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SU(2) coherent-state path integral for the Heisenberg ferromagnet
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The SU(2) coherent-state path-integral representation is used to derive a fairly explicit expression

for the partition function Zp [@]of noninteracting quantum spins in the presence of an arbitrary time-

dependent external field 1b. By performing then the standard Gaussian average of Zp [1b] over Q the
partition function of the ferromagnetically coupled Heisenberg model is represented in a way which
allows one to simplify the derivation of results such as obtained by Leibler and Orland [Ann. Phys.
(N.Y.) 132, 277 (1981)] and to generalize them to arbitrary spin quantum number.

I. INTR.ODUCTION

Consider the quantum Heisenberg Hamiltonian

Heisenberg ferromagnet, one has to calculate the parti-
tion function Z = tr e ~ . By interchanging the trace
operator with the functional integration one obtains

Z = Dgexp —— d~) (J );,Q;(r) g~(r)

where the spin operators S; are SV(2) generators of di-
mension 2S+ 1. The exchange constants J,z between the
spins at (lattice) sites i and j are assumed to fulfil J;s & 0
and J~~ = 0, corresponding to purely ferromagnetic cou-
pling.

Following, e.g. , Ref. 1 it is possible to represent the
statistical operator e ~ of the Hamiltonian H at in-
verse temperature P & 0 as a suitable normalized Gaus-
sian average over a "time"-dependent real-valued field

Q = (g, (~)) (t' =- l, 2, . . . ;
7. C [0,P]) of the statistical

operator pp[@] of noninteracting spins experiencing g as
an external field:

(1
Dg exp

]

—— d~
2

x) (J ') s&'(r) &~(r) pO[&l

(2)

Before proceeding, three remarks are in order. First, in
Eq. (2) T denotes the time-ordering symbol. It is nec-
essary to include, because the operator sum in the ex-
ponent does not commute for diferent values of w. Sec-
ond, strictly speaking, one should require the symmetric
matrix (J,z. ) to be positive definite. Otherwise the func-
tional integral (1) can only be understood in a formal
way. Finally, it should be noted that no periodic bound-

ary conditions are imposed on the field g. Instead, the
pair of random vectors v/r, (0) and @,(P) are (stochasti-
cally) independent for all sites i.

In order to derive the equilibrium properties of the

x Zo [vt)),

where

Z [~l = t [~]. (4)

At this stage it would be desirable to derive a fairly ex-
plicit closed-form expression for the unperturbed parti-
tion functional Zo[g]. As is well known, e.g. , Ref. 1,
such an expression is easily available for the Ising model,
whereas for the Heisenberg model the noncommutativity
of the components of S; poses a severe problem.

To overcome this problem, I eibler and Orland de-
veloped for S = 1/2 a perturbative technique based
on a representation of the spins in terms of bosons or
fermions. In doing so, they succeeded in deriving from
(3) a systematic expansion around the stationary mean
field, that is, the stationary solution of the saddle-point
equation for the functional integral. The major drawback
of this approach is that the total number of bosons (or
fermions) has to be kept fixed to 1, a fact which is rather
inconvenient in calculations. For higher spin quantum
numbers the constraint is even more complicated.

As for nonperturbative approaches, one could think
to compute first the operator pp[1b] by some disentan-
gling formula of the Baker-Campbell-HausdorfF or the
Wei-Norman type ' and then take the trace. However,
as is well known, ' it seems to be hopelessly compli-
cated to find unambiguous and explicit solutions to the
differential equations posed by the disentangling prob-
lem. On the other hand, since we are only interested in
the reduced information contained in the trace of pp[@],
one may hope to proceed in another way. For example,
by representing the spin operators in terms of bosons
(or fermions) one is in principle able to write Zo[vj] as a
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bosonic (or fermionic) coherent-state path integral. How-
ever, the I.agrange multipliers being necessary in this ap-
proach for fixing the spin quantum number at each lattice
site give rise to unphysical diagrams in the computation
of Z and, in particular, obscure its mean-field expansion.

In such a situation it is natural to ask whether one can
make progress by using the SU(2) coherent-state path in-
tegral to compute the unperturbed partition functional

Zp[g] in a fairly explicit way. After all, by their very
consruction, SV(2) coherent states are best adapted to
spin systems. It is the main goal of this paper to show
that one can indeed make progress in the computation of
Z by using the SU(2) coherent-state path-integral rep-

]

resentation of Zp[g]. As a consequence, it is possible to
simplify the derivation of results obtained in Ref. 1 and
generalize them to arbitrary spin quantum number by
using a minimal number of basic variables.

II. SU(2) PATH INTEGRAL FOR
NONINTERACTING SPINS

The partition function (4) of noninteracting spins in
an external fiuctuating field @(t) can be represented by
the SU(2) path integral

Zp[@] =
(p) =~'(p)

P
+S

p 1

i O.i O.i O.i
1+ l~'I'l

Dps(n;) exp
I

S

+ l~'I' o 1+ l~'I'

f3

1+ l~'I') ' (5)

Dps (n)—: 2S+ 1

(1+ l~l')'

Representation (5) is well known in the literature; for
details the reader is referred to the comprehensive review
paper by Kuratsuji. The different and important point
is that this integral can be evaluated by the change

where we have put @ = @ + i,@„, @ = Q —i,g„, and
/&Pl = Q, . The functional measure in Eq. (5) is formally
defined as an infinite pointwise product of the SU(2) in-
variant measures,

To avoid a possible confusion the following remark is in
order. Due to the Euclidean character of the action in
Eq. (5) dynamical variables z(r) and z(7) are related to
each other by the so-called canonical conjugation rather
than by ordinary complex conjugation. What is impor-
tant is that under this conjugation the time derivative
changes its sign.

The partition function thus becomes

Z = D expA

u(~)~(r) + v(~)
Q 'r —v(~) ~(~) + u(~)

'
A[ate] = ——) dry/7, (7.)J, g, (r) +- 1nZp[g] . . (10)

where

The result is

sinh(S + 2) j d7.0;(7).
InZp[g] = ln

sinh 2 j drA;(7. )

where

~*(~) = @,'"(~) + -&'(r)z'(~) + -@*(&)z'(r)

and the functions z = v/u and z = 6/u depend upon @
via the Riccati differential equations

I

——&'"
I
z —(&/2)z'+ @/2 = o z(o) = z(&) (7)

(d7.

I

—+O'"
I

+(4/2) ' —0/2 = o (o) = (P) (8)
d

(dr )

Representation (9) and (10) is a result which has not
been stated earlier to our knowledge. In the case of the
Ising model (Q = @ = 0) the only solutions to Eqs. (7)
and (8) are z = z = 0. Equation (6) then reads

sinh(S+ -) j d7.$,~ 1(7.)
lnZp[g] = ln

sinh —,
' j dr/, (r)

which being inserted into (9) results in the Ising-model
partition function. ' For the general case of the Heisen-
berg model Eqs. (7) and (8) cannot be solved explicitly.
Nevertheless, the representation (9) and (10) in combi-
nation with (7) and (8) turns out to be a convenient
starting point to generate the mean-field spin diagram-
matic technique introduced by Izyumov, Kassan-ogly,
and Skryabin in the operator formalism. The latter
is based on the Wick theorem for spin operators; how-
ever, it differs from the conventional Wick theorem for
bosonic (fermionic) operators and results in more com-
plicated diagrams. It is therefore of interest to develop
an independent approach not based on operators. We
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present here a direct path-integral formulation of the
spin-diagrammatic technique. This representation can
also be used to describe the system in the critical region,
with @ being the order parameter.

In deriving (12) one should keep in mind that

b lnZO b lnZO b lnZO b lnZO

~4~4' o

III. MEAN-FIELD THEORY

To begin with, let us note that Eqs. (7) and (8) imply

2 —1——ln(1 +
~

z ~') = —(@z —gz).
ci7 2

This allows one to rewrite 0 in the nonsymmetrical form

fl'( ) = @.' '( ) + O'( ).'( )

In what follows, it is therefore sufBcient to use only the
first equation (7).

I et the stationary mean field @ ~0= 4 be chosen in the
z direction: 4; = (0, 0, 4;). The saddle-point equation

bA

b&. (&) ~

(the subscript ~o denotes a quantity at the stationary
point) reads

4 = Jo b(P4),

where b(x)—:SBs(Sx) and

t' » (&s(*) =—
~

1+ 2S) (, 2S) 2S 2S

is the Brillouin function. To derive {11),we have put
Jo—:P~ J;i and 4', = 4 assuining translation invariance

for the system Exp.anding Q[@) around cp up
second order, one is led to (r) = g —@ ~o)

which follows &om Eq. (7). One can also convince oneself
that

( d i 8z(r) 1= ——b', b(~ —~),
(,d7.

y b@i(cr) o 2 "
bz, (r = 0) bz, (~ = p)

~@' (~) & b&'(~)

which results in

bz;(r)K;,. (7- —o.) = 2

= (i;, exp[4(~ —o.)] (n@8(7—o).
+(1+n@)8(o—7) j.,

where n@ = (e~ —1) is the Bose function. Note that

b(PC )K~ (7 —(r) = —(TS,. (~)S+((r))0 =—G( )„(r—o ~4)
1

represents the transverse temperature Green function for
noninteracting spins with H = Ho ——4g S, The(z)

factor 1/2 is related to the spin norinalization chosen.
Turning back to Eq. (14), one finds

(J. „)',( — ) = J, 'b( — ) —G,', '„( — ~4). (16)

In the energy-momentum representation this reads

1 P
Z —exp(A[4'] j Dr) exp ——) drdo r); (r)(o)

u
J(q

~em;tr(~ra~ V) =
1 —J(qg G„(i~„)

(17)

x(J,~'. ,„);,(r, o)rI( )(o)
p--)

2
««n'(~)(~~', .„)',(~ ~)n, (~)), (»)

= J; 'b(7. —o) —b'(p4)b;~,

the effective inverse longitudinal and transverse interac-
tions being given by

b2lnZO(J.a i.)V(r ~) = J;, ~(& —~) — (,) (,)~4, '(~)b4, (~) o

In view of Eq. (16), the Dyson equation for the whole
propagator

G~, ——G„+G„Jg.t,G„(o) (o) (o)

gives [GI,)(iu ) = b/(iu + 4); w = 27m/P]

Gtr (~~~ ~ &) =(o) . b(P@)
Cq + MO~

where

e~ = b(PO) [J(0) —J(q)]

b2lnZ(J,~t, );~ (r, o) = J, 8(7. —(.r) —2
~&'(&)~&'(~) o

= J;. h(r —(r) —26(P@)
' . (14)

Sz, {~)
h ~(r

is the temperature-dependent energy of the spin wave
excitation.

The path integral (12) is easily calculated to yield the
contribution to the partition function coming &om the
Gaussion fluctuations around the mean field. Denoting
by b' the derivative of 6, the result can be written as
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1PF—:—1nZ = —A[4] + —lndet(J J,&i„) + lndet(J J,&.„)
C sinh(S+ 1/2)p@ 1 ). ,

) ( ) - »nh 2 [1 —J(q)/Jo]

As it should do, it coincides at S = 1/2 with the result
of Ref. 1.

One of the advantages of the representation (9) and
(10) is that it gives in principle the spin-correlation func-
tions by taking appropriate functional derivatives of Zo.
In view of Eq. (6), these derivatives are calculated ex-
plicitly in terms of the functional derivatives of the so-
lution of the Riccati Eq. (7). In the incan-field approx-
imation the latter derivative appears as multiple prod-
ucts of Green functions of a linear erst-order differential
equation. Higher-order derivatives can then be expressed
through those of lower order. For illustration the sponta-
neous magnetization and the transverse Green function
will be derived below.

In principle, the antiferromagnetic case could be ex-
amined along similar lines, provided the spins on one of
the sublattices are canonically transformed to

IV. SPONTANEOUS MAGNETIZATION

Spontaneous magnetization is given by

D e"~&jS' o.
(~;(~)) = - „(~)

—= ((~;(~l@)))

where

(20)

.
(

& (4') b0,'"( )
(21)

(S*(a)) = ((6, + ) b; d74;(v) * — ), (22)
bz, (7)

o

is an average spin in an external 6eld @ in the absence of
spin-spin interaction. A direct calculation yields

6;—:6 d7(g, +zQ, )
0

In this case it would be of particular interest to examine
wether the representation (9) could be adjusted to study
nonperturbative effects in antiferomagnets, e.g. , the dif-
ference between integer and half-integer spins found by
Haldane in one dimension.

In order to calculate corrections to the average spin
coming from the Gaussian fluctuations over the mean
field, one has to expand A[@] up to the second order in
g as is done in Eq. (12). Expanding then the functional
in ((. . )) of Eq. (22) in powers of g and calculating all
integrals, one will finally reach the goal. As is seen from
Eq. (12), corrections will appear in powers of the effective
interactions Jeg;ln and Jee;tr~ namely

(~;( )) =&(&4')+). d d ((~ ( )n. ( )))o b. " ~'(&C')bz„(u)

82zp(u)

8$, (~)bge(v) o
(23)

By virtue of Eq. (7) one has

f d l b2z;(~) &z;(&)

b2z;(~) 1
o

* —— KU (T ~)Ki ~(~———v). (24)
a@I"(~)bq, (v) o

The periodic boundary condition in w then immediately
yields In view of this we finally arrive at
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P
(S;(o)) = b+ ) dudv b;„b'J'„'(v —u)Kpq(u —v)

sa
bK—~q(o—v' )J '(v —u)Kp, (u —(T)

superior at higher orders. In fact the exact expression
(22) generates all one-irreducible diagrams for the spon-
taneous magnetization.

g/I

b,pb, q J„'"(u —v) + O(J ),
2 2P 29 pq (25)

V. GREEN FUNCTIONS

where we have dropped the subscript "efF' in J. Formula
(25) gives the expression for the spontaneous magnetiza-
tion up to order (a/R), where R is the radius of the
exchange interaction and a is a lattice constant. The
analytic result (25) coincides with the expression of the
one-loop approximation obtained in Ref. 10 via the op-
erator approach.

The semiclassical spin-wave calculation of (S') to first
order in 1jS in the spirit of the Anderson paper coin-
cides with the low-temperature limit of Eq. (25). How-
ever, as is seen &om this formula the coherent-state path-
integral method takes into account the longitudinal spin
excitations as well as the transverse ones and is certainly

I

For definiteness, we shall consider the transverse Green
function

GV;~. ( o) = - ( S, ( )S,'(o)) = ((G,',"( ol&(t))))

where G, (w, o ~vP(t)) is the Green function of noninter-(o)

acting spins in the external 8uctuating field Q(t):

G(;)(...l~(t)) = ' "(~)
Zp bg;(7)bvP, (o)

One-irreducible diagrams are generated by

G,~, (,,(~ o)t.= 2 b~ + ) dt@((t) b(
bz~ (o.) . ~ — bzz) (t)

bg; ~ bing,
o.

+ ) dt's (t) (b, z (o)b' + z., (o.)b b, j
bz (t)

2

+) d 4dt2tbt(4)tb (t'g) (btb +6t bt))),
bz)(ti) bz (tz)
bg, rr b

(27)

The last two terms contribute to orders higher than O(J). In the low-temperature liinit the representation (27) is
simpli6ed, since the terms depending on the derivatives of 6 will make no contribution.

The zeroth approximation gives

( ) 2 ( ) b(P@) G( )
( iCt)

2 + P

as it should. To first order in J,~ one has

, bz, (~) be(u) b'z;(~)
ti itr( t ) = ) (('4( )'%( )))P tit

bq ( ) b@ ( )
+

b@ ( )b
PQ

bsz„(u)
b&~(o)b&*(~)b&.(v) .

be(u) bzp(~) 2 bzp(u) bz*(~)

(o)pb@~(v) p
. be (o) pbgc(v) p

„bz;(~), h2z, (~) bsz;(~)

b4'( )b@' '( )b4' '( )
(28)

From the Riccati equation (7) it follows that

)' d ) b'z (z)
) bA, (»)b@~,(»)bA. (») p

hz (x) bz (x)'
b&n. (») pb@~. (») p

I

and
( d ) h'z;(t)
~«»~, (-)b~,"(.)b~,"(-) ~

bi p b(t —u)
'

(
—
)

b'z;(t)

b@i(o)b'(hq (v) p

—biq b(t —v)
' = 0

b'z;(t)

b@.(o)bA"'(u) o
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by employing the periodic boundary conditions. Taking
into account Eqs. (15) and (24) one finds

bsz (x)
~6, (ui)~A. (»)~A. (») o

1= —IK;~(t —u)K„q(u —v)Kq, (v —. o)

+(p ++ q; u ++ v) j.

The transverse Green function is then found to be

P
G,~.t, (r, o.) = ) dudvZ;'; „(7., o. ;u, v) (29)

and with

(q-, o; u, v) = g, b'K; (q- —o)K„(u —v) Jt„'(v —u) —bK,~(q —u)K„q(u —v) J „'(v —u)K&~(u —o')

bK;~ —(q. —cr)K„,(u —q. )J „'(v —u)K,q(7 —v)

+b pb J '(v u)Kpq(u o)K~q(7 v) + b K p(7 v) 'J (v u)K~q(u o)*

b pb qb Kq(~ o)J (v u) b h qK ~(r u) J'(v u)Kp~(u o)'tp 2g

+bJ (v u)K p(q. u')Kpq(u v)Kq~(v o') + 0(J ) (30)

Each term in (30) corresponds to a particular one-

irreducible diagram with a single interaction line. All

of them are of first order in (a/B) except for the term
marked by *which is of zeroth order. The marked term

together with GI, makes up Eq. (18). As (a/B)s is usu-

ally regarded as a small parameter in a mean-Beld theory,
the Green function (18) is to be considered as the zeroth-
order or tree-level mean-field transverse Green function.

VI. CONCLUSION

We have presented a simplifying method for studying
the thermodynamics of the quantum Heisenberg model
based on the SU(2) coherent-state path integral. It pro-
vides a natural path-integral representation for interact-
ing spin systems, which directly generates the conven-

tional spin-diagrammatic expansion, usually obtained in
the operator formalism, in a rather simple and transpar-
ent way.

This fact is of particular importance, because the tech-
nique can be extended to more complicated groups. For
example, consider the Hamiltonian

) Jabqaqb
ab;ij

with Q being the generators of a Lie (super)group G.
In this case also one is able to start from a Gaussian lin-
earization similar to Eqs. (1) and (2). In the case of
a supergroup it would involve Grassmann-valued fields
as well. To proceed further one should employ a path
integral over coherent states associated with irreducible
representations of G. The integral is then again evaluated

by a change of variables in accordance with the G action
in the underlying phase (super)space. This technique re
suits in an implicit analytical representation for Z which
involves a set of auxiliary fields to be taken to satisfy a
system of (super-) Riccati equations. The OSP(2~2) su-

pergroup relevant for the Hubbard (t-J) model provides
quite a nontrivial example of this kind, Q representing
the Hubbard operators. It would be desirable to investi-

gate the Hubbard model along these lines. Such a study
is currently being pursued.
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