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Acoustic scattering of electrons in degenerate semiconductors at low lattice temperatures
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The inelastic acoustic scattering rate of electrons in a degenerate material is calculated under the con-
dition of low temperature when the traditional approximations are not valid. The results for Si show
features significantly different from those that follow from the traditional theory.

Degenerate semiconductors are used in various solid-
state devices, for example, metal-insulator-semiconductor
diodes, tunnel diodes, lasers, etc. ' For device applica-
tions the theoretical study of the electron transport in a
semiconductor is important. Such studies require a
knowledge of the scattering rates of the free electrons for
the prevalent interactions in the material at a given lat-
tice temperature.

There is a range of low lattice temperature ( TL (20 K)
when the free electrons in a high-purity covalent semi-
conductor interact dominantly only with intravalley de-
formation acoustic phonons. The well-developed
traditional theory of the deformation acoustic-phonon
scattering of the free electrons in a nondegenerate materi-
al, based on the simplifying approximations of negligible
phonon energy, elastic collisions, and equipartition for
the phonon distribution, is indeed valid at higher temper-
atures. But with the lowering of the temperature when
the phonon energy compares well with the electron ener-
gy, it can neither be neglected nor can the phonon distri-
bution be approximated by the equipartition law. This
problem of inelastic acoustic scattering of the free elec-
trons in a nondegenerate material at the low lattice tem-
peratures has been studied by many. " The results
have been rather interesting, being significantly different
from what follows from the traditional theory.

At the low lattice temperatures, however, a material
having a particular carrier concentration can hardly be
regarded as nondegenerate when the Fermi energy
e.F ~k~T~, k~ being the Boltzmann constant. A proper
theory of the inelastic acoustic scattering of the free elec-
trons in a degenerate material at low lattice temperatures
is not yet available in the literature. The purpose of this
paper is to develop the theory of the inelastic scattering
of the electrons in a degenerate material due to intraval-
ley acoustic phonons at low lattice temperatures, taking
due account of the energy carried by a phonon and also
of their true energy distribution. The result is then used
to obtain the scattering rate and its dependence upon car-
rier energy, lattice temperature, degree of degeneracy,
etc. , for some degenerate samples of Si.

Let us consider a volume V of an isotropic, degenerate
semiconductor with a single, parabolic, spherically sym-
metric conduction band. The scattering rate of an elec-

tron with wave vector k and energy cz for interactions
with intravalley deformation acoustic phonons may be
obtained directly from the perturbation theory as
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where x =A'qv, /k~ T~ and x =3.5.
The integration over the normalized phonon wave vec-

tor x can be carried out after assigning the upper (xz or
xi) and the lower (x& or x &) limits. The limits can be ob-
tained from the energy and momentum conservation con-
ditions for an electron making transitions from a state k
to k+q accompanied by either absorption or emission of
a phonon. It may be mentioned here that the probability
of the scattering involving more than one phonon is small
at low temperatures of interest here. Since the energy of

where E, is the deformation potential constant, p the
density of the material, iri=h j2n., h being Planck's con-
stant, q is the phonon wave vector, fo(k+q) is the proba-
bility of occupation of the final state k+q and is given by
the Fermi function, and n is the phonon population.
The upper and lower sign (and n~ and n~+1) must be
taken, respectively, for the processes of absorption and
emission.

The integration over the polar and azimuthal angles
can be easily performed. For integration over the magni-
tude of the phonon wave vector one can expand fo(k+q)
in a Taylor's series around c&.

In order to have a correct description of the energy
balance at low temperature the true n is given to a good
approximation by the truncated Laurent expansion,
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a phonon can no longer be neglected at low temperatures,
the range of the phonon wave vector involved in the pro-
cess of absorption comes out to be different from that
corresponding to the process of emission, though the
traditional elastic approximations lead to the same range
for both, viz. , 0—2Akv, /k~TI. In the energy domain
0 & Ek & E, (=—,'m *U, , m ' being the effective mass of the
electron), where the carriers can only absorb~honons
during the interaction, x, = A, ( Q E, —Q Ek) and
x2=A, (QE, +QEk). It should be noted here that the
maximum value of xz in this energy range is usually less
than x. In the range Ek& E„x',=0, x2=1(QE, ++yak)
for the process of absorption and x ', =0,
x2=X(QEk —QE, ) for the process of emission, where

A, =4+E, /k]] TL.
Thus, performing the integrations for T~ &8m., /xk~,

one can obtain
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and the Fermi energy is related with the electron concen-
tration X, by

P„(Ek)=A„[1—fO(Ek)]A, QEk . (4)

It may be noted that the scattering rates for a nonde-
generate ensemble at any temperature may be recovered
from (3) and (4) by neglecting D "fo(Ek) in comparison to
unity.

Thus even the traditional theory, which neglects the
phonon energy, yields a distinctly different dependence of
the scattering rates on the carrier energy and the lattice
temperature if the degeneracy of the sample is taken into
account. The scattering rate for a degenerate material is
less than that for a nondegenerate material at any tem-
perature. Moreover, both the qualitative and quantita-
tive discrepancies between the scattering characteristics
of the two materials are quite sensitive to the change of g
(=E~lk2]TI ) and increase with its value. However, for
higher energies when Ek largely exceeds EF, f]](Ek) can be
neglected in comparison to unity and the degeneracy
hardly produces any effect on the scattering rates at any
temperature.

Under the low-temperature condition the scattering
characteristics turn out to be rather involved compared
to what follows from the traditional theory. The scatter-
ing rates are now numerically calculated for Si with the
following parameter values: E& =9.0 eV, v, =9.037X 10

(32r X )
2m

At high temperature when the acoustic scattering may
be considered elastic and the equipartition approximation
is valid one can obtain for the combined process of emis-
sion and absorption:
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FIG. 1. Dependence of the inelastic acoustic scattering rate
upon the carrier energy at different lattice temperatures for a
degenerate sample of Si with g= 1. Curves 1, 2, 3, and 4 are ob-
tained for the lattice temperatures of 2, 4, 20, and 50 K, respec-
tively, and the corresponding concentrations are 1.86X10',
5.26X10', 5.88X10', and 2.32X10' cm . Curves marked a
and b are obtained for degenerate and nondegenerate semicon-
ducting materials, respectively, taking the finite phonon energy
into account. Curves marked c and d are obtained, respectively,
for the same materials neglecting the phonon energy.

FIG. 2. Dependence of the inelastic acoustic scattering rate
upon the carrier energy at different lattice temperatures for a
degenerate sample of Si with g = 10. Curves 1, 2, 3, and 4 are
obtained for the lattice temperatures of 2, 4, 20, and 50 K, re-
spectively, and the corresponding concentrations are
5.88 X 10', 1.66X 10', 1.86X 10', and 7.55 X 10" cm
Curves marked a and b are obtained for degenerate and nonde-
generate semiconducting materials, respectively, taking the
finite phonon energy into account. Curves marked c and d are
obtained, respectively, for the same materials neglecting the
phonon energy.

cms ', p=2. 329 gcrn, and m*=0.32mo. It may be
further noted that the number of terms n required for
convergence of the series occurring in (3) increases with
the value of q. Using a logarithmic scale the dependence
of the scattering rates on the carrier energy at different
lattice temperatures are shown in Figs. 1 and 2 for two
different values of g, viz. , g=1 and q=10, respectively.
The corresponding values of N, given in the figures for
these values of g obviously increase monotonically with
the lattice temperature and g. Since for Si
8e, /xktt = l.97, the characteristics could not be obtained
for TL =1 K. The scattering rates as obtained for the
nondegenerate material and also for elastic collisions with
negligible phonon energy are plotted in the same figure
for a ready comparison. The figures indicate how
significantly the scattering rates change if one considers
the degeneracy of the material and the finite energy of
phonons. The consideration of finite phonon energy pro-

duces altogether different characteristics, be it for the de-
generate or the nondegenerate material. For lower ener-
gies the scattering rate for the degenerate material is
lower than that of the nondegenerate material by an al-
rnost energy-independent scale factor. The value of the
factor, though, hardly depends upon the phonon energy
and is quite sensitive to the change in q. Just one order
increase in g increases the scattering rate by several or-
ders. Around an important energy range, c., ~c,k~c~,
the discrepancy between the scattering characteristics of
the two materials assumes a more and more complex
form the lower the lattice temperature or higher the
value of g. However, for higher energies the scattering
rates become almost independent of the lattice tempera-
ture and again the effect of degeneracy can hardly be felt.
The effect of degeneracy is felt at lower and lower ener-
gies the lower the lattice temperature, when again the
phonon energy cannot be neglected.
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