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Theory of Shubnikov —de Haas oscillations around the u = 1/2 filling factor
of the Landau level: Effect of gauge-field fluctuations

A.G. Aronov'
Institut fiir Theoric der Kondensierten Materie, Universitat Karisruhe, 76128 Karlsruhe, Germany;

Department of Condensed Matter Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel;
and A.F. Ioffe Physicotechnical Institute, 19$0P1 St. Petersburg, Russia

E. Altshuler
Department of Condensed Matter Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel

A.D. Mirlin
Institut fur Theoric der Kondensierten Materi, e, Universitat Karlsruhe, 761P8 Karlsruhe, Germany

and Petersburg Nuclear Physics Institute, 2888M Gatchina, St. Petersburg, Russia

P. WolBe
Institut fur Theoric der Kondensierten Materie, Universitat Karlsruhe, 761P8 Karlsruhe, Germany

(Received ll May 1995)

We present a theory of magneto-oscillations around the v = 1/2 Landau level filling factor based
on a model with a Quctuating Chem-Simons field. The quasiclassical treatment of the problem is
appropriate and leads to an unconventional exp[ —(vr/u, ri&2) j behavior of the amplitude of oscilla-
tions. This result is in good qualitative agreement with available experimental data, although the
experimental value of Ty/2 exceeds considerably our theoretical estimate.

Since the discovery of the fractional quantum hall ef-
fect (FICHE), the physical properties of a high mobility
electron gas subjected to a strong magnetic field are at-
tracting great interest. Laughlin's theory gives a very
good description of the properties of the FICHE states
with filling factors v = 1/(2m + 1). The subsequently
proposed hierarchy scheme explains, in principle, the
existence of FICHE states with arbitrary filling factors
v = p/q (q is odd). However, soine drawbacks of this
scheme were discovered later. In particular, the FICHE
state with v = p/(2p+ 1) appears only on the pth level of
hierarchy, so that the scheme does not explain why these
states are experimentally dominating. This discrepancy
motivated 3ain to propose a difI'erent concept based on
converting the electrons into composite fermions by at-
taching to them an even number of fIux quanta. Follow-
ing a similar approach Halperin, Lee, and Read devel-
oped a theory for the half-filled Landau level (see also
Ref. 6).

This theory gives an explanation for many experimen-
tally observed properties of the v = 1/2 state, such as a
nonzero value of the longitudinal resistivity, an anomaly
in the surface acoustic wave propagation, and a dimen-
sional resonance of the composite fermions. It predicts
the formation, at half filling, of a metallic state with
mell-defined Fermi surface. From this point of view, the
v = p/(2p+ 1) series can be considered as the usual v = p
Shubnikov —de Haas oscillations (SdHO) for the compos-
ite fermions, providing an explanation for the prominence
of the above FICHE states. Indeed, the oscillating behav-
ior of the longitudinal resistivity p near v = 1/2 is very
much reminiscent of its behavior in low magnetic fields

where conventional SdHO take place. '

Comparison of the resistivity oscillations near v = 1/2
and in a weak magnetic field shows, however, not only
a similarity in shape, but also an important difFerence:
the amplitude of the SdHO near half filling decreases on
approaching v = 1/2 (p = oo) much faster than it does
in weak fields on approaching zero magnetic field B = 0
(v = oo). As a result, the v = p/(2p + 1) oscillations
vanish at p = pm „=6—9. ' This refIects a difI'erence in
the physical properties between the states at v = 1/2 and
B = 0, calling thus for a detailed theoretical considera-
tion.

The crucial feature that distinguishes these states is
the presence of fIuctuations of the fictitious, Chern-
Simons (CS), gauge field, which scatter the fermions.
On the other hand, the problem of a quantum particle in
a random magnetic field in two dimensions was studied in
our recent papers. ' We have shown that whereas the
transport relaxation time vq can be found within pertur-
bation theory, the single particle properties of the model
are peculiar. In particular, we found a Gaussian shape
of the broadened Landau levels and unusual expressions
for the single particle relaxation time ~, and for the am-
plitude of the de Haas —van Alphen oscillations. These
results were obtained by using the formalism of path in-
tegrals in coordinate space. In the present report, we ap-
ply these methods to the study of magneto-oscillations
of the conductivity in the FICHE regime near v = 1/2.

In the zero-temperature limit, the fIuctuations of
the CS field are determined by the randomly located
impurities. Namely, impurities produce fluctuations of
fermion density and current, which are in turn coupled
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to the scalar and vector components of the CS poten-
tial, respectively. This results in static spatial fluctu-
ations of the CS field, with the correlation length de-
termined by that of the impurity potential. Since the
impurities in experiments are located in a remote layer,
the fluctuations are rather smooth. These fluctuations
suppress the amplitude of the SdHO. We treat this eKect
semiclassically, which is justified for the random rnag-
netic field as well as for the smooth random potential.
We find the amplitude of the SdHO to be proportional
to p

" oc exp[ —(m/~, xi&~) ], where ~, is the cyclotron
frequency and ~i&z plays the role of an effective relax-
ation time. This result that describes well the experi-
mental data should be contrasted with the usual behav-
ior p

" cc exp [ 7r/u 7—] that one obtains for the case of
the short-range random potential.

We consider a realistic system formed by the two-
dimensional (2D) electron gas of density n, and by the
positively charged impurities located in a layer separated
by a large distance d, from the electron plane. The sta-
tistical transformation attaches to each electron an even
number P of fiux quanta of the CS gauge field. To de-
scribe the vicinity of the v = 1/2 state, we take P = 2;
the same formalism with P = 4 can be applied to the
v = 1/4 state.

In the mean Geld approximation, the statistical mag-
netic field Bi~z ——4vrcn, /e cancels exactly the externally
applied field B at v = 1/2. When the filling factor v
is tuned away from v = 1/2, the efFective uniform mag-
netic field is equal to B,g = B—Bigs. For v close to 1/2,
the number of filled Landau levels of composite fermions
p )) 1, so that the problem can be considered quasiclassi-
cally. In the quasiclassical approximation, the quantities
of interest can be expressed as a sum over classical trajec-
tories. We will treat the random fields in the framework
of quasiclassical perturbation theory, neglecting their in-
fluence on the classical trajectories. This approximation
is valid provided u ~q )) 1. The trajectories are then
simply the cyclotron circles in the uniform field B g.

In a previous paper, we used this quasiclassical ap-
proach to calculate the de Haas —van Alphen oscillations
of the density of states (DOS) in the presence of a random
magnetic field. The conductivity can be written as a sum
over periodic orbits in a similar way. One starts from
the Kubo formula and writes each of the two Green func-
tions involved (retarded and advanced) as a path integral,
yielding a double sum over winding numbers n, n' of the
two trajectories. 4 The terms with n = n' give then
the nonoscillating contribution o„, whereas the terms
with k = n —n' g 0 represent the kth harmonic of oscil-
lations. The resulting expression has the same structure
as for the DOS,

e = te, 1 —eeRe) exp J2eeepk ——(S„)k )&=1

k = 1, and the angular brackets denote the average over
impurity configurations. A good estimate for the ampli-
tude of the oscillations is given by the first harmonic:

(
o = o„ 1 —2cos (2vrp) exp

~

——(S )2 ) (2)

At zero temperature, the gauge-field fluctuations are
dominated by the randomly located impurities. Each
impurity creates a scalar potential of the form

(dq)v (q)e'q~"-" l; v (q) = 2708 —de

where v; is the projection of the impurity position to
the 2D plane, e is the dielectric constant, and (dq)
d q/(2m) . This potential gets renormalized due to the
screening by fermions and mixing with the CS Geld. In
the random phase approximation one gets

A„= (b„~ —U„„K"~) A~ l, (4)

where we united scalar Ao and vector A potentials in
a covariant vector A„; the vector A~ represents the(o)

bare impurity potentials and, therefore, has only p = 0
nonzero component. The tensors U~ and K represent
the bare gauge-Geld propagator and the current-density
response tensor of the composite fermions, respectively.

To evaluate Eq. (4), we use the Coulomb gauge divA. =
0, go to the momentum space, and choose the momentum

q to be directed along the x axis: q = q, q„= 0. Then
A„has only 2 nonzero components corresponding to p =
0, y, and both K and U become 2 x 2 matrices:

—zqo'~y

gqz —2iurn, /qkp p
'

2' g/q &~

0 (5)

vo(q)e '&"' ( rts-+1 ).& + (y, + 1).+ g & i&m'/q (6)

where 8 = 2mo.~„p in the limit ~~~q )) 1 .
Let us now compare the first and the second term in

denominator of (6). As we will see below, the typical
momenta are q (2d,),and we get for P = 2

where m* is the effective mass of fermions, y = 1/24a m'
is the magnetic susceptibility, and v(q) = 2vre /(eq) is
the Coulomb propagator, and o.» is the Hall conductivity
of composite fermions.

Substituting (5) in (4), we find

m* v (q) /2vr

(2s)'
m*e m*e k~d, 50
4EQ8 sky 2p p

where p =
&

—B B ~ ——2m &', B is the cyclotron ra-
dius, S„ is the contribution to the action induced by ran-
dom fields along the classical path of winding number

where k~ = i/4vrn, and we used typical experimental
parameters n = 1.1x 10 cm, d, =80 nm, and the ex-
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perimentally estimated value for the ratio m*e /(ek~)
10. For the not too large p we are interested in, it is thus
a reasonable approximation to neglect all but the first
term in the denominator of (6). This gives

2.0

1.0-

A„(q) = rtie *q"*e
m* ( im*/q ) '

The random field action S„ in Eqs. (1), (2) is given by
S, = —$ A„dr~ = —(IApdt —$ Adr ), where the inte-
gration goes around a cyclotron orbit. Assuming now the
impurities to be randomly distributed with concentration
n, and uncorrelated, we find

(S„') = (2~y)'n,

0.0

-2.0 L
0,5 0.7 0.9 1.1 1.3

1./B ~ (1/T)
1.7

x (dq)e ~"' dl e 'q +p
k~

= n, (4vr PR, ) (dq) e

d'r e '&"
FIG. 1. Dingle plot. Logarithm of normalized

amplitude of resistivity oscillations 1n(Dr p "/p), with
Dr = sinh(27r T/&u, )/(2vr T/~, ), as a function of inverse ef-
fective magnetic field B,& . Linear, quadratic and quartic fits
of experimental data from Ref. 9 are presented.

x Jp(qR, ) + —Ji(qR, )
p 1

k~ q
(9)

Here, g dl means integration along the cyclotron or-
bit and corresponds to the electric field contribution,
whereas f d2r goes over the area surrounded by the orbit
and describes the magnetic field contribution. Taking
into account that R, = p /(7m, ), we have R /2d,
p//4mn, d2 p/10 + 1. Thus, for relevant momenta
q 1/(2d, ) and level numbers p, qR, (( 1 is a reason-
able approximation. In this case Eq. (9) reduces to

is seen that they can be fitted well by exp [
—(m/w, r)4,

whereas a exp( —m/w, r) fit is much worse.
Let us briefly consider now eKect of finite temperature

T. First of all, the SdHO are then suppressed by a usual
factor Dz = (2m T/u, )/ sinh(2vr2T/tu, ) originating from
the Fermi distribution. In addition, the fermions are
scattered by the thermal fluctuations of the gauge-field.
The propagator of gauge-field fluctuations is given by

D„„(q,~) = U„(q) h —K "(q,~)U„(q) . (13)

(10) In particular, for the Dii component determining the
magnetic field fluctuations, we get

Note that electric and magnetic field fluctuations give
equal contributions in this limit. According to (2), this
gives for the oscillating part of the conductivity:

Dii(q, cu) = (2i(un, /qkp —yq )

1 1 l' l 1X= . —+
I
s+=

27rm* 12 ( p )
v(q)

(2vrg)2
(14)

(47r'n. co. "oc —cos
~

'
exp

( eB.a

where we introduced a parameter 7i/2 which is given
according to Eq. (10) by

m' f n, d2)

When writing Eq. (12), we made the usual assumption
that concentrations of donors and charge carriers coin-
cide: ne = ~i ~

The dependence of the amplitude of oscillations on
cu in Eq. (11) difFers from the conventional form
exp( —vr/u 7 ), which holds for short-range potential scat-
tering. We have already shown in Ref. 12 that short-
range magnetic field scattering leads to damping of os-
cillations in the DOS exp [—(7r/w, r) ]. As w'e see
now from Eq. (11),a long-range correlated magnetic field
leads to the result exp [—(vr/u w) I.

In Fig. 1 we present experimental data for the ampli-
tude of p

" f'rom Ref. 9 (T = 0.19 K, B,g ) 0). It

In the quasistatic approximation, we Bnd

d& 2T T
(AiAi)q —— Imoii ——

2'7t co XV

and consequently for the amplitude of magnetic field fluc-
tuations (hh) = T/y. If ur, ri )) 1, we have s p
and y = 12p y. The contribution of these fluctua-
tions to the random field action (8 ) in (2) is then

(8„) = (T/y)mR2 —27r2T/pw„ i.e. , is small at p )) 1
compared to the standard term —lnaz and decreases
with p. This result would manifest itself as an apparent
decrease of the efFective mass m' (extracted in the usual
way from the temperature dependence of the amplitude
of SdHO) with p for moderately large p, in qualitative
agreement with experimental findings. ' ' For larger
p, a sharp increase in m* was observed in Ref. 20, the
origin of which is not clear to us.

For completeness, we consider now the SdHO in low
fields (around B = 0), where there is no CS gauge field.
At low temperature the scattering is then due to screened
impurity potential Ap ——(2vr/mg)e i" e 'q ~, where mg
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is the band electron mass. [It is easy to see that this
follows from Eq. (6) if one puts P = 0.) We find that
(S2) in Eq. (2) is given for this case by

(S,) = (27r) *R—, qdqe ~ * Jo(qR, ). (15)

Assuming again n, = n„we get for the amplitude of
oscillations

(2~'n. c) 1 (
eB ) p (~,rp)

(16)

mb (n, d'. l '/'

n, l, 2w

whereP=2 for R, ((d, andP=1 for R, )) d, . Itis
seen from Eq. (17) that the condition of week oscillations,
~/cd rp )) 1, corresponds to the latter regime, where the
usual result lno " —(m/u, ro) holds.

As was already mentioned, the available experimen-
tal data around v = 1/2 (Ref. 9) apparently show
the behavior ln p

" 1/w, predicted by Eq. (11). The
value of the parameter 7&&2 which is found from such a
fit (Fig. 1) is rz/2 16 x 10 i2 s. At the same time
the theoretical estimate according to Eq. (12) (with use
of the parameters of Ref. 9) gives w,*/2 - 2.4 x 10 '2 s

if one uses the experimental value of the effective mass
m* = 0.7m . A similar discrepancy is found for the low-
field relaxation time: Eq. (17) for mb = 0.07m, gives
70 0.6 x 10 2 s, whereas the value quoted in Ref. 9 is

9 x 10 s. We note also that the theoretically esti-
mated values for the transport relaxation rate at v = 1/2
are typically four times greater than extracted from ex-

perimental mobilities. ' Therefore, the theory seems to
overestimate relaxation rates systematically. This situa-
tion has been discussed previously. ' The considerable
increase of relaxation times was attributed to the cor-
relations in positions of charged impurities due to their
mutual Coulomb interaction. Note, however, that this
efFect, which leads to a weakening of the random poten-
tial, is probably not sufhcient to remove the discrepancy
of theory and experiment for the quantity 7.

&&2, namely, a
factor of [wi/2(exp)/w&/2(theor)] 2000 in the exponent
of Eq. (11).

In conclusion, we have presented a theory of magneto-
oscillations around v = 1/2 Landau level filling factor
based on a model with fluctuating Chem-Simons field.
The quasiclassical treatment of the problem is appropri-
ate and leads to unconventional exp[ —(vr/u, rz/2) ] be-
havior of the amplitude of oscillations. This result is in
good agreement with available experimental data. At the
same time, the experimental value of 'T&g2 considerably
exceeds our theoretical estimate.

Recently, experimental data on SdHO near v = 1/2
on a better-quality sample have been published. The
obtained Dingle plot [Fig. 3(a) of Ref. 20] is again highly
nonlinear, in agreement with our formula (11). On the
other hand, the suggestion of the authors of Ref. 20 that
this nonlinearity may be explained by the variation of
the efFective mass is not supported by our results, since
m* drops out from Eq. (11).
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