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Coherence efFects in a normal-metal —insulator —superconductor junction
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Coherence effects arising due to Andreev reflections in a superconductor —insulator —normal-metal
junction are considered. It is shown that in the absence of electron-electron interaction in the metal at
low temperatures, the electrical potential drop on the insulator IDRI, caused by the current density Io
through the junction, vanishes, although the resistance of the device R measured by the two-probe
method can be large. The electron-electron interaction determines the zero-temperature value of RI.
The implications of these effects for the theory of the superconductor —normal-metal —superconductor
junction are discussed.

Recent experiments on superconductor —insulator—
normal-metal (SIN) junctions with high transmission
coefticient of the insulator' revived interest in this area.
The resistance of a SIN junction at high temperature is
determined by one-particle tunneling through the insula-
tor. ' In this paper, we consider the resistance of the
SIN junction at low temperatures T « b, ~, when quasi-
particles with energies e« 6 cannot tunnel from the
metal into the superconductor. Here

~
b,

~
is the supercon-

ducting gap. In this case, the resistance of the system is
determined by the tunneling of electron pairs, which is
known as the Andreev reAection. This reAection gives
rise to a coherence between electrons and holes inside the
metal. As a result, at low T, in the absence of electron-
electron interaction in the metal, the resistance of the
SIN junction R turns out to be proportional to t
rather than t, which naively might be expected. Here
t = tov+, to, and v~ are the insulator transmission
coefFicient, the dimensionless transmission coefFicient, and
Fermi velocity, respectively.

At small temperatures T, when I «g, LT, the coher-
ence between electrons and holes, arising in the metal due
to the Andreev reAection, extends over distances of the
order of LT ))l. Here LT=&D/T and g are the coher-
ence lengths of the normal metal and the superconductor,
respectively, D =

—,
' vol is the electron diffusion coefficient,

and l is the elastic mean free path. In this case, electron
wave packets which carry current in the metal are
coherent superpositions of electron and hole wave func-
tions. The minimum size of the packets is of the order of
I.T))l. The effects considered below are related to the
fact that the electrochemical potential cannot change
significantly over distances smaller than the typical size
of the packets I T. It is interesting that at small T, the
effective charge of the packets turns out to be much
smaller than the electron charge [see the discussion after
Eq. (19)]. This is very different from the situation in the
bulk of the metal, where the minimum size of the packets

is less than l and their effective charge equals the electron
charge.

The question arises: How does the nonequilibrium elec-
tric charge distribution induced by the current through
the junction reAect the fact that the minimum size of the
electron packets is large and their effective charge is
small? We show below that the electrical potential drop
across the junction is inversely proportional to t but takes
place in the metal far from the SN boundary. This is
different from the case of the normal-metal—
insulator —normal-metal junction (NIN), where the elec-
trical potential drop takes place right on the insulator.
As a consequence, the resistance of the NIS junction cru-
cially depends on the way the resistance is measured. At
low temperature, in the absence of the electron-electron
interaction in the metal, the quantity Rt=[e(+0)]/I,
goes to zero although the resistance of the system mea-
sured by the two-probe method R -t ' can be large.
Here Io is the current through the junction and @(+0)is
the electrical potential drop across the junction.

It turns out that in this situation the electron-electron
repulsive interaction in the metal determines the low-
temperature value of RI.

I. KINEMATIC SCHEME FOR DISORDERED
SUPERCONDUCTOR S

The conventional Boltzmann equation cannot be used
for the description of the effects mentioned above because
they arise at 1 «LT,' g. The set of equations describing
kinetic phenomena in superconductors in this case were
derived in. " We will use the Keldysh diagram tech-
nique' for the matrix form of Green's functions

C~(e, r, r') Cz(E, r, r') '

0 C~ (e, r, r')
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Here 6„;C~; Cz are advanced, retarded, and Keldysh
Green's function matrices in the Numbu space, ' ' the
index i stands for A, R, or E, G and F stand for normal
and anomalous Green's functions,

6, (e, r, r') F;(e,r, r')

F,+( er, r') 6;(E,r, r')

6 = i 8(t—, t—)( [%'( l l, %+(2)] ),
6 ~=i8(t, t, )—( [0(1),%+(2)]+),
F~i = i8—(t, —t, )([%(1),%(2)]+),
6 = i (—[%(1),4+(2) ] ),
F =i([e+(I),e+(2)] ),

and %(t, r') is the electron field operator. Here the brack-
ets ( ) stand for both quantum mechanical averaging
and for averaging over the random potential realizations,
and the brackets [ ]+ stand for commutators and an-
ticommutators, respectively.

The equation for 6 averaged over realizations of the
elastic scattering potential is given by the diagrams
shown in Fig. 1, where thin solid lines correspond to un-
perturbed electron Green's functions, thick solid lines
correspond to averaged over realizations of random po-
tential Green's functions in the presence of electron-
electron interaction, the vertex corresponds to the
electron-electron interaction constant cx, dashed lines cor-
respond to the correlation function of the elastic scatter-
ing potential (u(r)u(r')) =(I/bravo)5(r r'), v—o is the

I

FIG. 1. The diagram equation for Careen's functions.

Here U is the volume of the sample, p is the chemical
potential in the metal, and g =p /2m —p. We use the
symbol g; to represent the elements of g.

In this approximation one can find a solution of the
equations in Fig. 1 in the form

gz (e, R) =g„(e, R)f(e, R)—f(e,R)g„(e,R) . (4)

Here f(e, R) = f(e, R)I+f i(e, R)r, is the generalized
quasiparticle distribution function of the superconductor,
z, is the Pauli matrix, and I is the unit matrix.

And, finally, the complete set of equations for the sta-
tionary situation consists of the Usadel equations

density of states in the normal metal on the Fermi sur-
face, and ~ is the electron elastic mean free time. We use
the standard technique of averaging over the random
scattering potential. '

In the di6'usion approximation, when all the quantities
change on the spatial scale much larger than I, it is useful
to introduce Green's functions g integrated over g and
averaged over n, where n is the unit vector parallel to
p~

g =i/uvof dg drdn G(e;R+r/2;R —r/2)

X exp( —ipr) .

D/2[g (e, R)(BR—2ie A) F, (e, R)—F, (e, R)BRg (e,R)]= ie+ . Fi +id—g (e, R),
+in

D/2[g (e, R)(BR+2ie A) F2 (e, R)—F2 (e, R)BRg (e,R)]= ie+ Fz +—ib, *g (e,R),R

1Q

and the equations for the two distribution functions f
and f, ,

D /4B R[ II, ( e, R)B Rf ( e, R) +J( e, R )f, ( e, R ) ]=I i (f),
(6)

D/48R[112(e, R)BRf, (e,R)+J(e,R)f(e, R)]=I2 (f, ) .

11i(e, R)=2+2lg'(e, R) I' —IF i (e, R) I' —IF2 (e, R)I',
11,(e, R)=2+ Ig'(e, R)l'+ IFi «, R&I'+ IF2 «, R&I', (»

J(e, R) = —2 Im[F, (BR+2ie A)F2
—F2 (BR—2ie A)F i ] .

g and F are defined as elements of the matrix

g (e,R) F, (e, R)

F2 (e, R) —g (e, R—)

~;„ is the inelastic electron mean free time, A is the vec-

6=af deg~, 2~(e, R)

= fde(F, F2 )f (F, +F—
2 )f, , —

4= f de Trg (R,e)= f def, (R, e)v(R, e),

j =Dv f deTr[r (g BRg +g BRg")},

j„=Dvof deII2(e, R)BRf, (e,R),

j, =Dvof deJ(e, R)f(R, e) . (12)

Here j„and j, are normal and superconducting com-
ponents of the current, v(R, e) =voReg (R,e) is the one-
particle density of states, @(R)=eg(R)+B,y(R, t) is the

l

tor potential of the magnetic field, and I
&

and
(f, ) —f, /r;„are electron-phonon collision integrals.

The self-consistency equation for the order parameter
6, the electroneutrality condition, and the expression for
current j=j„+j, have the forms
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x+L,
if x+L, ((L,——&2(1 i —)

2 L,
~L,

0(e,x ) =, (1+i )exp —(1 i—)
4L, L,

' 1/2

if L, «L,

2 —1
4 v'a+1

x
exp —(1—i ) L, ifL, «x .

(19)

Here, L, =D/t is assumed to be much smaller than
L;„=+Dr;„, L,=+D /e At. x &)L;„, Eq. (19) acquires

the additional factor exp( —x/L;„). The main feature of
Eq. (19) is that in the normal metal, at small e and small
distances from the boundary, 0(e,x ) and, consequently,

g (e,x ) and F, (e,x ), have the same values as in the bulk
of the superconductor. In particular, it means that at
small energy, v(e, x ) is close to zero, provided x & L, . As
has been mentioned above, it follows from Eq. (10) that
the effective charge which connects 4& and f, (e) is zero at
@=0. The value of g(e, x ) approaches zero at large e and
x, which means that the values of g (e,x ) and F& (e,x)
are close to their normal-metal value.

Substituting the solution of this equation into Eq. (6)
and using the boundary conditions of Eq. (17), we get the
expression for the spatial distribution of N(x) [we assume
that inside superconductor @(x & 0)=0],

Io
@(x)0)= f cos8, (e,x )cosh82(e, x )e),tan(e/2kT)

O D
—oo

X ~

L, X 1

cosh82(e, x =0+ )cosh82(E, x =0)—cos[8,(e,x =0+ ) —8,(e,x =0 )] 0 cosh 02(e, x') dx

(20)

Here Io is a current density through the junction and
o.D is the Drude conductivity.

Using Eqs. (19) and (20), we get the expression for the
resistance of the insulator per unit area of the junction
Ri =C&(x =+0)/Io,

(21)

N(x &0)
Io

(2L, +x )x
Rr+ if x «LT

o~ LT

R +-
OD

2

1 —P
x

if L,„»x»LT .

(22)

Here a =4(1—V2)7r 'r
g( —'), p is a constant of order

Here R =(tvo) ' is the resistance of the insulator per
unit area of the junction in the case of the metal-
insulator-metal (NIN) junction; g(x) is the g function,
and y is a coefficient of the order of unity, which is equal
to 4(1 v'2)vr 'r

g( ,' —) at Lr &—)L, and to
2'r'(I —&2)~ 'r'g( —,') at LT «L, .

Depending on the ratio between L, and LT, we have
different regimes. Let us start with the case of low tem-
peratures, when L, «LT «L;„. In this case, following
Eq. (21), Rz «R and Rz approaches zero at small T.

In this case, following Eqs. (19) and (20), the spatial
distribution of N(x) has the form

of unity, and R is the value of the insulator resistance
which can be extracted from the asymptotic behavior of
C&(x) at large x. The curves 1 and 3 in Fig. 2(a) show the
qualitative picture of the spatial distribution @(x) in the
SIN junction at LT»L, and the NIN junction, respec-
tively. Using Eq. (18) and the fact that the effective
diffusion coefficient in Eq. (16) for f, differs from D by
the factor cosh 02, which is of the order of unity at
0&x &LT, we get R —R -LT/o. D. In the case of the
SN junction, such an estimate has been made in Ref. 16.
The above-considered distribution C&(x) can be measured
using four-probe measurements. We assume that the
probes have a short phase memory time and electron
coherence effects in the probes can be neglected.

It is interesting that the electric field is expelled out of
the region of the size LT near the NIS boundary. This is
in qualitative agreement with Ref. 17, where it was
shown that the local conductivity near the NS boundary
diverges at small T. On large distances from the bound-
ary x »LT, the electrical field E(x)=3 4(x) ap-
proaches the bulk value Eo =Io/o D. The corrections to
the electric field in the metal Eo E(x)-EOLT lx—, aris-
ing due to the NIS boundary, survive on distances up to
L,„»x»LT.

At high temperatures L, ))LT (but still T « b, ), it fol-
lows from Eq. (20) that Rz &)R. In this case, the electric
field E(x) in the metal region is close to Eo while the;

corrections to Eo in the metal due to the presence of the
superconductor survive over distances which are smaller
than L;„(but can be much larger than LT). Curve 2 in
Fig. 2(a) qualitatively shows @(x) in this case.

Using Eqs. (19) and (20) in the case L;„)L, )LT, we

get
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+Lz L,
&

Ln if L& «x
8 L,~ x

T « b,z(x): RI does not approach zero at small tem-
peratures. In this case, Eq. (15) has the form

Eo E(x—)

Eo

L
if L,„&x»L~ (23)

—8 8(e,x )+ ieD
X

1
sing(e, x ) = b,~cos8(e, x ) . (25)

x-exp
Lin

if x »L;„.

2m' Lz- x if L «x «I;„

In the case L, ))L;„)&Lz-,we have

Here b,&(x)=b,(x &0) is the order parameter in the
metallic region. Using Eqs. (9) and (15) we can estimate
it lb~(x)l —la~ID/L, x at x &&L,. Here 0&a~& —1 is
the interaction constant in the metal. It follows from
Eqs. (25) and (17) that

Eo —E(x)
L

L
exp

x
Lin

if x &)L;„.
(24) 0(e=O, x =0)——— -+~a~~

2 L~
(26)

In the case considered above, one can calculate both
the two-probe resistance of the junction' and the distri-
bution of the electric field in the metal using the pertur-
bation theory with respect to t.

Let us now turn to the case of the junction geometry
shown in Fig. 2(b). We will assume that L, »L and at
T& T, the resistance of the normal-metal —insulator—
normal-metal junction R& =4 (x = ~ )/Io is determined
by the resistance of the insulator R —(tvo) '. Here T, is
the critical temperature of the superconductor. In this
case, at low temperature Lz&)L, the solution of Eqs.
(15) and (16) reproduces the result obtained in Refs. 5, 6,
and 19, namely, the resistance of the SIN junction
R =C&(x = ~ )/Io is of the order of R(R —R „
-R~ —R -L/o. D). One can see it from the fact that
at low temperatures, Eq. (16) for f, and the boundary
conditions Eq. (17) differ from the corresponding equa-
tions for the NIN junction by the factors cosh 02, which
are of the order of unity. Following Eq. (10), this means
that at x »Lz the value of N(x) is of the same order as
in the case of the NIN junction. On the other hand, the
"resistance of the insulator" RI =@(+0)/Io is given by
the same formula Eq. (21) as in the above-considered
one-dimensional case. In particular, it vanishes at small
T. The spatial distribution of 4(x &0) in this case js
shown qualitatively in Fig. 2(b), curve 1. The nontrivial
feature of the spatial distribution @(x) in this case is that
the voltage drop takes place far away from the insulator
on the distance that is even larger than L. This is very
different from the NIN case where the main voltage drop
takes place on the insulator and there is no @(x) depen-
dence at x &)L. Curve 3 in this figure corresponds to
4&(x) in the case of the NIN junction.

Following Eq. (21), at L, »Lz- the resistance of the
system exceeds significantly the resistance R of the corre-
sponding NIN junction.

B. The case of repulsive electron-electron
interaction in the metal

The repulsive electron-electron interaction in the metal
changes the above-presented results at small

and v(e=O, x =0)-voL, /L~. This is different from the
case without interaction when g(0, 0) =m. /2 and
v(0, 0)=0.

Using Eqs. (18) and (26) in the limit L z- »L„
Lz=QD/~b~(L, )~, we have

L,RI(T=O)-R -R+~a~~ . (27)

Electric field is expelled from the metal region of the
size of the order of L & near the NS surface. Since
RI —+~a~ ~, Eq. (27) provides a way to measure interac-
tion constants in metals. Curves 4 in Figs. 2(a) and 2(b)
represent C&(x) at small T in the presence of the electron-
electron interaction.

It is also worth mentioning that, according to Eq. (6),
in the presence of repulsive interaction, the supercurrent
penetrates into the normal metal over the region Lz.
The penetration of the supercurrent into normal metal
does not significantly affect our results at high tempera-
tures T » ~A~(L, )~. At T && ~b, z(L, )~, it can change the
results for RI by a factor of the order of unity. However,
since

~ az ~

& 1, in the mean-field approximation the
electron-electron interaction cannot change results for
R significantly.

We would also like to mention that the mean-field
description of electron-electron interaction in the metal
may not capture all essential features of the effect. The
effect of macroscopic quantum tunneling similar to that
considered in the SNS junction can contribute
significantly in the destruction of the electron-hole coher-
ence in the metal and thereby can change the results for
SIN junction resistance.

The above-considered dependence C&(x)can be mea-
sured, for example, with the help of an additional tunnel-
ing junction "c" [see Fig. 2(a)]. We assume that the tun-
neling transmission coefficient t' of the NIN junction is
small and L, ))Lz-, but still L, «L, . In this case, the
normal metal X' is in the high-temperature regime and
we can neglect proximity effects in N' metal. Using the
high-temperature expansion, similar to what we have
done above, we arrive at the conclusion that the "x"
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dependence of the current I, through the "c" junction
follows the corresponding dependence C&(x),

I, =t'voC&(x) . (28)

On the other hand, at high enough temperatures
I, )&LT)&L„ the conductance of the c junction G, is
significantly suppressed due to small density of states in
the "X"normal metal. As a result, the four-probe mea-
surements (the measurements of the voltage which has to
be applied to the c contact to make the total current
through the contact be zero) will not show the significant
suppression of 4(x) near the SIN boundary.

III. NONLINEAR EFFECTS
AND MAGNETIC-FIELD DEPENDENCE

OF THE RESISTANCE

L,
(29)

Magnetic field destroys the electron-hole coherence and
increases the resistance of the system considered above.
This is in agreement with the theoretical results obtained

Nonlinearity in external electric field destroys the
electron-hole coherence and increases the resistance of
the system considered above. As a result, Rt(V) and
R„(V) have sharp minimums at V=O. If L~ &&LT we
have

in Refs. 5 and 6 as well as with the experiment in Ref. 1,
where such a minimum in R (V) and its magnetic-field
sensitivity were observed. To get the expressions for the
magnetoresistance in the case LT »L~ one can substi-
tute Lz- for LH in the formulas presented above. Here
LB is the magnetic length.

Let us consider now the following question: Can we
measure the minimum in e dependence of the density of
states v(e) at e=O [see Eqs. (14), (19), and (26) using an
additional tunneling NIN junction C in Fig. 2(a)? It has
been noted that in the case Lv «L, we can use the per-
turbation theory with respect to t' and I-V characteris-
tics of the NIN' junction directly reAect the minimum in
v(e). In particular, dI/dV goes to zero at small V. Here
t' is the transmission coeKcient of the NIN junction.
We assume that X and X' metals have the same diffusion
constants. On the other hand, as has been shown above,
in the case of low temperatures L„L, «LT, the resis-
tance of the NIN' junction is relatively small and of the
order of (t'vo)
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