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We calculate the cooperon for a system of noninteracting electrons in the presence of random poten-
tials with correlations 8'(r) = 8'05(r)+ 8'lr '"+ ' in d dimensions, for arbitrary values o. and d, to first
order in 8'i. Our detailed results confirm the exactitude of the universal form for the cooperon pro-
posed earlier by other authors based on general principles. We find that the system will have short-range
(long-range) behavior according to o. being positive (negative).

I. INTRODUCTION

The critical behavior of interacting systems depends on
general features of the interactions that may be classified
in universality classes. ' One important class is that of
short-range (SR) interactions with the Fourier transform
expressible as a series in q, while a di8'erent class consti-
tutes the long-range (LR) inverse power-law interactions
decaying like r '"+ ', where d is the space dimensionali-
ty and o. the range parameter, with a Fourier transform
in q . Crossover from LR to SR critical behavior occurs
when o. &o.„where the exact value of o.„either 2 or
2 —gsR, depends on the renormalization procedure. '

Interesting phenomena occur in systems with random
interactions V(r). Within a renormalization-group calcu-
lation, the only relevant cumulants are the mean and
variance

calization transition in the presence of random. potentials
with inverse power-law correlations. We followed. Ref. 4
to perform a renormalization-group calculation in a dou-
ble expansion in @=4—d and o.. We found a fixed point
for o. & 0 and 2o. & e & o. that we interpreted to indicate a
LR-induced localization transition at d & 4, with the cor-
responding scaling law for the conductivity.

A microscopic calculation of the conductivity was per-
formed in Ref. 6 for the case of scattering by Yukawa-
like potentials in two dimensions. The main result in this
work was that, in spite of the mathematical intricacies of
the problem, the cooperon in Fig. 1 could be cast into a
geometric series with the familiar result for SR correla-
tions

~(r)= ( V(r)&,

~(I —'I)= ( i'(r)i'(r') &
—( &( ) & ( i'( ')

& ,

which can be of either the SR or the LR type. The case
of LR correlations in random spin systems,
W(r)=r ' + ' in Eq. (l), was studied in Ref. 4. The
critical value of o. that separates SR and LR behavior is
in this case o., =0.

In a previous work we investigated the Anderson lo-

for small values of the cooperon momentum Q, where
D„=kzr„ld for d =2 and pz is the density of states at
the Fermi energy. All the details of the interaction were
absorbed into the elastic and transport lifetimes ~ and ~„,
respectively. In a subsequent publication it was shown
that, provided the cooperon exhibits a di6'usion pole as in
Eq. (2), the conductivity takes the universal scaling form
of SR interactions for arbitrary dimensionality d.

The question still remains, however, whether the valid-
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theory does not provide rigorously for the 6rst correction
in Q in the case of an arbitrary potential. The deriva-
tion of Eq. (2) is straightforward for a contact potential,
but in the Yukawa case the calculations were far from
trivial. Hence we consider interesting the calculation of
the cooperon in Fig. 1 for random impurities when the
correlations W(r) in Eq. (1) are a combination of a con-
tact potential plus a LR part, with the Fourier transform

+ o o o
W(q) = Wo+ Wiq (7)

/
/

I
I I

This particular form is dictated by a renormalization-
group procedure that automatically generates 8 p start-
ing from W, .

In Sec. II we present results that are obtained to first-
order perturbation theory in 8, by following the method
of Ref. 9 and that confirm the exactitude of Eq. (2) also
for the LR correlations in Eq. (7). We discuss the results
for the localization part of the conductivity and we ob-
tain, according to the range parameter a being positive
or negative, that the system will exhibit SR or LR
behavior, as predicted in Ref. S.

II. CA.LCULATION OF THE COOPERON
AND CONCLUSIONS

FIG. 1. (a) Series of maximally crossed diagrams for the

cooperon 1,[k,k', Q;co]. A full line of momentum k stands for
the Green function G(t) while a broken lirie stands for the
correlation 8'(k). {b) Green function and self-energy.

ity of Eq. (2) is not restricted to potentials belonging to
the SR class, ' such as the Yukawa potential. Following
the formal theory in Ref. 8, it can be established that the
relation between the retarded K"(k;co+i5) and causal
K (k;e+co+i5;e i5) d—ensity-density correlation func-
tions is given by

K ~( k; co+i 5)

c)n~(e)
. f dE' IcoK (k;e+co+l5;e l5)

2&l —oo BE'

We consider a gas of noninteracting electrons in d di-
mensions, in the presence of random potentials V(r) with
mean and variance defined in Eq. (1). Here we consider
M=0 and W(r) is defined by its Fourier transform in
Eq. (7). We work in units iri= I=c = l.

The sum of maximally crossed diagrams for the
particle-hole vertex part of cooperon shown in Fig. 1 is
obtained by solving the Bethe-Salpeter equation

l, (k, k', Q;co)

=W(k —k')+ f d W(k —p)G+(p)G (Q —p)
dp

(2m )"

X I', (p, k', Q;co),

where the electron Green function is given by
—2~ip(e) I, Gk(p) =

I: —,'(p' —kF') —e~1 (9)
where nz(e) is the Fermi function and p(e) the density of
states. In the limit k=0 we obtain

K"(k=O;t, —t, )

( i 2)(~pl =0( 1) Pk=o( 2)~~ 0 (4)

because the density operator is given by

pl, 0= f dp ( n)=pN,

where n(p) is the particle number operator for momen-
tum p and N is the conserved total number of particles.
From Eqs. (4) and Eq. (5), the exact relation follows:

K (k=O;e+co+i5;e i5)=-2@ip(e)
CO

The causal density-density correlation function corre-
sponds to the vertex part shown in Fig. 1. Then Eq. (6)
demonstrates that I (Q=O;co) in Eq. (2) is exact but the

and eo and e+ stand for —i /2~ and co+i /2r, respective-
ly, while we indicate by kF the Fermi momentum. The
pole in the Green function ensures that all relevant mo-
lnenta will be at the Fermi surface. Then, in Eq. (8) we
have, from Eq. (7),

W(k —k') = Wo+ W, [Zk~ sin( —,
'

ekk ) ]

where 8kk. is the angle between the vectors k and k'.
Also we perform the integrals within the standard ap-
proximation

where g'=(p —k~)/2, dQ is the angular di6'erential on
the unit sphere divided by (2m)", and fd Q
=Qd=2' "/m" I'(d/2). The inverse lifetime in Eq. (9)
is calculated in the Born approximation from the self-
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energy in Fig. 1, with the result

Tp

where
1

To

8'1
1+ f,

0

Pr Wo

I-(d/'P)I- d —1+
2

(12)

(13)

2cr+ d —2
7

v'~r d —1+—
2

(14)

and pz =k~ Qd is the density of states at the Fermi en-
ergy.

The solution of Eq. (8) to first order in W, is obtained
by following the method of Beal-Monod and Forgacs.
We obtain 'o, ~0Cr, (1,I,Q;~)=, +W, ~I

—I
~ +2,

0 0

with Jacobian q" ' 11" i'(sin8 )~ '. Then the angle 8 &
between two vectors q(8i, . . . , 8d, ) and
Q(y». . . , yd, ) is given by

d —1 d —1

cos8 &= = g cos8; cosy; + sin81 sinai .
qQ

(22)

J= f d Q cos8 &X(8~&),1

(Qd )

where, from Eq. (22),
d —1

K(8~&)= d f + [d8J(sin8J)i ']
(2m. )"

(23)

X cosOqg sin
2

r rd +o.—1 d —1

2

To perform the integral over dQ~ in Eq. (19), we set
the d axis along p; then O~q =Od 1 and 0~& =yd, and
we obtain'

where

W+, , (15)
(1—WoB )

2 0
2m

Xcos+d

I (d+ —)
2

(24)

B =f d G+(p)G (Q —p),
(2m )

C =f „G+(p)G (p)[2kF sin( —,'8~k)]dp
(2m)"

6+ ~Gdp dg
(2n. )d (2m. )d

X[2kF sin( —,'8~~)] G+(q)G (Q —q) .

(16)

2d 3

d+o. —1 d
2

'
2

(25)

because only the term with i =d —1 in Eq. (22) gives a
nonzero contribution to the integral in Eq. (24). It fol-
lows by introducing Eq. (24) into Eq. (23), where now

d —1

dQ = I/(2m)" 11 (sing)J)~ 'dqrj, that
j=1

As we are looking for the singular contributions to I,
when Q~O, we must expand B and E in Eq. (16) to
O(Q ). Also the expressions for C and E should be eval-
uated for 8', =0. The results for B and C are straightfor-
ward' and read

&err d+—
2

and, from Eqs. (25) and (19),

4(d —I )+o.
E=(2rrpI"ro) f„ 1 —Q roDo (26)

k~v
B =2' r I+icos Q—

d

C =2mpF rof

(17)

(18)

Introducing Eqs. (17), (18), and (26) into Eq. (15) and
expanding the terms originating in (1 —WoB) to first
order in 8'1, we obtain the singular part

d —1

q;=q cos8, , + sin8J, i =1, . . . , d —1

J =I

qd =q cosed 1, co=0,
(21)

The expression for E is more complicated

E=(2np~ro) [f,[1—2Q roDo] Qzkg 2~2 kf—J], (19)

where Do =kFro/d is the difFusion coefficient and

J= f dQ f dQ cos8 & cos8q&[sin( —,'8 )] . (20)
1

(Qd )

We introduce d-dimensional polar coordinates in momen-
tum space

[r,(Q)] o=
2mp~ P~oQ~

3(d —1)+2~
Wo

' 2(d —I )+cr

r, (Q)= 1 1

2mp~r DQ
(28)

Q~0 . (27)

In Ref. 7, it was proposed, from first-principles argu-
ments based on the Ward identity, that the universal
form for the cooperon should be
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+tra=DO
70

(29)

and ~„is the transport lifetime, which in our case gives

1

kF+rr„
1 1

if —)
+tr

1 1if —(
+tr

(32a)

(32b)

vo wo 8'i 0'=—+ f,8'0 ' 2(d —1)+o. (30)

0 —CTdc 0
+0

~max d 3d& =oD. dc+o~o.2& I

(31)

where L '=0 for d &2~oo=e pFD0 and tTDrude (oLoc)
indicates the first (second) term in Eq. (31), while

with r and f, defined in Eqs. (12) and (14). The expan-
sion of Eq. (28) to first order in W, yields exactly the re-
sult obtained in Eq. (27); hence we conclude that our cal-
culation provides a rigorous proof of the validity of Eq.
(28) also for inverse power-law correlations.

The calculation of the conductivity now proceeds as in-
dicated in Ref. 7, where it was shown rigorously that all
the relevant contributions combine into the following ex-
pression, which we quote for completeness:

We can see, from the last term in Eq. (31), that the lo-
calization contribution to the conductivity depends on
the potential only through Q,„: if o & 0 then we are in

the case (32a) and o L„depends solely on the elastic life-
time r, just as for a contact potentiaI, while for cr (0 we
are in the case (32b) and cr„„exhi bit s a long-range
behavior through ~„. These results confirm the
renormalization-group prediction in Ref. 5 that the local-
ization transition will have a LR or SR character accord-
ing to the range parameter o being negative (LR) or posi-
tive (SR). We consider these results to be valid for all
values of d and cr that ensure well de6ned I functions by
analytic continuation.
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