section is then

fi
o(q, 8)=~

m, e
L,q cot —,2O (59)

where c is the speed of light.
As a particular application of the cross section we can

calculate the frictional force on a superconductor vortex
due to the collective excitations. In an analysis similar to
the one presented in we find that the perpendicular force
is zero, and the parallel force per unit length of the line is
given by

B. Superconductor thin Slms
k,"x lo!x g( lo)

«Z iZ 7m,*a Ad
(60)

Another system where we can use the formula (38) is a
superconductor thin film. The scattering cross section
and mutual friction in superconductors were investigated
on the basis of quasiparticle-vortex interactions. This is
the dominant contribution for ordinary superconductors.
However, at low temperatures and small core size, the
quasiparticles are frozen, and interactions between vor-
tices and collective excitations might become more im-
portant.

In a very broad sense, superconductivity is
superAuidity of charged particles. The important distinc-
tion is that the vortex singularities are like thin Aux tubes
for bulk materials because of screening due to the di-
amagnetic currents set up in the sample. However, in
thin films this screening is only effective beyond a length
L, given by'

S (56)

cr(q, 8)=— cot —.q 2O
8 [~'(q)] 2

(57)

The collective excitations of a superconductor are the
density fluctuations of cooper pairs, and have the same
dispersion as the ordinary plasmon at zero temperature,
which has the following form in two dimensions:

1/2
2mne

(58)m'
e

co(q)=

where n is the 2D density of electrons, e is the electron
charge, and m,' is the effective electron mass. The result-

where kL is the London penetration depth and d is the
thickness of the 61m. This length scale can be quite large
compared to the bulk value A,I . Thus the vortex in a thin
film is very much like a vortex in neutral He. There is
one difference that is related to pairing in the ground
state. ' This forces us to introduce a modified shift of
8/2r in Eq. (18). The final effect of this on the cross sec-
tion is a factor of 1/4:

Fii=(v, —vL )il =(v, —
vL )4X 10 T' (61)

where we have defined the coefBcient of viscosity per unit
length g .

The 2D approximation breaks down at wavelengths
shorter than the thickness of the film. The plasmon ener-

gy corresponding to this wavelength is close to the bulk
plasma frequency which is roughly 10 K. The validity of
the Born approximation can also be demonstrated as fol-
lows. The condition (40) requires the wave vector q of
the plasmons to be smaller than the critical value

2/3
m,*a

(62)

This condition is also well satisfied even at the transition
temperature.

A comparison to the Bardeen-Stephen (BS) theory of
dissipation reveals the smallness of the effect. In this
theory dissipation is caused mainly in the core region
where electronic states are normal, and the excitation
spectrum is assumed to be continuous. The coefticient of
viscosity per unit length is given by g~s=2mAH, 2/p„ec. '

High-T, materials can have quite high transition temper-
atures ( = 100 K), and also high H, (122 T for

2

YBazCu07). The normal-state resistivity p„ is around
10 Qm, and viscosity per unit length is on the order of
2X 10 N sec/m . Therefore, near the transition tem-
perature the plasmon-induced viscosity is at least 20 or-
ders of magnitude smaller than the viscosity of the core.

where vL is the velocity of the vortex line, v, is the veloc-
ity of the background supercurrent, kz is the Boltzmann
constant, a is the coefficient in front of the q' in the
plasmon spectrum, d is the thickness of the film, and g is
the Riemann zeta function. In order to get a feeling of
the magnitude of this force, we use the typical values of
the parameters for high-T, thin films, n =2X10' m
m,*=6m„and d=10 m. The resulting force per unit
length is
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The approximation of continuous spectrum in the BS
model breaks down when the temperature is smaller than
the energy spacing of the excitation spectrum in the core.
In that range of temperatures we can simply extend the

—5E/k~ T
BS model with an exponential factor e,where 6E
is the energy spacing in the core given by'

eH, 25E =A
4m, c

(63)

V. CONCLUSIONS

In summary, we have investigated the interaction be-
tween collective excitations and vortices in superAuid sys-
tems. Starting from a Feynman-type many-body wave
function, general dynamic equations for the collective ex-
citations in the presence of a vortex have been derived, in
which the specific properties of a given system enters

This energy separation is around 10 K with the typical
values used above. Assuming this exponential behavior
for the BS model, the plasmon viscosity will dominate the
BS viscosity at temperatures lower than 10 K, al-
though they will be too small to be measurable.

The other possibility of a scattering event is with the
BCS quasiparticles. ' ' According to the results of the
latter reference the viscosity due to quasiparticle scatter-
ing depends exponentially on the superconductor gap A.
We use a simple expression to extrapolate between the
low- and high-temperature expressions given in that—&/k~ T
reference, gBcs=m,*p~h/A e . The order of mag-
nitude of this viscosity near T, = 100 K is 10
N sec/m . Obviously this is smaller than the core viscosi-
ty by five orders of magnitude, but is still 15 orders of
magnitude larger than the plasmon viscosity.

Our calculations clearly show that the plasmon scatter-
ing in superconductors is insufhcient to produce any ap-
preciable effect in vortex motion and dissipation. The
reason for the ineffectiveness is that plasmon viscosity
has a high power dependence on the temperature, and
temperature is scaled by the high plasma frequency.

only through the density-correlation function or the stat-
ic structure factor. The scattering cross section has been
derived in the Born approximation for long wavelengths.
The angular dependence has the universal form
cot (8/2), with a prefactor only involving the energy
spectrum of the collective excitations given by the Feyn-
man formula in terms of the static structure factor. For
short wave lengths, the geometrical optics of the WKB
approximation to the dynamical equations has been
shown to yield the classical equations of motion for wave
packets.

We have applied the Born approximation cross section
formula to phonons and rotons in He, and showed that
the results are consistent with previous calculations. As
a new result, we have also obtained the cross section of
plasmons from vortices in superconductor thin films.
These cross sections, when combined with the formulas
in Ref. 6, can be used to find the frictional forces on a
vortex. For the case of superconductor thin films, the
longitudinal dissipative force on a moving vortex is
shown to be proportional to a high power of temperature
T', which supports the idea that vortices move freely at
low temperatures.

The transverse force due to scattering vanishes as long
as the Born approximation is valid, which is the case for
phonon and plasma scattering. However, the dynamics
of rotons in superAuid helium falls rather into the validity
range of the WKB approximation, and can yield a trans-
verse force on vortices. ' ' This is very similar to the
scattering of electrons by a magnetic Aux line. The classi-
cal calculation valid at short wavelengths yields a trans-
verse force, whereas the Born approximation valid in the
long-wavelength limit does not.
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