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The electronic structure of the surfaces of layered copper oxides has been investigated in the frame-
work of a tight-binding model together with the unrestricted Hartree-Fock method. The main element
of the layered copper oxides, namely the Cu02 layer, was supposed to lie parallel with the surface, as
well as to be trimmed at a boundary of crystal. In the former case, the electrons at the surface were con-
sidered to be in an additional (surface) potential. A mode of the calculation of this potential has been
developed on the basis of a method being similar to Ewald s transformation. As an example, the surface
of La2Cu04 was studied. In the latter case, when the Cu02 layer is semi-infinite due to its cutting at the
surface, the formation of electronic surface bands was carefully investigated. Both the metal and dielec-
tric phases were examined. For the metal phase, we took into account the possible freezing of the spin-
density wave at the surface. In all the cases, surface bands were present in the vicinity of the Fermi level.
They had inherent, in the one-dimensional systems, peculiarities.

I. INTRQDUCTION

No great length of time has yet elapsed since the
discovery of the high-temperature-superconducting prop-
erty in layered copper oxides, ' but its applications in
different devices are already numerous and wide. Many
of them are determined by or, at least, depend on proper-
ties of the surface, intergrain boundaries or interfaces.
Theoretical investigations of the electronic structure of
surfaces of layered copper oxides are yet few in number,
in spite of great attention to the problem from experi-
mentalists (see, e.g., Refs. 3 —8). This can be explained by
the fact that the problem is too dificult and the objects
are too complex. That is why, in this paper, we will try to
find only qualitative approximation to the solution of the
problem. For this purpose, we will use a simplest version
of a tight-binding model in association with the unre-
stricted Hartree-Fock (UHF) method. This approach is
appropriate for studying the ground dielectric state of un-
doped crystals as well as the metal state of doped crys-
tals. That this approach holds for the qualitative descrip-
tion of the electronic structure of copper oxides, was
carefully verified earlier in a few works. " It was
shown that the values of the forbidden gap and the local
magnetic moment, obtained within the UHF method,
were in accordance with experiments for the dielectric
phase. Moreover, the tight-binding method enables one
to get a close approximation to the electronic band struc-
ture in the metal phase. ' ' The (pdo. ) interactions be-
tween the neighboring oxygen and copper atoms in the
single Cu02 layer and the Hubbard interactions of elec-
trons on the copper sites have only to be taken into ac-
count for this purpose.

The chemical bonds must be broken at the surface. As
a result, a semi-infinite Cu02 layer appears instead of the
infinite one. In this paper, we will just investigate the
electronic structure of the semi-infinite CuOz layer in the
dielectric and metal phases. Due to drastic simplifica-
tions, results of the solution of the problem will be of

common character and, consequently, be valid for the
whole family of layered copper oxides. Some results will
be obtained in an analytical form.

It is known that, in the case of point defects, the elec-
tron spectrum can conveniently be described by means of
the Green function (GF) method. In this method, instead
of the straightforward solution of the Schrodinger equa-
tion for the crystal as a whole, the problem of electron
scattering at a potential point disturbance is addressed.
In the case where the GF's of an ideal crystal are known,
this problem is reduced to the solution of a usually small
system of linear equations.

%'hen dealing with surfaces, the CxF method should be
applied together with the method of the inverse Fourier
transformation. This approach has been already actively
implemented in the analysis of the electronic structure of
surfaces in semiconductors. '

The plan of our paper is as follows. Section II is devot-
ed to the description of the GF method. Section III deals
with the electronic structure of the semi-infinite CuOz
layer in the metal phase. In Sec. IV we take into account
the possible antiferromangetic ordering at the surface.
Section V considers the semi-infinite CuOz layer in the
dielectric phase. The method of the calculation of the po-
tential at the surface is presented in Sec. VI. Finally, Sec.
VII draws the conclusions which we have obtained.

II.THK GF MKTHQD

Let us break the crystal up into slabs being parallel
with the surface. We will use the representation ~nkijct),
where n is the number of the slab, k is the wave vector ly-
ing in the plane of the slab, i is the number of an atom in
the cell, j is the number of an orbital on the atom, and a
is the spin projection. The Dyson equation written in this
representation has a particularly simple form if the per-
turbation of the potential is uniform along the slab

C =g+gP'0, (l)
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D (E, k) =det~~1 —
g P

~~

=0 . (4)

To determine the density of states in these bands, let us
employ the following maneuver. Let us shift the energy E

into the complex plane E—+c.+i XO and write a formal
solution to Eq. (2) with the help of Kramer's rule

DLL
GLL D

(5)

where DLL is determinant (4) in which the column, corre-
sponding to the state ~L), is replaced by the column of
free terms. Expanding the determinant D(E, k) in the vi-
cinity of a solution of Eq. (4) c, , =E,(k) into a Taylor
series, we have

D (E,k) =D (s„k)+D,'(E, )(s —E, +i XO)+

Here D,'(c, , ) is the partial derivative of D(E, k) with
respect to E. at c=E.1. Note that, according to condition
(4), the first term vanishes.

By substituting (6) into (5) and, thereafter, the GF ob-
tained into (3), we find

Nl'(s)= —f, 5(E—s, )d k .0 az D,'(si)
Charges on atoms can be obtained by performing the in-
tegration over the occupied sites

ql =f, NI (E)dE+ f Nl'(s)de . (8)
bands bands

The densities of states in the bulk and surface bands are
given by Eqs. (3) and (7).

where g and 6 are the GF of the ideal and perturbed
crystals, respectively. V is a matrix of the perturbation
potential. Since the perturbation of the potential takes
place in a restricted volume of the crystal, it is not too
difficult to obtain the solution to Eq. (1) for sites pos-
sessed by this volume. Indeed, Eq. (1) in this case can be
reduced to the ordinary system of linear inhomogeneous
equations

(1—gP')0=g . (2)

Having found this solution, we can then obtain the GF in
bulk by making use of Eq. (1). The partial density of
states is next determined by

Nr (E)= — Im f GIL(E, k)d k,1

~n BZ
LL

where Q is the area of the cell in the reciprocal space,
L—:(nij a) is the set of the quantum numbers described
above. The energy dispersion in surface bands can be ob-
tained from the equation

elude into the basis of the tight-binding method only the
po. state on the oxygen atoms and the d 2 2 state on thex —y

copper ones. We take into account interactions only be-
tween the nearest neighbors. In this simple case, the en-

ergy of electrons has the well-known form

Ei, =eo+v[A +2t (2 —C, —C )]'~ (9)

where Eo, 6 are the half sum and half difterence of the
one-electron energies E, and cd, respectively, v= +1, t is
the hopping integral for which we will use the value of
3'

Vz& /2 where V~d
= —1.85 eV, ' C =cosk a, a is

the lattice parameter. The vectors of the bonding and an-
tibonding states can be expressed in the framework of
this model as follows:

1/2

C+ PE, E

2(E—+ —Eo)

1 exp—(ik a)
C (10)

+2(E——so)(E+——s )

1 exp(ik—„a)
C3 =t

+2(E+——Eo)(E——E )

The vectors of the nonbonding states vanish on the
copper atoms and are given by the following expressions
on the oxygen atoms:

r 1/2ik a

2

1 —C
C2 = —exp

2 —C —Cx y
1/2

ik a 1 —CC'=ex
2 2 —C„—C

Spectrum (9), in combination with vectors (10) and (11),
gives a comprehensive description of the electronic struc-
ture of the ideal CuO2 layer and, consequently, can be
used as the basis for calculating the GF.

B. The GF of the ideal layer

As the Brillouin zone of the Cu02 layer is represented
by a square, the Fourier transforms of the GF can be
determined by the following obvious formula:

CL CM
gI M( k„)= g. f dk, (12)—~«E.—Ek+i XO

where the summation is performed over the bands of the
bonding, nonbonding, and antibonding states. Due to
specialities of Eq. (9), the calculation of the GF can be re-
duced to the calculation of a universal function

E Epgi= f(8„),
III. THK ELECTRONIC STRUCTURE
OF THK SEMI-INFINITE CuO2 LAYER

IN THK METAL PHASE

A. The electronic structure of the ideal layer

$2= 1

E —Ep+I XO

1 —CxE E,d
, f(k. )+

3 —Cx

E Ed 1 —C 1/2

f(~-)+ 3-C2t2

1

+) XO

The unit ce11 of the ideal CuO2 layer is comprised of
the copper (1) and two oxygen (2 and 3) atoms. We in- gni, o2= f (4)l:1

E —
Eo

(13)
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where

g„=—(e —4+2C„)+iXsign(E —eo) XO,—1

following simple form:
2

g 01,02

g2
(18)

( e —c,o) —b.
2 (14) The dependence of the GF on the column number can be

then determined from the expression
—g'+sign(g)V gz —1,

z(g)= . —/+i Xsign(e —Eo)V 1 —g~, (15) Gn1 g1

2
gn 1,02

(19)

Here g, is the diagonal element of the GF for the column
of the copper atoms, while g2 and g3 are the elements for
the columns of the oxygen atoms. gn, 02 is the nondiago-
nal element of the GF between the columns of the copper
and oxygen atoms lying in the nth and 0th slabs, respec-
tively, f (g) is the universal function for which we have
obtained the following analytical expression:

Now, the density of states on the copper atom in the nth
slab may be represented as

Imf dk g)—
m ja

2
gn 1,02

g2
(20)

Specific results of calculating the GF and density of states
for the Cu02 layer will be given in the next sections.

f(g)= '

sign(g)
2&g' —1

i X s—ign(e —Eo)

2+1 —g

D. Results of density-of-states calculations

Let us start with the calculation of the partial density
of states on the copper atom of the ideal layer. By using
Eq. (3) together with Eq. (13), we readily obtain

C. The GF of the semi-in6nite layer N, (E)= 8[e(8—e)]K2' t
(21)

To break chemical bonds up at the surface, one may
eliminate the states of the nearest to the surface sites
from the basis (Fig. 1). Indeed, the elimination of the
chain made of the oxygen atoms (shown in Fig. 1) leads
to the disruption of the layer into two separate parts be-
cause of taking into account only the nearest-neighbor in-
teractions.

A mode of eliminating orbitals from the basis was ear-
lier proposed by Bernholc and Pantelides. ' For this pur-
pose, it was suggested to direct the matrix element of the
potential on the atom removed to infinity. Of course, it is
not to be supposed that the potential at this site is infinite
in reality. The same result could be achieved by vanish-
ing of corresponding hopping integrals.

All said above makes it possible to obtain the GF of
the semi-infinite layer. In pursuing this aim, one can use
the following equations:

61 g1+g01,02 ~02602, 01

2

2772
(22)

Results of calculating this change vs n and E are
represented in Fig. 2. From this figure we notice that the
electronic charge on the surface copper atom is greater
than in bulk. %'e call attention to the fact that the num-
ber of oscillations in the change of the density of states

where 8(x) and K(k) are the step function and the com-
plete elliptic integral of the first kind, respectively. The
density of states (21) is normalized to 1. This density has
Van Hoves singularities and jumps typical of two-dimen-
sional systems. In the metal- (doped) layer, the Fermi
level lies somewhat below the logarithmic singularity lo-
cated at e =4.

Breaking the chemical bonds at the surface, we have
the following change of the density of states on the
copper atoms:

G02, 01 g02, 01 +g2 ~02 G02, 01

where V02 is the potential on the removed oxygen atoms.
The solution to Eqs. (17), after letting V02 ~ oo, takes the 0.5

OoOoO~Oo
C3 C3 O C3

OoOo0'~O~
0-

~ ~ I ~ ~ ~

1

a O ago
FIG. 1. The semi-infinite CuOz layer.

Energy (eV)

FICi. 2. The change of the density of states on the copper
atom (the CuO2 layer in the metal phase).



S. A. PROSANDEYEV AND I. M. TENNENBOUM 52

IV. THE ELECTRONIC STRUCTURE OF THE
METALLIC Cu02 LAYER TAKING INTO ACCOUNT

THE POSSIBILITY OF THE ANTIFERROMAGNETIC
ORDERING OF ELECTRONS ON THE SURFACE

I I

Rn /7T

FIG. 3. The energy dispersion in surface bands of the semi-
in6nite CuO2 layer in the metal phase. The dashed area corre-
sponds to the bulk's band.

increases with the distance from the surface. As a conse-
quence, charges on atoms and other integral characteris-
tics coincide with corresponding values for bulk not so
far from the surface. However, differential characteris-
tics sharply depend on the energy even very far from the
surface.

E.Surface states

Condition (4) of surface states appearing in the elec-
tronic spectrum has in the considered case a particularly
simple form

g2(k„,e) =0 . (23)

Figure 3 represents the solutions to this equation in the
range g„(—l. One can see that the surface band over-
laps the bulk's band. Its top lies somewhat below the en-
ergy of the Van Hove singularity in the density of states
of the bulk. Thus, if the Fermi energy is shifted to the
surface states by means of an acceptor's substitutions,
surface conductivity and related phenomena would arise.

The partial density of states in the surface band can be
expressed as follows:

&'i,02(Ei)
2~ ~r'a (r}/BE)g2 ~,

—

A. The electronic structure of the ideal CuO2 layer
with a doubled cell

e~g'+vIb, +2t (2—cosk a)

+At [2(1 cos—2k„a)]'~2I '~2, (25)

where v=+1, k=+1. The vectors of states needed for
the calculations are described by the following expres-
sions:

1 —exp( —ik a )
C), C4=

E

4(E —s0)

1/2

1 —exp( ik a)—
C3,

(26)

This knowledge is sufficient for calculating the GF.

B.The GF of the ideal layer

Necessary computations can again be performed
analytically that markedly facilitate the problem. The
final results are

g„,„=,' gz(g )"f(g ),2i'

Breaking of chemical bonds at the surface leads to a
lowering of the degree of covalency for the topmost
atoms. In general, this can initiate a localization of elec-
trons and, in particular, their antiferromagnetic ordering
at the surface. The following is a consideration just of
this case.

To describe the antiferromagnetic ordering, we double
the unit cell of the infinite Cu02 layer as shown in Fig. 5.
The electron energy in the bands of the bonding and anti-
bonding states has, in this case, the form

(24)

where s, =E&(k„)is a solution to Eq. (4). We have calcu-
lated this density and found it to have Van Hove singu-
larities typical of one-dimensional systems and to be
sharply decreasing with the distance from the surface
(Fig. 4).

=1g. 1,02=
4 Xl:1—~(kA) jz(CA)"f (4»4t ~

F Fgg~=, gf 4
1 —cos(2k a)

E —E„+iXO 3 —cos(2k„a)

(27)

0 2-

O

~sac

O. l.
o.o

0

Energy {eV)

FIG. 4. The partial density of states on the copper atom in
the surface band of the semi-infinite Cu02 layer (the metal
phase).

Q a Q o
0 C30o0o
0o0o

0 Cu

0::o0o
2

5::.0o 0o
3: 4
6.0'a Q a

FIG. 5. The ideal CuO2 layer with a doubled cell.
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where

gz= —[e —4—
A,+2(1—cos2k a)]=1

+i X sign(E —Eo) X0 .

C. Results of calculations

We assume the perturbation potential on the topmost
Cu column to be alternating between two values 5 and—5

Vo&& 5& Vo&p 5~ VO3& 6& VO3p 5 (29)

The potentials on the surface oxygen atoms 2 and 4 are
supposed to be infinite. Thus, the matrix of the perturba-
tion potential describes in this case the change of the po-
tential due to the antiferromagnetic ordering on the top-
most copper column, as well as the breaking of chemical
bonds between the surface copper and nearest oxygen
atoms.

The value of the parameter 5 depends, in general, on
the Fermi-energy position and surface electrostatic po-
tential. The study of these dependencies represents a spe-
cial problem which is not of interest here. We want only
to illustrate results of an ordering combined with the
breaking of chemical bonds. For this purpose, we will
make use of the value 6=2 eV obtained in self-consistent
calculations carried out for the ideal dielectric Cu02 lay-

10

On the basis of the calculations performed, we have ob-
tained that, as in the case of the metal layer, the electron-
ic charge on the surface copper atoms increases, but this
growth for the state with the spin projection 1/2 difFers
from that found for the state with the spin projection—1/2. Thus, the increase in the charge on the surface
copper atoms is accompanied by the ordering of the spin
density. The number of oscillations within the definite en-
ergy interval increases with the distance of the column
from the topmost one, and, as a result, the change of the
charge on the copper atom rapidly vanishes with the dis-
tance.

Figure 6 represents the energy dispersion in the surface
bands obtained from the condition of vanishing of the
determinant D

V. AN INVESTIGATION OF SURFACE STATES
IN THE DIELECTRIC CuOq LAYER

A. The electronic structure
of the ideal dielectric layer

Figure 7 depicts the unit cell of the antiferromagnetic
Cu02 layer. The copper atoms 1 and 3, as well as 2 and 4,
are equal. The least-squares fitting of the results of band-
structure calculations by the tight-binding method has
shown that the Hartree-Fock energies of the d 2 2 levelx —y
on the copper atom and the p level on the oxygen atom
are close to each other

Kp
—Cd+nd U=CdHF (32)

where nd is the occupation number of the copper's d 2x —y
level. The value of E~, at U=7 eV and nd= 1/2, is 3.5
eV above cd. '

Under condition (32), the electronic spectrum can be
described analytically'

The lower degenerate branches in Fig. 6 are solutions of
Eq. (30). The basic functions ~01a) and ~03@) dominate in
these states. The upper branches correspond to the solu-
tion of Eq. (31). These states are made predominantly of
~01P) and ~03a) orbitals.

Thus, the antiferromagnetic ordering on the surface
leads to the splitting of the surface band (see Fig. 6). The
first new branch lies above the bulk's band, while the
second one lies under this band. There is a gap between
these two branches of about 2 eV. The surface conduc-
tivity cannot in this case be a consequence of doping due
to large splitting of the surface band.

We have studied the change of the total charge on the
copper atom vs the distance from the surface and ob-
tained it to be already saturated on the third column.
However, it does not mean that the change of the spin
density already vanishes there. The point is that the anti-
ferromagnetic ordering of electrons on the first column
initiates the same, but shifted, ordering in the next
column and so on. In principle, the depth of such order-
ing should be determined by a self-consistent method but
this laborious work is beyond the scope of the present ar-
ticle.

gal ~01 )g02 +g 01,02 ~01

( go~ Vo~p)g02 go~ Op O~p=
2

(30)

(31)

2m+6 6~vpA, —~k +p +m6 +U
4

where v=+1, p=+1, and k=+1,

1/2 ' 1/2

(33)

O.O 0.5

FICx. 6. The energy dispersion in surface bands of the metal-
lic semi-infinite Cu02 layer. The possible antiferromagnetic or-
dering on the surface is taken into account. The dashed area
corresponds to the bulk's band.

Q a ~ o Q a Q a
0 C3 C3 Cl

a a o a
CI 011 j20 qgS s 0 a 0 a

C3 Cl 0 0
(~+ Q (g+ 0 Q

FIG. 7. The unit cell of the antiferromagnetic CuO2 layer.
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1
w =4t, 5=—U(nd —

nd&) . (34) LXL& CONDUCTrON BAND

Here nd and ndf3 are the occupation numbers of thed» states with the spin projections a and p, respec-
x —y

tively,

v =4t (cosk„a+Xcosk a) (35)
i&XLL~ vALENGE BAND

@LLLLLLX&

1

Spectrum (33) possesses two gaps, widths of which are
equal and coincide with the value of the parameter 5. The
upper and lower bands have, predominantly, the charac-
ter of d states of Cu, while the central bands are mainly
made of the 2p states of the oxygen atoms. This picture is
consistent with spectroscopic experiments. '

I appar

FIG. 8. The energy dispersion of surface bands in the antifer-
romagnetic CuO~ layer. The (100) edge formed by Cu atoms
with (a) s, =1/2, VM= —1 eV, (b) s, =1/2, V = —2 eV, (c)
s, = —1/2, VM= —1 eV, (d) s, = —1/2, V~= —2 eV. The (100)
edge formed by 0 atoms with (e) V~

= 1 eV, (f) V~ =2 eV.

B. The GF of the ideal layer

g2=g4= — (w —E —E5)f (e),
W

g5=g6= — (w+5 —e )f (e)
2w

1 —cos(2k a)
8+i XO 3 —cos(2k a)

(36)

where

dk„f( )=
—~«e —v w +i Xsign p XO

2

e =1+ (e —2w —5 ),
w

(37)

p= (2E' —2w —5') .
W

The following analytical expression was obtained for the
universal function:

A general method of reducing the GF in the antiferro-
magnetic alternate lattice to universal functions was
developed in Ref. 18. In the present case, the result is

E
g, =g3 = — (w —E +E5)f(e),

w

the breaking of chemical bonds at the surface as well as
an additional potential on the surface atoms. We con-
sidered the case where a terminating column was made of
copper atoms as well as of oxygen atoms.

In ihe case that the copper atoms are topmost, the sur-
face bands can be determined from the following equa-
tions:

g 6( 1 g3 M ) +g 03,06 ~In

(40)

g5( 10 g2 VM )+g 02, 05~M

Each of Eqs. (40) corresponds to a distinct spin projec-
tion, VM is the additional potential on the surface copper
atoms. When writing these equations, we took into ac-
count only the nearest-neighbor scattering.

The solutions of Eqs. (40) are given in Fig. 8. These
solutions appear in the forbidden gap mainly as a result
of the breaking of chemical bonds, and, consequently,
they exist even at VM=O. Deepening the potential has
no effect on one of the branches but the other one de-
creases in energy. The states obtained have a donor char-
acter.

In the case where the edge is made of the oxygen
atoms, the equality D =0 reduces to

2 (h +c)
hc(hc +b)' (38)

g i(1—g5 &, )+go5, 0i ~, =o

g4(1 —
g6 1;)+go6,04'; =o (41)

where

h'=4lel+(1+C„)', b =4lel —(1—C.'),
c =4IeI+(1—C )

Nondiagonal elements of the CxF can be found from the
approximate relations

where V is the additional potential on the surface oxy-
gen atoms. Equations (41) possess a solution if only
V )0. Figure 8 shows the dependence of these solutions
on the wave vector and Vz. From this figure we notice
that the obtained states have an acceptor nature. The
densities of states in all the surface bands have peculiari-
ties typical of one-dimensional systems. Similar results
have been obtained for the (110)edge.

g02, 05 g2 ~

E
g05, 01 g1

(39) VI. THE POTENTIAL ON SURFACE ATOMS

g 0306 g 3 ~ g0604 g4
E,

' E

We checked these connections numerically and found
them to have reasonable precision. We took into account

A. A theory

As above, let us break the crystal up into slabs being
parallel with the surface. Then, the potential at the sur-
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face can be expressed as the sum over the slabs

N(x, y, z) =egq;J. 'Fix +x.,y +y. ,z +z;.),
EJ

(42)

where q;- is the charge of the jth atom in the unit cell of
the ith slab, x.,y, z," are the coordinates of this atom,
and e is the electron charge. A plane sublattice contrib-
utes to the potential as follows:

vector in the slab's plane, and V(z) is the potential of
compensating (uniformly distributed) charges in the slab.
Entering the last potential is necessary to eliminate the
average electrostatic field.

By analogy with the three-dimensional 0 transforma-
tion of Ewald, we readily obtain for the two-dimensional
systems

%(r,z) =g' + V(z) .1

~
r +1~'+z' (43) g exp( —e ~r —

l~ )=
I

g exp igr-~ g
eS g 4E

(44)

Here r =—(x,y), the prime on the sum denotes the absence
of the self-interaction of the charges, l is the translation

where S is the area of the cell in the ordinary space. By
making use of this transformation, we have found

%(r,z)= —pe' "—e' erfc +zA. +e '~erfc —zA,;,1, g —z g
S ~0 g 2X 2i,

erfc(AR )

RWO

2i, 2'
5,05„0+ z erfc(kz) — e (45)

The value of the parameter A, must be chosen on the basis
of the rapid convergence of both sums (in the ordinary
and reciprocal spaces). We have found the value of 0.45
A ' to be satisfying with this condition.

It should be noted that the method in use can be con-
venient for the evaluation not only of the potential, but of
the electrostatic field and the energies of different extend-
ed defects as well. The electrostatic energy can be ex-
pressed as

A'= —gq (@ —@ ),=1 (46)
a

where N, N are the electrostatic potentials on the bulk
and surface sites, respectively. Sum (46) rapidly con-
verges. Thus, this method gives a convenient mode for
evaluating electrostatic energies of twins, grain boun-
daries, etc. This energy is known to be a major part of the
total energy of systems consisting of charged particles.

The method described allows one to calculate the po-
tentials for a crystal lying on a substrate. It is evident
that the results depend on which layer is terminating in
the substrate.

B. Results of calculations

By way of illustration, let us consider the difference be-
tween the potentials in bulk and on different surfaces of
LazCu04. Let us suppose that the Cu02 layer terminates
the (001) surface. In this case, we have found that the
value of the perturbation potential on the surface copper
atom equals —2.3 eV. The potential on the surface oxy-
gen atom is relatively small ( —0.3 eV). It follows from
these data that, if the CuOz layer is topmost, the elec-
tronic charge on the surface copper atom is greater than
in bulk. The opposite situation occurs if the LaO/CuO2
sequence of layers is terminating. In this event, the po-
tential on the surface oxygen atoms is relatively large
(2.25 eV) and has the positive sign. Thus, the electronic

charge on the surface oxygen atoms would be lower than
in bulk.

Apparently, both these two surfaces are not suitable
for La&Cu04 due to comparatively large potentials on
surface atoms. The surface LaO/LaO appears to be more
attractive in this connection. The potentials on the sur-
face La ( —0.5 eV) and 0 (0.7 eV) atoms are not so large in
this case. Note that this surface is usually not conduc-
tive. Thus, one can expect that the free surface of
La2CuO~ is LaO/LaO. It is interesting to note that in all
the described cases the perturbation potential sharply de-
creases with the distance.

In contrast with this, we have found that the values of
the potentials on atoms of the (100) surface are too high.
Moreover, the potentials on the second and even third
layer are large as well, but signs of these potentials alter-
nate. For example, the potential on the surface Cu atom
equals 3.7 eV, while it has the value of —3.0 eV on the
second layer. It can give rise to dielectric properties of
the surface. Another possible consequence could be re-
structuring of the surface.

The last example is the (110) surface. In this case, if
the top of the crystal is made of La, Cu, and 0 atoms, the
potential on the surface Cu atom has the large negative
value ( —4.3 eV), while the potential on the O(1) atom has
the large positive value (4.1 eV). The surface formed by
O(2) atoms seems to be more suitable in this case. The
potential on the surface oxygen site equals 2.7 eV, while
the potential on the copper site in the second layer is—1.5 eV.

We have additionally calculated the dependence of the
slab's potential on the distance and found it to be sharply
decreasing. It implies that the surface electrostatic po-
tential is very sensitive to the geometry of the surface
and, as a consequence, can be explored for searching the
best atomic positions. However, in this case, the short-
range forces have to be taken into account.

Another possible application of the method described
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is as follows. When growing thin films, there is a need to
know which layer terminates the film. This is, for exam-
ple, important for the Josephson-junction construc-
tion. The choice of the best surface layer, under the
condition that relaxation is small, can be based on the
minimization of the surface electrostatic energy. Making
use of this approach led us to the conclusion that the
LaO/LaO/CuOz sequence of layers terminates the free
(001) surface of La2CuO&.

Finally, the knowledge of the surface potentials is
necessary to determine surface band positions as well as
charges on surface atomic sites. For example, we have
found that, if the Cu02 layer terminates the (001) surface,
the electronic charge on the surface Cu site increases
while, if the LaO layer is topmost, the electronic charge
on the surface oxygen site decreases.

UII. CONCLUSIONS

In the present paper we have constructed the simple
qualitative model permitting us to elucidate the little un-
derstood problem of describing the electronic structure of
surfaces of layered copper oxides. We have built the GF
of electrons, found the energy dispersion in bands of sur-
face states, obtained the density of electron states in the
surface layer, and calculated the potentials on difFerent
surfaces of La2Cu04. The use of the simplified tight-
binding model has made it possible to derive many ex-
pressions in an analytical form. We hope the results to be
further checked and developed with more precise
methods and experiments.
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