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Evolution of sharp angular distributions in the degenerate two-dimensional gas of colliding elec-
trons has been shown to occur essentially otherwise than in the three-dimensional gas. As early
as after a few collisions the electron distribution function becomes antisymmetric in momentum,
conserving, practically, its sharpness. Further spreading of this distribution in coordinate and mo-
mentum spaces occurs rather slowly, taking much more time than an electron-electron collision.
Application of an extremely weak magnetic field leads to essential changes in this picture. The
possibility of observing new effects in experiments on electron beam evolution in heterostructures is

discussed.

In contrast to the one-dimensional case, a weak re-
pulsion in two-dimensional conductors does not result
in a rearrangement of the ground state of the elec-
tron system. However, reduction of the space dimen-
sionality of the system from three to two affects essen-
tially the relaxation processes associated with electron-
electron collisions in a degenerate electron gas. In the
case of the electron-electron energy relaxation, the re-
duction of the dimensionality causes only a decrease in
the characteristic relaxation time by a factor In(ep/T)
(er is the Fermi energy and T is the temperature).! The
changes in the angular relaxation are, on the contrary,
radical.?® In the two-dimensional case a collision of an
electron having a momentum p; with another electron
with p; generally results in scattering through a small
angle d¢p ~ T/ep < 1. The exception is the case of
collisions of electrons having almost opposite momenta:
| P1+P2 |/pF < T/er. The result of this collision is a pair
of electrons with almost opposite momenta too; therefore,
the scattering angle is arbitrary: dp ~ 1. [Note that, in
contrast to the three-dimensional (3D) case, in the 2D
case both types of processes have equal (by the order of
magnitude) probabilities.] The second type of collision is
quite efficient in the relaxation of the part of the electron
distribution function even in a momentum whose relax-
ation time is of the same order of magnitude as in the 3D
case: 75 ~ (ep/T)% ~ T—2. Both types of collisions af-
fect the relaxation of the odd part of the distribution very
slightly. For the first type the reason lies in the small-
angle character of scattering. For the second type the rea-
son is that a turn of an electron pair with strictly opposite
momenta in the p space by any angle d¢ obviously does
not affect the odd part. Thus the relaxation of the odd
part in the two-dimensional case occurs notably slower
than in three-dimensional case: 7, = 7,(ep/T)% ~ T™*
(for details see Ref. 3).

These assertions hold for the case of a weakly
anisotropic nonequilibrium distribution function. As the
angle ¢( characterizing the range of velocities of nonequi-
librium electrons becomes smaller, the relaxation time of
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the odd distribution decreases and becomes of the order
of 7, when ¢o = /T /er; see Ref. 3.

It seems that the most direct and detailed infor-
mation on the momentum relaxation can be provided
by experiments with electron beams injected into the
degenerate two-dimensional electron gas (2DEG) in
heterostructures.*® This paper shows the above prop-
erties of relaxation in the 2D system to be responsible
for the peculiar features of the beam evolution: as a re-
sult of collisions, the primary beam soon divides into rel-
atively narrow and long-lived electron and hole beams
moving in opposite directions (together they form the
odd distribution, while the even part becomes practically
isotropic). By a “hole” we mean the absence of an elec-
tron under the Fermi level. Finding experimentally these
secondary beams would corroborate our concept of the
peculiar character of the relaxation mechanisms in 2D
systems. We suggest some experiments at the end of the
paper.

The effects under consideration are most pronounced
at sufficiently low temperatures. Let us first assume that
T < |e| € eFp, where ¢ is the energy of an electron
(e > 0) or a hole (¢ < 0) counted from the Fermi level .
A similar situation was considered earlier by Laikhtman,®
who, however, disregarded the facts that are essential in
our consideration, viz., the difference in relaxation rate
of the odd and even parts of the distribution function.
Neglecting the effects of the spatial dispersion, the ki-
netic equation for the nonequilibrium correction f, to
the electron distribution can be written as

Ofp _
E‘ - I{fp}v (1)
IH{fe} =~ /(Vp’pfp - Vpp’fp’)dzpl- (2)

Here I{fp} is a linearized integral of electron-electron
collisions. Omitting exponentially small terms of the
exp(—|e|/T) type, we can write the kernel vpp as
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(
2 / UPP1 P2p’ dzpldzpz’

'
ee’ > 0,ee1 > 0,ee2 < 0 (3)

"/Upp'mpsdzpzdzl’m

ee’ < 0,ee5 < 0,863 <0,

\

UPP1P:P5 = Wopipaps
x8(e + &1 — €2 — €3)6(P + P1 — P2 — P3)-

Here W is the squared modulus of the matrix element of
the electron-electron interaction. Equations (1)—(3) de-
scribe the “pretemperature” relaxation stage, on a time
scale shorter than the thermalization time. At this stage
departures from the state p occur only downward in the
absolute energy value, while arrivals occur only from
higher |g|, i.e., vppr = 0 when |ep/| < |ep|. Assuming
that the electron spectrum is isotropic, to within values
of the order |¢|/er, we have

| K(ps€) — K(p,€)]
nsinp/2

, ee’ >0

Vppt = 2C X (4)
PP |€+€I|

\/ (8€)% + 4sin®
K(p,€) = (cos® p/2 — en)*/? 6(cos® /2 — en);

=1+ ( 8e )2.
= 4singp/2/ °’

€=ep/er; € =ep [eF;

— arcsin ee’ <0,

™2Wm
2h5

Here 6(z) is the Heaviside function, ¢ is the angle be-
tween the vectors p and p’, and m is the electron mass.
For the sake of simplicity W is assumed to be a constant;
a justification of this assumption will be given later. For
not too small angles ¢, when (4) can be expanded in €
and €, we have

de=¢€¢ —¢ le,|e|l <1l C=

2|d¢|,

X €€ >0, o> |0el/|€], m— > \/|€| (5)
—le+ €|, €€ <0, @, 71— > |de|.

Note that this expression is an even function of the
momenta: Upps is invariant relative to the substitution
¢ — m — ¢ (by definition, 0 < ¢ < 7). The odd part
appears in the approximation

cos ¢

Valz“‘C

op (€ — €%) 0(e€')sgn €,

o, — > \/|¢]. (6)

The small value and rapid decrease of the odd part of
the kernel vg,, ~ ¢~ 3 is in agreement with the general
statement of Refs. 2 and 3 on the slow rate of the odd

sin®
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relaxation. However, it is worth noting that the evenness
of vppr in approximation (5) follows from the assumption
that W is constant. Indeed, the expression found in Ref.
6, which is actually similar to (5), does not reveal any
evenness. However, the angular relaxation is determined
by the integral of vpps over energy. A rigorous proof may
be given that the odd part (relative to angle) is small
for this quantity. Here we will not provide such a proof
for the general case of an arbitrary dependence of W
on its variables. Actually, W is a smooth function of
the momentum that varies notably at distances of order
of inverse screening length g,.. When g,.pr—! > \/Ie_’[
it is possible to obtain from (3) the following estimate
consistent with (6):

/”sp'dEN(f')e'Sm_s% p,m—p> /el (7)

For the even part of v, the account of the smooth de-
pendence W is unessential.

We are going to show that the relaxation of the odd
distribution does not end at the pretemperature stage
because of the stated properties of the kernel vpp/; more-
over, the relaxation practically stops after a few collisions
and the distribution remains substantially anisotropic.
Let us consider the stationary equation

Hf}=o, (8)
f{f} = “/Vp’p(fp - fp’)dz !

containing the operator I transposed with respect to the
collision operator I. The solutions f of this equation are
known to represent the quantities conserved in the col-
lision process. The functions const, p, and &€ obviously
satisfy this equation and that corresponds to the conser-
vation of the particle number, momentum, and energy.
To find highly anisotropic odd solutions of Eq. (8) (that
correspond to the local, in p space, conservation of par-
ticles number), we consider the function

oo

G(E’ <P) = 2_%”" Z

n==1,+3,...

[1~ gn(e)le™™. (9)

Henceforth 0 < ¢ < 2w, the origin of the ¢ being cho-
sen arbitrarily. We are going to show that there exist
solutions of the form (9) with g,(¢) — 0 as ¢ — 0, i.e.,
the function G has the form (1/2)[6(¢) — 6(¢ — )] when
€ = 0. From (8) we have the following equations for g,:

Gn — u_l(e)/up:p gn(€’) e®'n d2p = v=1(e) f{ei“’"},

(10)
v(e) = /up,,, &2p' ~ e Ine]].
The estimate of the right-hand side of (10) yields
v (e)I{e¥"} ~ nzem, le] <« n2. (11)

In |€]
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The smallness of the right-hand side of (10) is a demon-
stration of the slow rate of the odd relaxation. Indeed,
for the odd function f = exp (ipn), the incoming and
outgoing terms in I{f} cancel by virtue of the smooth-
ness condition n?|e| < 1. If we take function (11), which
is substantially dependent on energy, in the capacity of
f, then the terms will not be canceled. That is why Eq.
(10) can be solved by an iteration method over the second
(integral) term on its left-hand side. The corresponding
series will converge approximately as 6%, where k is the
iteration order. [We take into account that vpp = 0
when |¢’| < |e| and that g,(¢) grows monotonically with
lel.] In the zeroth-order iteration

- a - € cos @
Glerp) = v e) [vipdle)ds = —3

ne|| sin¢’

Im— o, o> ]| (12)

Thus, the existence of solutions of the form (9), with
gn(€) = 0 as € — 0, is proved [which is seen from (10)—
(12)]. On the other hand, one can check that even so-
lutions of the form (9) with this property are absent.
Indeed, for an even n the right-hand side of (10) depends
on € weakly, like | In |e|]_1. Such a dependence, when in-
tegrated over energy, is almost indistinguishable from a
constant. That is why the iteration method is inapplica-
ble, and the solution does not tend to zero as € — 0.

After every collision the redundant energy of a
nonequilibrium electron decreases (about three times, on
the average), so that in the limit of a large number of col-
lisions nonequilibrium electrons (holes) appear arbitrar-
ily close to the Fermi surface. As e — 0, the relaxation
terminates since the collision frequency is proportional
to (e/er)?. Correspondingly, Eq. (1), as T — 0, has
a stationary solution §(g)F(yp), where F(¢) is an arbi-
trary function of the angle. Since the quantity G(e, p)
is conserved, it is possible to relate the odd part of the
final (for the pretemperature relaxation stage) distribu-
tion in the angles F,(¢) with the initial distribution
fop = fp(t =0):

Fu(p) =m™1 / Fop G(e' 0 — ') d2p. (13)

Thus, as seen from Eq. (13), the function G(eo, ) de-
scribes the odd part of the final distribution over the
angles, which develops from the initial non-equilibrium
distribution of the form fop ~ 6(p — Po), @(Po) =
0, e(pPo) = €o. Since the local even conserved quantity is
absent, the even part of the final distribution is obviously
isotropic.

Combining the above-obtained results with the results
of the analysis of the temperature regime of the electron-
electron relaxation,® we shall qualitatively discuss the
evolution of the initial high-energy electron beam fop =
Ap%8(P — Po), €0 > T. For time intervals ¢ shorter
than the average time v~ !(gg) of collisions of the beam
electrons with equilibrium electrons, the distribution of
the scattered electrons is described by the incoming term
of the collision integral
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fo 2 Auvpp, t. (14)

Due to energy decrease of nonequilibrium electrons, each
consecutive collision requires more time than the preced-
ing one (by about six times).” As a result of the few first
collisions, the odd part of the distribution function with
a characteristic angle size /eo/eF is shaped, while the
even part becomes isotropic after about In(er/eo) colli-
sions. In other words, the initial narrow beam transforms
into an electron beam and a hole beam, which move in
the opposite directions, each having the angular width of
order 4/eo/er [together they form the odd distribution
function G(eg, ¢)]. The distribution function in the cen-
tre of these beams is of order Ay/ep/eo. In the T — 0
approximation a distribution of this kind would be con-
served infinitely long.

However, after In(eq/T) collisions during the time
v~ 1(T) ~ 7, a thermalization of the electron gas occurs.
The final electron temperature T is determined both by
the initial temperature of equilibrium electrons and by
the heating of the electron system by the beam. On the
time intervals longer than 7,, the odd part of the distri-
bution broadens with time according to the law

8 = 8o + (T/er)'/? (t/7,)Y4. (15)

Thus the complete smearing of electron and hole beams
requires the time t ~ 7, ~ (ep/T)*%. The quantity ¢y
in (15) denotes the beam smearing before the beginning
of the temperature relaxation stage. Formula (15) holds
for the initial beam of a low-energy €9 ~ T too, when the
pretemperature stage of the relaxation is absent.

The above-described relatively narrow electron and
hole beams can be observed in experiments similar to
those reported in Ref. 4. If the distance between an in-
jector and detector L < vgr~1(gg) = lo, then a repeated
collision has a small probability and, according to Eq.
(14), the angular distribution of the electrons that un-
derwent a collision is determined by [ vpp,de. Here the
maximum intensity of the scattered electrons must be
observed at the distance r ~ L(go/er)?/? from the de-
tector normally to the beam axis. (These particles can
be registered by the same detector on applying a trans-
verse magnetic field H ~ rpgpc/eL?.) The holes can be
detected at the distance 7 ~ L/e¢/ep from the injector,
the width of the maximum hole beam intensity being
approximately equal to L(eo/er). When L > I, (but
L « I,), several collisions occur on the length L and
the angular size of both beams become of order \/eo/—ep .
Note that the results of Ref. 6 correspond to the back-
ground ¢ > \/eo/—ep .

Another method for studying electron transport is the
focusing of the beam by a transverse magnetic field,’
when both the injector and detector are placed on the
same boundary of the 2DEG. For the sake of definite-
ness, let the trajectory length L of the primary beam
equal half of the Larmour orbit. When L < Iy, the scat-
tered electrons make the same picture near the detector,
as in the experiments without the magnetic field. How-
ever, the holes move along trajectories deviating far from
that of the primary beam and they do not get into the
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region near the injector. It is interesting that in the limit
L > ly the holes can be found near the injector: the
first generated hole with the probability approximately
equal to 1/2 will return to the 2DEG boundary, having
deviated from the injector by approximately [2/L (to the
opposite side from the detector).

One should bear in mind that at the temperature stage
of the relaxation (L > l,) on the mean free path [, a
transition of an electron into a hole occurs (and vice
versa).® So the beam propagation is accompanied by a
one-dimensional diffusion of carriers. That is why the
time ¢t in Eq. (15) is, in this case, the time of the diffusion
propagation along the path L, vt ~ L2?/l,, and the beam
width near the detector r ~ L3/%(T/ep)'/21; />
T3/2, H=0.

We believe that the difference between the even and
odd relaxations, as well as the difference-based effects,
must be most clearly displayed in the following experi-
ments. First, a beam must decay due to electron-electron
collisions at distances significantly larger than the usual
mean free path lo. Second, the appearance of a posi-
tive charge (holes) may be expected near the injector.
(This effect becomes stronger with the growth of L, but
it also must be observed when L < lp.) Third, when
L > l, a considerable smearing of the beam can be ob-
served under a extremely weak magnetic field. Under
actual experimental conditions the value of L is varied
from the units to several tens of micrometers, while the
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mean free path I, ~ 0.8 — 30 um, depending on the elec-
tron gas temperature.®5% The electron-impurity mean
free path can be made to exceed these lengths. Thus the
observation of the above-mentioned effects is quite real-
izable nowadays. If, for example, L < Iy and ¢/ep ~ 0.1,
then the positive charge can be observed at a distance
r ~ 0.3L from the injector.

In conclusion, we have studied the mechanisms of
angular relaxation of highly anisotropic distributions
in a two-dimensional degenerate gas of colliding elec-
trons. We have shown that the relaxation has a num-
ber of stages. Rather fast, during the time of order
To ~ (er/€)?, the even part of the distribution becomes
isotropic, while the odd part becomes wider by the angle

\/€/er. The further relaxation of the odd part occurs
rather slowly, in 7, ~ (ep/T)%, € > T. These processes
can be interpreted as the formation, from the primary
beam, of secondary long-lived electron and hole beams.
(We remind the reader that by a hole we mean the ab-
sence of an electron under the Fermi level.) We have
shown here that electron beam experiments can provide
fairly complete information on qualitatively new kinetic
effects arising in a two-dimensional degenerate electron
gas.
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