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Strongly correlated two-dimensional electrons are believed to form a spin liquid in some regimes of
density and temperature. As the density is varied, one expects a transition from this spin-liquid state
to a spin-density-wave antiferromagnetic state. In this paper we show that it is self-consistent to
assume that this transition is second order and, on this assumption, determine the critical behavior
of the 2p& susceptibility, the NMR rates T& and Tz and the uniform susceptibility. We compare our
results to data on high-T materials.

I. INTRODUCTION

High-temperature superconductors may be created by
adding carriers to magnetic insulators. At low dop-
ings the compounds have long-range magnetic order at
T = 0; at high doping they do not. Therefore, a T = 0
magnetic —nonmagnetic transition must occur when the
carrier density exceeds a critical value. The idea that
some of the anomalous properties of high-T supercon-
ductors are due to their proximity to this quantum phase
transition has attracted substantial recent interest.

The properties of the transition depend on the ordering
wave vector and on the nature of the disordered phase.
Several di8'erent possibilities have been studied in some
detail including antiferromagnet-singlet transitions in in-
sulating magnets and ferromagnetic and antiferromag-
netic transitions in Fermi liquids. ' Here we consider
an important case which has not so far been discussed
in the literature, namely, that the disordered phase is a
"spin liquid" and the ordering occurs at the wave vector
I&l = 2pF.

By "spin liquid" we mean a liquid of charge zero spin-
li2 fermion excitations coupled by a singular gauge-
field interaction; in the ground state the fermions fill
a large Fermi sea which occupies a substantial part of
the Brillouin zone. 4 The spin-liquid model has been ar-
gued to describe the normal phase of high-temperature
superconductors. 5 By "2p~" we mean a wave vector
which connects two points on the Fermi surface with par-
allel tangents (see Fig. 1).s For a circular Fermi surface
any vector Q of magnitude 2pp connects two such points.

One important motivation for studying the 2@~ case is
the high-T superconducting material La2 Sr Cu04, in
which strong magnetic Buctuations have been observed;
the Buctuations are peaked at an x-dependent wave vec-
tor Q(z) which is claimed to be a "2p~" wave vector of

FIG. 1. Sketch of Fermi surface and important wave vec-
tors. The Fermi surface shown here is similar to that claimed
to be appropriate to Laq. sSro. q4Cu04 . The vector Q con-
nects two points on the Fermi surface. It is assumed that the
tangent to the Fermi surface at one end of the vector Q is
parallel to the tangent to the Fermi surface at the other end.
We parametrize the vector k by the angle 8 shown on the
6gure and the magnitude k~~ shown on the fi.gure as the solid
line part of k.
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the Fermi surface calculated by standard band-structure
techniques for this material.

The 2p~ spin-density-wave transition in a spin liquid is
different &om the 2p~ transition in a conventional Fermi
liquid because the gauge-field interaction leads to diver-
gences in the fermion response functions at wave vectors
]Q~ near 2p~. In this paper we calculate the exponents
and the scaling functions characterizing the 2p~ transi-
tion in the spin liquid. Our starting point is a Hamilto-
nian, H = HFg + Hg „g„whereHFL describes fermions
moving on a lattice and interacting with each other via
a short-range four-fermion interaction TV:

+W )
p~p ~g)~~P

pn p+g~ 'p p QP

and Hg „g describes the gauge field and its coupling to
the fermions; it is discussed in detail in the literature
and below in Sec. II.

It has recently been shown that two possibilities arise,
depending on the strength of the fermion-gauge-field
interaction. If this interaction is weak, a critical value
W of the short-range four-fermion interaction separates
a disordered phase with nondivergent spin Huctuations at
W ( W &om an ordered phase at W ) W, . In this pa-
per we evaluate the exponents characterizing the transi-
tion at W = W in the weak gauge-field coupling case and
show how they depend on the strength of the fermion-
gauge-field interaction. Ef, however, the fermion-gauge-
field interaction is sufficiently strong, then the 2p~ spin
susceptibility diverges as T —+ 0 for arbitrary TV & W„
although there is no long-range order at T = 0. We
have not studied the transition at W = W, in the strong
gauge-field interaction case, but we give the exponents
characterizing the W ( R' phase and discuss the physi-
cal consequences.

We assume that the transition at W = R" leads
to a spin-density-wave state with long-range order with
wave vector Q and that this transition is second or-
der. If ~Q~ g 2p~, the gauge field does not modify
the fermion susceptibility, so we expect previously de-
veloped theories ' to apply. We now outline our ap-
proach to the ]Q~ = 2py case. Because we expect the
physics in this region to be determined by the exchange of
spin-density Huctuations we use a Hubbard-Stratonovich
transformation to recast Eq. (1.1) as a theory of fermions
coupled to spin Huctuations S~:

II' = ) e(p)ci c„+g) ci o pc„+i,pS i, (1.2)
p, k, a,P

+ gauge + ) Sk
A:

x(S, i„S,i„)8 ) (u; 8(Z;k, ) +

Here S I, represents a spin Huctuation of Matsubara &e-
quency u and wave vector k. yo is the susceptibility
and U is a four-spin-Huctuation interaction proportional
to g . We shall derive and interpret this action in more
detail below. This action is difficult to treat even for a
Fermi liquid without the gauge-Beld interaction because
yo and U diverge as T, tu ~ 0 and k ~ Q. The gauge
field causes additional singular renormalizations of yo U,
g, and the fermion propagator. '

In this paper we present and justify a self-consistent
one-loop approximation method for extracting physical
results &om the formally divergent theory. We supple-
ment this treatment with an analysis based on Eq. (1.2)
of the effect of the spin Huctuations on the fermions. We
find that the susceptibility is less singular than the sus-
ceptibility obtained for transitions with Q g 2p~. This is
because the 2p~ singularity of the fermions leads to long-
range Ruderman-Kit tel-Kasuya- Yosida interactions; this
weakens the singularities associated with the transition
for the same reason that long-range dipolar interactions
lower the critical dimension of classical models of ferro-
electric transition.

The self-consistent one-loop approximation succeeds in
the spin-liquid case because the fermion-gauge-Beld inter-
action makes the singular part of the fermion response
symmetric in the variable ~k~

—2pp. This approach how-
ever fails for the conventional Fermi liquid because in this
case the singularities in the fermion polarizability are not
symmetric in the variable ~k~

—2p~ as discussed below.
We have found that this asymmetry implies that fluctu-
ation effects do not permit a second-order transition at
~Q~ = 2p~ in a Fermi liquid. We will present a detailed
treatment elsewhere. ~2

The outline of this paper is as follows. Section II re-
views the relevant theory of the spin liquid. Section III
is devoted to the transition in the spin liquid for weak
fermion gauge-field interaction. Section IV discusses the
properties of the small-W critical phase occurring when
the gauge interaction is strong enough that the 2p~ sus-
ceptibility diverges as T —+ 0. Readers uninterested in
the details of the derivations may proceed directly to Sec.
V which contains a summary of the results and a conclu-
sion.

II. GAUGE THEORY OF SPIN LIQUID

Here g is a fermion-spin-Quctuation coupling constant de-
rived &om W; in weak coupling g = W. One may study
H' as it stands or one may integrate out the fermions
completely, obtaining a theory of interacting spin Huctu-
ations which is described by the action

In this section we review the properties of the "spin-
liquid" regime of the t-J model, which has been ar-
gued to describe the normal state of the high-T
superconductors. In the spin-liquid regime the elemen-
tary excitations are charge e, spin 0 "holons, " charge 0,
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spin-1/2 fermionic "spinons, " and a gauge field which
mediates a long-range, singular interaction. For temper-
atures above the Bose condensation temperature of the
holons, the holons have a negligible effect on the mag-
netic properties, which are determined by the properties
of the degenerate Fermi gas of spinons (which we call a
spin liquid), coupled by the gauge interaction and by a
short-range four-fermion interaction W.

The properties of the spin liquid have been studied
by many authors. ' ' The fermion propagator has been
found to have the form

——2'
popo /~~~I '

UF

1—3

+cgRe
/

II((u, kii) = IIp—

(2.3)

operator II(u, k) [which is shown in Fig. 2(a)] and on
the four-spin-Buctuation interaction U [which is shown
in Fig. 2(b), cf. Eq. (3.2)].

If 1/6 & cr & 1/3, we found

1

i~o ~ —v(pl) +.p~/po)
(2.1)

instead of the Fermi-liquid form G = [i~ —
v(p~~ +

p&/po)] . Here vF is the Fermi velocity, po is the radius
of curvature of the Fermi line and p~~(p~) are momen-
tum components normal (tangential) to the Fermi line
as measured from the points +Q/2 and uo is an energy
scale of order p~v~ which is defined more precisely in
Ref. 9.

Recently, we have shown that the fermion-gauge-field
interaction causes a power-law divergence in the vertex
I'3„~which is shown as a black triangle in Fig. 2(a).
Specifically we found

Here c and cl, are constants of order unity. For 0 & 1/6,
t t m l g kll has the same sign as kll' Thus the
maximum of II and therefore the ordering wave vector
must occur at a ~Q~ different from 2pF and we expect
previous treatments ' of the critical behavior to apply.
For o ) 1/6 the k~~ term is always positive and a second-
order transition at ~Q~ = 2pF is possible. We restrict
our attention to o ) 1/6 in the rest of the paper. In
this case the nonanalyticity of Rek affects only the

II

magnitude of cy, that is not important for the scaling
arguments which we will present. We henceforth write
the kll term as

max,
(2.2) On the other hand, if a. ) 1/3, II diverges as ~, k~~

—
& 0.

We found

We were able to calculate 0 in the limits N ~ oo and
N —+ 0, where N is the spin degeneracy of the fermions.
We found

II(~, k(() = ~070

cr 1/2N, N m oo

o. 16~2/gvrv N, N m 0.

Extrapolation of these results to the physical case N = 2
gives the estimates 1/4 & cr & 3/4. The combination
of the change in form of the Green function and the di-
vergence of I'2„~has profound effects on the polarization

(2.4)

The full susceptibility y is obtained by combining the
irreducible bubble II with the short-range four-fermion
vertex W. We have shown that the gauge-field interac-
tion renormalizes a sufficiently weak initial W; to zero.
Therefore we expect a T = 0 transition as W is varied
through a critical value W . In the weak-coupling case
o & 1/3, the fact that II(~ = 0, k~~

= 0) is nondiver-
gent implies that the usual random-phase approximation
(RPA) formula

(2.5)

FIG. 2. (a) Diagram yielding the nonanalytic momentum
and frequency dependence of the susceptibility yo. The solid
lines are the fermion propagators. The shaded triangles are
vertices which have power-law divergences. (b) Diagram
yielding the nonanalytic momentum and frequency depen-
dence of the four-spin Buctuation interaction U.

is the correct starting point of a theory of the transition.
We discuss the transition occurring when W = W
II(0, 0) in more detail below in the next section.

In the strong coupling, cr ) 1/3, case we still expect a
transition when W exceeds a critical value. However the
divergence of II(0, 0) implies that the RPA formula (2.5)
is not correct. For W & W„y(w,k) = II(u, k) with cor-
rections of order the product of W and a positive power
of &equency or kll. The T = 0 critical point separates
a TV ( W phase which has power-law spin correlations
&om a W ) W, phase which has long-range order.
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III. WEAK FERMION-GAUGE-FIELD
COUPLING

There are two possible approaches to the spin-density-
wave transition at TV = TV . One is to integrate out the
fermions, obtaining an efFective action A[S], describing
the spin Huctuations, S I„and then to analyze this ac-
tion. If Q g 2pp all terms in the efFective action are
finite in both the Fermi liquid and in the spin liquid, and
the action may be treated by standard renormalization-
group (RG) techniques. As Q -+ 2@~, however, the co-
efficients of the quartic and higher-order terms diverge,
implying that standard RG techniques cannot be used
and that the efFect of higher-order terms must be inves-
tigated. Another approach is to investigate the effect of
the spin Huctuations on the fermion propagator. Here we
consider both approaches.

Taking the first approach we proceed in four steps.
First, we integrate out the fermions obtaining the action
A[S] given in Eq. (1.3). Second, we truncate the action,
retaining only the quadratic and quartic terms. Third,
we solve the truncated action in the self-consistent one-
loop approximation. This approximation has been ex-
tensively used to study three-dimensional magnets and
gives the same results as the renormalization group above
the upper critical dimension. 3 Fourth, we show using the
formalism of the efFective action A[S] that corrections to
the self-consistent one-loop approximation lead at most
to logarithmic corrections to the self-consistent one-loop
results and that logarithms were in fact not present in
any diagram we investigated. Fifth, we confirm this re-

suit using the formalism of the spin fluctuations inter-
acting with fermions. Finally, we discuss the physical
consequences of the theory.

A. Derivation of truncated action

We begin by evaluating the coefficients yp and U in
action (1.3). We shall be interested in momenta close to
the momentum Q at which yp is maximal. For wave vec-
tors near Q the momentum and &equency dependence of
y and U are nonanalytic and controlled by Fermi-surface
singularities. It will be convenient to parametrize the
momentum k in terms of a magnitude k~r and an angle
0 as shown in Fig. 1. For each angle 0 there is a mo-
mentum p~(8) such that 2p~(8) spans the Fermi surface.
Note 2p~(8 = 0) = Q. We define k~~ to be the difFerence

~k~
—2p~(8). These definitions are generalizations for

the noncircular Fermi surface of coordinates which are
the convenient choice for a circular Fermi surface.

The fermion contribution II(~, k~~) to the inverse sus-

ceptibility yp can be calculated by summing all dia-
grams which are irreducible with respect to the fermion-
fermion interaction and have two external S A, legs. This
sum has contributions from short length scale processes
which give II(u, k~~) an analytic dependence on k~~ and 8
and also contributions &om Fermi-surface singularities,
which lead to a nonanalytic dependence of II(~, k~~) on
kll and ~. The Fermi-surface singularities come ft..om the
diagram shown in Fig. 2(a), which leads to the expression
(2.3). Thus we get the susceptibility

2i3—2
( i

1—3 2 (3.1)

where g is the fermion-spin-Huctuation coupling. The coefficients c and cA,. are of the order of unity, they are sensitive
to the details of the band structure and the momentum dependence of the interaction. The coefficient Kp is determined.
by the difference of the interaction f'rom its critical value. Note that we are using Matsubara &equencies so that y is
purely real.

The most singular contribution, U„.„s,to U is given by the diagram shown in Fig. 2(b). It diverges if the reduced
momenta (k~~, 8) and &equencies of all four legs are zero. For our subsequent calculations we shall need to estimate
the asymptotic behavior when the momenta and frequencies on the external legs satisfy

(d Mg )P QJ

and 8 —8i„8, 8g but with 8 —8, arbitrary. Here a, b, c, d are any permutation of the legs shown in Fig. 2(b). By
evaluating the diagram in Fig. 2(b) we find that in this limit the vertex is

g (dpPp 1

~o caPo po~o

(3.2)

Equation (3.2) is not strictly correct at arbitrary mo-
mentum and &equency but gives the correct asymptotics
of the vertex, which are all we need. The result may
be motivated by the following arguments: the scaling

ey'k~~ v~(p~8) /pp comes &om the struc-
ture of the expanded fermion Green function (2.1); we
believe that this is the correct generic scaling in this
problem. In the case of the circular Fermi surface the



52 SPIN-DENSITY-WAVE TRANSITION IN A TWO-. . . 4611

2/s —2o

(k ) — i(k ) = 4

(U&/k)( [ ) (3.4)

FIG. 3. Diagram yielding renormalization of the
spin-Quctuation contribution to the four-fermion vertex W
by gauge 6eld. Here the solid lines are fermions, the dashed
line represents the gauge field, and the wavy line represents
the spin.

dependence on the large angular separation (8 —8,) fol-
lows &om rotational invariance; a noncircular Fermi sur-
face can still be mapped locally to a circle, proving this
result in the general case. In writing these equations
we have included the renormalization of I'2„due to the
fermion-gauge-field interaction. The renormalization of
the fermion vertex g due to the gauge field does not en-
ter our discussion of the critical phenomena. To see this,
note that the renormalization is due to the logarithmic
divergence of the diagram shown in Fig. 3. In the present
case the interaction is sharply peaked, so the logarithm is
confined to momenta and &equencies less than the scale
set by r, [see Eq. (3.1)], and therefore does not affect our
treatment of the critical point. The problem is thus to
investigate the self-consistency of the theory defined by
Eqs. (1.3), (3.1), and (3.2).

B. Self-consistent one-loop approximation

We treat the theory defined by Eqs. (1.3), (3.1), and
(3.2) in the self-consistent one-loop approximation shown
diagrammatically in Fig. 4, i.e., we require that the full
susceptibility obeys the equation

X(I,~) ' = Xo'(k, ~)+g'). X(n, e)&„",",
where yo is given by (3.1). Using (3.1) and (3.2) we see
that the &equency or Inomentum derivative of the inte-
gral (3.3) is infrared divergent. Estimating this integral
we get

which has the same order of magnitude and the same
&equency and momentum dependence as the bare yo
Here as in Eq. (3.2) the formula gives only the correct
asymptotics when one of the variables [ufo u ~, v&k~~,

u~(p~8) /po, n~K /po] is much larger than the others.
Due to the four-spin interaction U the cutoff, lc&(T), is

renormalized as compared to vz. At a finite temperature
the sum over g in (3.3) is taken over Matsubara frequen-
cies q = 2vrnT. The temperature-dependent part of the
correction is dominated by the first term in this sum. Es-
timating it at zero external momenta and &equency we

get the leading contribution to

K2(T) f T ) ' r.2(0)+
pz k~o J jp~

(3.5)

C. Marginality of higher-order corrections

We now argue that corrections to the self-consistent
solution (3.1) do not change the momentum, frequency,
and temperature dependences of Eqs. (3.1) and (3.5).
There are two kinds of corrections: those arising &om
higher-orders of perturbation theory in the S coupling
using the truncated action, Eq. (2.1), and those arising
from higher-order S,S, ... nonlinearities omitted from
Eq. (1.3). We first consider the renormalization of the
vertex U at the second order in U. The corresponding
diagram is shown in Fig. 5. This diagram is in&ared

Note that y (8) 8; the singular interaction does
not change the power law in the angle dependence. This
may be most easily seen via a reductio ad absurdum. Sup-
pose the four-spin-wave interaction had led to an expo-
nent less than two for 0. Then the angular dependence of
yo in Eq. (3.3) could have been neglected. However, for
a circular Fermi surface, Eqs. (3.2) and (3.3) are rota
tionally invariant (apart from terms due to yo), and can
therefore lead to no angular dependence at all, in con-
tradiction to the hypothesis of angular dependence with
an anomalous exponent. The same argument applies to
a nonspherical Fermi surface, because it may be mapped
into a spherical one, with errors of order 0 . We conclude
that in general the self-consistent one-loop equations can-
not produce a 0 dependence difFerent from 8 .

FIG. 4. Diagrams de6ning the self-consistent one-loop ap-
proximation for the susceptibility y (thick wavy line) in terms
of the interaction U (shaded box) and the bare susceptibility

go (thin wavy line).

FIG. 5. Diagram giving leading renormalization of full
four-spin interaction U (shaded box) in terms of bare U (open
box) and spin fluctuations (wavy lines).
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divergent and may therefore be estimated by writing the integrals with zero external momenta and &equencies and
then cutting ofF the resulting divergence by the largest of the external momenta or &equency. This gives

g py cLGJ d0 dk~~
~U(O, q, 8i, 82)-

COp ~&~ I & 2 /3 —2' I 1—3cr

Calp CaPp

1
+ j I + (g ~ )2 a'+ 4cr+2 ~ 6cr+1

( )~

g 4)ppp4

4-+2/'3
1

F~ll ~F&F (~& ~&)
(3.6)

This estimate shows that higher-order corrections in the
S4 interaction do not change the power-law dependence
of the mode coupling interaction, and therefore cannot
change the powers coming &om the solution of the self-
consistent equation. This argument, of course, does not
rule out logarithmic corrections to y

The effect of the higher-order nonlinearities (S, S,
etc.) may be analyzed similarly. let us compare the
contribution to the susceptibility &om one bare S +
vertex to the contribution &om one bare S vertex. The
former contains one more integral over (u, k~~, 8) and one
more factor of the susceptibility y. The diagram for the
bare vertex S + contains also two more fermion Green
functions. Performing the extra integration we see that
the additional singularity coming &om the extra fermion
Green functions in the bare vertex and extra factor of
susceptibility is precisely cancelled by the phase volume.

These results imply that the theory is marginal, in
the sense that higher-order interactions give the same
in&ared behavior as lower-order interactions. The
marginality may also be demonstrated by a scaling argu-
ment. If we rescale momenta and &equencies via u' = b~,
k~~

——b /
k~~,

8' = b ~ 9, then we must scale the field
S' = b + Sq to keep the quadratic term in the action
invariant. The scaling dimension of the S vertex is then
g( /s+ ~)~ (from the fields) times 6 ~ +2 ~~ (from
the vertex) times b2(2" i) (from the integrals). Adding
the powers we see that the total scaling dimension of
the vertex is zero, so all interactions are marginal in the
renormalization-group sense.

Thus, we conclude that higher-order effects of the spin-
wave interaction do not change the exponents character-
izing the divergence of the susceptibility (3.1) or the in-
teraction between spin Buctuations (3.2).

D. EfFect of spin Huctuations on fermions

We now consider the alternative approach of estimat-
ing the feedback of the interaction mediated by the spin
Buctuations (3.1) on the fermions. The lowest-order con-
tribution to the fermion self-energy Z is

~(' &) = &' fG(~', n')x(~ —~', u —s')

x [r(„+,, )(, (,+,,)],(e —e, p p')]'(dp—'de') .

(3.7)

We are interested in the leading &equency dependence
of Z; the main contribution to this comes when p' is
on the Fermi line. We then find the angle at which
y is peaked; this turns out to be the point which is
located symmetrically opposite to p: l8' —8 + ml

(r + 48 )'('-"& where 8' and 8 are the polar coordi-
nates of the points p' and p. Estimating the contribution
of this region we get

E(e, 8) = —XcgE
1

+ 4/2

(3.8)

where cg 1. Over most of the Fermi line, this
self-energy is small compared to the fermion self-energy

2t due to the gauge-field interaction The spin
Quctuation contribution becomes important only in a
small region l8l & 8* near the points connected by the
wave vector Q, with 8' given by

8' = (e/urp) (3 9)

At a Gnite temperature T the typical energy of the
fermion is T, and it should replace e in (3.9):

8*(T) = (T/~0) (3.1O)

Since 8'(T) K/py [cf. Eal. (3.5)], in the region
8 & 8'(T) the self-energy (3.8) remains of the order of

i/3 2/3

We do not have a reliable expression for the self-energy
Z(E, 8) in the region 181 & I8'

I
at e )) T. We can,

however, argue that fermions in this region make only
a marginal contribution to physical quantities such as
polarization operator II(u, k). The analytic expression
corresponding to Fig. 2(a) for II is
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II(, kI, O) = jdpd I', G(p+k, + )G(p, )

(3.ii)

Here k is a vector parametrized as shown in Fig. 1
by variables kll, 0. As a function of angular variable 0,
II(IG, O) has a smooth maximum of the width 0'(~)
((u/(uo) )' 0*(w). Thus all physical quantities are
controlled by spin fluctuations with 8 & 0'(ur). Using Eq.
(2.1) for G and (2.2) for I'qz we see that the integral
over momenta is dominated by fermions with momenta
near the Fermi surface which have angles very close to
0 [the dominant contribution comes from the range of
fermion angles 8': ~8 —0~ (~/coo) ~ (( 0]. Thus for k~~

and 0 which are important for the susceptibility, for the
self-energy Z(e) or for the T dependence of K, the polar-
ization bubble is controlled by the fermions at 0 & 0*.
Thus, we believe that the fermion-spin-wave interaction
leads only to corrections of the order of unity to physi-
cal quantities. Certainly, these arguments are based on
power counting and can easily miss logarithmically large
contributions; however, we have verified that the leading
vertex and. self-energy corrections do not contain loga-
rithms.

E. Physical consequences

II"(q, ~)
[1 —g2II(q, (u)]2

(3.i2)

The NMR Ti relaxation rate is therefore

1 2 4 ImII(k(), ~)= A g dk~~pzdg lim [y(0, k~~, 0)]T1T co —+0

(3.i3)

Here A is a constant proportional to the hyperfine cou-
pling. We can neglect the weak dependence of II on 0
since the singular dependence on 0 comes only via y.
For T & 0 and k~) small [k)~

+ py (T/J) ~ ] we have

lim
Imll(k(~ = O, IG)

G(e, p + Q/2) G (e, p —Q/2)
cu ~p

1(R) 0 2 ( P )
[ „„(Q)] 2T h. (/2T)

I o (~o)
'+"

(3.14)

We now discuss the physical content of the results. We
first note that the fermion-gauge-field interaction has two
effects on the polarizability near Q = 2p~. it changes the
form of the nonanalyticity at u = 0 and Q = 2p~ (intro-
ducing the exponent cr) and it washes out the nonanalyt-
icity associated with the lower boundary of the particle-
hole continuum at w = 2v~kll. Therefore the scaling
form, Eq. (3.1), gives the correct result for the imaginary
part of the susceptibility, y", which may be measured in
neutron scattering. Using this and Eq. (2.5) gives

while for larger kll it decreases as

~ ]s ) (1+scr)/2
T

lim ImII(k~~, IG) ImlI(0, w)

(3.i5)

The divergence of Imll(k~~ = 0, Idd)/~ is the usual Kohn
anomaly modified by the fermion-gauge-field interaction.
This interaction has two effects. First, the increased
fermion damping proportional to e / weakens the T de-
pendence &om T ~ to T ~ but does not change the
q dependence. Second, the extra vertex correction then
strengthens the T dependence to T ~ + / & and the q
dependence to

~ q
—2p~

~

( + ~ ) . If IT & 1/6 as we as-
sume throughout, the strengthened q dependence leads
to a divergence of 1/TqT T( )~ even far from the
critical point.

If the system is tuned to the critical point, then the T
dependence of y becomes important and we obtain

2 1
T1T g

2 —crVy Py Py &p 3

cop pp T (3.16)

If 0' ( 1/3, the critical contribution is more singular than
the background contribution. However as 0 is increased.
to 1/3, the difference between the critical contribution
and the background contribution disappears.

One may calculate the T2 rate similarly. The electronic
contribution to the NMR T2 rate is related to the real
part y' of the susceptibility

) [y'(~ = 0, k)]',

where a is the lattice constant. If cr ( 1/9, the critical
contribution to T2 is

2 V~ P~ ~P
T2 A

Gg pp T

y~ = lim y(q, 0) = ) D(k, I )y(k, I ),
k, a

(3.17)

where the coefficient D is given by the diagram in Fig.
2(b) with two of the spin-fluctuation vertices replaced by
vertices coupling the fermions to the external magnetic
field. We denote this coupling to the external magnetic
field by g . In particular, terms arising &om triangu-
lar vertices coupling two spin Quctuations to one small-q
external field lead only to terms proportional to integer
powers of T, which are much smaller than the terms we
keep. The calculation of D is very similar to the calcula-
tion of U [Eq. (3.2)] except that the coupling D has two

Since we have assumed IT & 1/9, T2 is not divergent as
T —+ 0.

Proximity to the antiferromagnetic transition has also
an effect on the uniform susceptibility. We have shown
elsewhere that the leading low Tbehavior of y(q, 0)-in
the limit q ~ 0 is given by
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i/2 i/2 3
—2'

~2psr~ ~0
TiT vs/2

(4.1)

If 0 & 1/2, the rate T2 is nondivergent and if o ) 1/2,

FIG. 6. Diagram yielding leading T dependence of the uni-
form susceptibility for the case of strong gauge-field-fermion
coupling. The solid lines are fermion propagators and the
heavy dot is the short-range four-fermion interaction dressed
by the gauge field.

small-q vertices and only two large Q vertices I'2„~,the
degree of singularity therefore differs &om that of U and
the dependence on Oi —82 is absent. We find

1/2 2 2

D(k

4Pp 4Pp

1 2 gpypp~o / T l
T2 vza E~o)

(4.2)

Here a is the lattice constant. We now consider the uni-
form susceptibility y(q ~ 0, 0). It has contributions from
diagrams involving the four-fermion vertex W. The lead-
ing diagram is shown in Fig. 6. Because, as we have
shown in a previous paper, W is renormalized by the
gauge Geld, yU acquires an anomalous temperature de-
pendence. The renormalization of W is cut off by the
largest of the temperature, the energy of any fermion
line, the scaled momentum (vp~~)

/ of any fermion line,
or the difference &om m of the angle 0~ —02 between the
momentum of the incoming particles, leading to

(3.18)

Substituting this expression for D and Eq. (3.1) for y
into Eq. (2.13), we find at g = g, that

(k~~
!W Wo max

) , (Hi —82 —vr)

(4.3)

g~ = coilst + Dp(T/(up) (3.19)

where Do is a constant of order g,p~/(g v~); Do is
positive if rc/p~ ) (T/~o)i/s, and Do is negative if
K/py & (T/uo) / . The relation between the sign of
Do and the magnitude of K comes because there are two
sources of T dependence in Eq. (3.17): one is the T de-
pendence of the cutoff r; the other is the discreteness of
the &equency variable.

1If ~(T = 0) & 0 then a crossover occurs. For T~ )
K, the result (3.19) holds. For lower T, the renormal-
ization of the 2p~ interaction by the gauge Geld shown
in Fig. 6 becomes important and the T dependence be-
comes weaker. We discuss the T dependence in the g ( g,
regime in the next section because it is important for
o ) 1/3.

yU = const+ Do(T/ufo) +~, (4.4)

where Do' is a constant of order "~~ W, whose sign

is positive for repulsive TV and negative for attractive W.

V. CONCLUSION

where the exponent P is N dependent and is not simply
related to 0. As N ~ oo, P(N) = s

—~, as N -+ 0

/3(N) cia with ci & 0.
To calculate the temperature dependence of y(q

0, 0) we insert the vertex given in Eq. (4.3) into Fig. 6,
and then determine the phase volume in the (e, p), (e', p')
integrals in which the T dependence of TV is important.
We find

IV. STRONG GAUGE-FIELD INTERACTION
cr ) 1/3

If the exponent o arising &om the fermion-gauge-field
interaction is greater than the critical value 1/3, then
the fermion spin susceptibility diverges at q = 2p~ and
u = 0 for all g ( g, leading to a phase with power-law
spin correlations at T = 0. At g = g a transition will
occur to a phase with long-range order. We have not yet
formulated a theory of this transition. In this section we
outline the physical consequences expected for the g ( g,
phase.

For o & 1/3 the Kohn singularity at q = 2p~ becomes
nonintegrable, so y' and y"/u diverge at T = 0 as shown
in Eq. (2.4). The power law describing the divergence
is 8 independent. The NMR relaxation rates are there-
fore given by summing the appropriate combinations of
susceptibilities over kll. We find

We have determined the scaling behavior of the spin
susceptibility near an antiferromagnetic critical point at a
"2@~"wave vector of a spin liquid. By a "2@~"wave vec-
tor we mean one which connects two points on the Fermi
surface with parallel tangents. An example is shown in
Fig. 1. We distinguish between very weak, weak, and
strong fermion-gauge-Geld coupling. The cases are de-
fined by the value of the exponent o appearing in Eq.
(2.2). This exponent depends only on the fermion spin
degeneracy, ¹ we do not know how to calculate it an-
alytically for the physically relevant case N = 2. For
estimates of cr, see Ref. 9. In the very weak coupling
case, 0 & 1/6, a second-order transition at !Q!= 2p~ is
impossible because the maximum of y is at !Q! g 2p~. In
the weak-coupling case 1/6 & o & 1/3 the critical point
occurs at T = 0 when a short-range interaction R' equals
a critical value W, . In the strong-coupling case o & 1/3
there is a critical phase with power-law correlations at
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T = 0 for 0 & W ( R' and an additional transition,
which we did not study, at W = R' .

In weak- and strong-coupling cases the 2py singulari-
ties of the fermions lead to physically important effects.
First, the scaling is anisotropic. The dependence of the
susceptibility on wave vectors k~~ which are parallel to
the ordering wave vector Q involves a different exponent
than does the dependence on wave vectors k~ perpen-
dicular to Q. The k~ exponent takes the conventional
Ornstein-Zernike value 2, while the k~~ exponent is al-
ways between 0 and 1 [cf. Eq. (3.1)]. The small value
of the k~~ exponent comes from a long-range (in posi-
tion space) interaction due to the 2p~ singularity of the
fermions. It drastically weakens the singularities associ-
ated with the transition. For example, in the weakly cou-
pled spin-liquid case the NMR T2 relaxation rate, which
is given by T2 P (y'), does not diverge as T m 0,
in contrast to transitions in two-dimensional insulating
magnets, where T2 1/T. The T~ rate is weakly
divergent, see Eq. (3.16). The uniform susceptibility is
nonvanishing as T —+ 0, but the leading temperature de-
pendence is a power of T between 0 and 1; see Eq. (3.19).

In the strongly coupled spin liquid the scaling is again
anisotropic. There is no singular dependence of y(q, 0)
on the direction of g. The only singular dependence is on
the difference between q and "2p~(g)", the vector span-
ning the Fermi surface and parallel to q. For o ) 1/3
the NMR relaxation rate (TqT) is always divergent as
T ~ 0 [cf. Eq. (4.1)]; T2 diverges if o ) 1/2 [cf.
Eq. (4.2)]. Both quantities diverge more strongly as o is
increased. We also found that the leading temperature
dependence of y is y ~ const + T~+~, where P is an in-
dependent exponent which tends to 0 as o becomes large
and to 4/3 —2o as o ~ 0 [cf. Eq. (3.19)]. Our results
for Tq, T2 and the uniform susceptibility are summarized
in Table I.

One reason for studying spin fluctuations in two-
dimensional systems is that the high-T superconductors
have been shown to have strong antiferromagnetic spin
fluctuations. The two best studied high-T materials are
La2 Sr Cu04 and YBa2Cu307 g. In La2 Sr Cu04,
neutron scattering has observed peaks centered at incom-
mensurate x-dependent wave vectors. At x = 0.14 the
incommensurability was shown to correspond to a "2p~"
vector of the LDA band structure, suggesting that the
results of the present paper should be relevant. NMR
experiments have shown that the copper Tq rate "T&
has the temperature dependence

c"(TgT) ' - 1/T

TABLE I. Relaxation rates and susceptibility in difFerent
cases.

T$T

T2

x(e ~ o)

Weakly coupled
Spin liquid (1/6 & o & 1/3)

1
T2/s —cr

Nondivergent
~ + ~2/3 —cr

Strongly coupled
Spin liquid (o )1/3)

T2cr —1/3

TQa —1

g + T1+P

ACKNOWLEDGMENT

( "TqT) ~ 1/T, T2 T with 2
& z & 1. " The uni-

form susceptibility is given by y const + AT at least
for 150 ( T ( 400 K. None of these properties are con-
sistent with the weakly coupled spin-liquid results of Sec.
II. The strongly coupled spin-liquid results with o = 2/3
are in rough agreement with the data.

In the YBa2Cus07 g materials, "(TqT) 1/T and
T2 T for T greater than a b dependent "spin-gap"
temperature and above this temperature y const+A'T
with A' b dependent. The neutron scattering indicates
broad and flat-topped. peaks centered at the commensu-
rate wave vector (vr, vr). It is possible that the observed
structure is due to several overlapping and unresolved
singularities at a 2@~ wave vectors. However, it has also
been argued that in YBa2Cu30y g the magnetism is
not driven by a 2p~ instability, and is peaked at a com-
mensurate wave vector because of a strongly peaked in-
teraction. If the latter point of view is correct, the theory
developed here is irrelevant. If the former point of view
is correct, then we are forced to conclude that the rele-
vant fixed. point is the strongly coupled spin liquid with
o. = 2/3.

One other aspect of the strongly coupled spin liquid
requires further comment. We noted already that in this
case y is singular at any Q spanning the Fermi surface.
In a translationally invariant system this would. predict
peaks in the neutron-scattering cross section on a ring of
radius 2p~ centered at the origin. As noted by Littlewood.
et al. , for fermions on a lattice one obtains instead one
or more curves traced out by the vectors Q connecting
points with parallel tangents, and also one obtains ad-
ditional families of curves displaced. by reciprocal-lattice
vectors, G. One gets further peaking when members of
different families of curves intersect. The resulting struc-
ture is very sensitive to the details of the Fermi surface
and may resemble the data in YBa2Cu307 p as well as
the data on La2 Sr Cu04.

for 100 & T ( 500 K. The T~ rate has not been mea-
sured in this material, but in other high-T materials with
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