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We use the 1/M expansion for the CP model to study the long-distance behavior of the
staggered spin susceptibility in the commensurate, two-dimensional quantum antiferromagnet at
finite temperature. At M = oo this model possesses deconfined spin-1/2 bosonic spinons (Schwinger
bosons), and the susceptibility has a branch cut along the imaginary k axis. We show that in all
three scaling regimes at Gnite T, the interaction between spinons and gauge-Geld Quctuations leads
to divergent 1/M corrections near the branch cut. We identify the most divergent corrections to the
susceptibility at each order in 1/M and explicitly show that the full static staggered susceptibility
has a number of simple poles rather than a branch cut. We compare our results with the 1/N
expansion for the O(N) sigma model.

I. INTRODUCTION

Numerous studies of the two-dimensional (2D) quan-
tum Heisenberg antiferromagnet (QHAF) undertaken in
the past few years have significantly improved our un-
derstanding of the behavior of these systems at low
temperatures. There is no ordered state at any fi-
nite T (and hence, no phase transitions), but there are
nevertheless three distinct low-T regimes depending on
the relative values of the temperature and the coupling
constant, g. These three regimes arei (i) renormalized-
classical (RC) regime, where T is smaller than the spin
stifFness in the ordered ground state, g, ; (ii) quantum-
disordered (QD) regime, when g is larger than the critical
coupling for the T = 0 disordering transition, and T is
smaller than the gap L between the singlet ground state
and the lowest excited state with S = 1; (iii) quantum-
critical (QC) regime, which lies between the other two,
and in which temperature is the largest infrared cutoK,
k&T && g. , L.

It is very likely that the low-energy physics of a 2D
QHAF, at least in the vicinity of the disordering transi-
tion, is adequately described by the O(3) nonlinear sigma
model (see Sec. I). Some information about the proper-
ties of this model can be obtained from the Bethe ansatz
solution, ' but most of the thermodynamic properties
have been studied using several available perturbative
techniques. The perturbative approach to the O(3) sigma
model was initiated many years ago by Polyakov. In this
approach, one departs from the ordered state at T = 0,
and applies renormalization-group theory which accounts
for the efFects of classical fIuctuations at small but fi-
nite T. The expansion parameter for the RG studies is
T/2vrg, . It has to be small, i.e. , the system should be
in the RC regime. The RG approach allows one to ob-
tain. a scale at which the fIuctuation corrections to the

spin-wave coupling constant become comparable to its
bare value. This scale is then identified with the cor-
relation length in a system. Calculations along these
lines yielded ( = A(hc/2mg, ) exp(2mg, /k~T) (Ref. 7)
and S(q) = Np (k~T/27rg, ) ( f(q() Here .A is a con-
stant [A = 0.34 (Ref. 5)], S(q) is the static structure fac-
tor, Np is the staggered magnetization, and f (z) tends
to a finite value at x = 0.

Another widely used approach is the 1/N expansion for
the O(N) sigma model. The physical results are obtained
in this approach by extending the perturbation series in
1/N to N = 3. The advantage of the 1/N expansion is
that it works in all three scaling regimes, and the point of
departure is a disordered state at any finite temperature.
The weak point of the theory is the absence of the phys-
ically motivated small parameter for the physical case
N = 3. In the RC regime, however, the series of 1/N
terms can be explicitly summed up, and for the physical
case of N = 3 one obtains exactly the same results as in
the RG approach. At arbitrary N, one finds

( = A~(hc/k~T) [(N —2)kgyT/2vrg, ]
/(

x exp(27rg, /[(N —2)k~T])

The results of 1/N expansion for all three scaling regime;
are collected in Ref. 2

Finally, the third approach is the Schwinger-boson the
ory. In this theory, the staggered magnetization field,
n(r;) = e;S;/~S~, where e; = +1 or (—1), depending on
the sublattice, is expressed as a bilinear combination of
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two Bose operators (CP representation),

n~ = z cT pzpq
f cx

where n, P are SU(2) indexes, a = x, y, z, and 0 are
the Pauli matrices. This representation also introduces
a U(1) gauge degree of freedom, because S remains in-
variant under the transformation of the bosonic 6elds,
z (r, t) + z (r, t)e'~~"'l. Each z-field quantum carries
S = 1/2 and is therefore a bosonic spinon. The condition
n~ = 1, however, imposes a local constraint ztz~ = 1,
which implies that spinons can appear only in pairs. A
mean-field version of the Schwinger-boson theory has re-
cently received a lot of attention. In the mean-Geld ap-
proximation, one reduces the on-site constraint to a con-
straint imposed on the averaged quantities, and decou-
ples the term that is quartic in z in the spin Hamiltonian.
From the solution of the self-consistent equations in the
RC regime one then obtains the spin-correlation length,

(k~T/g, ) exp(27rg, /k~T), and the static structure
factor, S(q) (k~T/27rg, ) $2f(q(), where f(x) has the
same asymptotic behavior as f(x).s The temperature de-
pendence of S(q) and the exponent in the expression for
the correlation length are the same as in other approaches
but the correlation length acquires an extra power of T
in the prefactor. Because of this incorrect prefactor in (,
the validity of the Schwinger-boson mean-6eld theory has
been questioned. More recently, however, the Schwinger-
boson approach to a 2D antiferromagnet has been ap-
plied in a systematic way, by means of a controllable
1/M expansion. o' To generate this expansion, each z
6eld was assumed to have M components rather than
two (this changes the symmetry of the underlying sigma
model to CPM i). The 1/M computations have been
performed for field-theoryxo and condensed-matter~x ap-
plications. It has been shown that the extra power of
T in the prefactor is indeed an artifact of the mean-
field, M = oo, approximation: the correct prefactor is
T ~M, and it reduces to a constant for the physical
case of M = 2. At the saine time, the 1/M corrections
to the static structure factor do not change the power of
T, and the mean-field result for S(q) is therefore valid for
all M. Clearly then, for physical spins, the n-field and
the Schwinger-boson approaches yield the same temper-
ature dependence of the observables in the RC regime,
as they indeed should. One can therefore safely use any
of these perturbative techniques. Notice however, that
the series of regular 1/M corrections are poorly conver-
gent, while the regular 1/% corrections are usually sinall.
This makes the Schwinger boson approach less reliable for
practical purposes than the 1/N expansion for the O(N)
sigma model.

There is, however, another discrepancy between the
Schwinger-boson and the n-field approaches, which in
our opinion has not been fully clarified in the literature.
Namely, in the n-field approach, the staggered static spin
susceptibility y, (k, ~ = 0) is proportional to the static n
field propagator which has a simple pole along the imag-
inary k axis, at k = +if i. The residue of the pole
is 6nite at N = oo, and remains finite in the physical

case of N = 3. This result is valid in all three scal-
ing regimes. On the other hand, in the Schwinger-boson
formalism, the staggered spin susceptibility is a convolu-
tion of two spinon propagators. At the mean-6eld level,
spinons behave as &ee particles, and elementary calcu-
lations show that the staggered susceptibility has only a
branch cut singularity at k = 2imo, where mo is the mass
(inverse correlation length) of a Schwinger boson. Since
the behavior near the singularity in y(ik, 0) determines
the long-distance properties of the spin-correlators, the
difFerence in the type of the singularity in the two mod-
els leads to difFerent predictions about the long-distance
behavior of the correlation function. Obviously, one of
these predictions must be wrong.

In this paper, we show that the branch-cut behavior of
y(ik, 0) is also an artifact of the mean-field Schwinger-
boson formalism. We will see that 1/M corrections are
divergent near the branch cut, and eventually trans-
form the branch cut into a simple pole. This phe-
nomenon is closely related to the con6nement of spinons
in the CP Inodel in 2 + 0 dimensions, studied by
Witten. ~ He found that massless gauge fluctuations in
the CP model give rise to a linear confining po-
tential between spinons, and this yields a bound state
with a mass m which is a nonanalytical function of 1/M:
m = 2mo[1+ O(1/M2~s)j. This result was reproduced in
a number of more recent papers (for a review see, e.g. ,
Ref. 13 and references therein). However, to the best of
our knowledge, the effect of the 1/M corrections on the
staggered susceptibility has not been studied in detail.
The results of such study will be reported in this paper.
Besides the RC regime, we will also study staggered sus-
ceptibility in the QD and QC regimes.

Before we proceed to the description of our calcula-
tions, it is useful to specify which 1/M corrections are
essential to our analysis. The point is that in the RC
regime, there exists a self-energy correction to the spinon
propagator of the form 1/M ln ln(k~T/nio). Since mo
is itself exponential in T, the double logarithm in fact
reduces to 1/M ln(g, /k~T). A series of these logarith-
mic terms give rise to the above-mentioned change in the
power of temperature in the preexponential factor in (
Rom T to T ~M. Below we will assume that these cor-
rections are already included into the expression for the
Schwinger-boson mass. We will therefore consider only
regular 1/M corrections which, as we will show, are re-
sponsible for the con6nement.

The paper is organized as follows. In Sec. II, we will
briefly review the large M expansion for the CP
sigma model and present M = oo results for the corre-
lation length, spin susceptibility, and gauge-field prop-
agator. In Sec. III, we consider the static staggered
susceptibility in the RC regime. We first compute the
lowest-order 1/M corrections, select the most divergent
ones, and then sum up the ladder series of divergent 1/M
terms by reducing the problem to a Schrodinger equation.
Discrete solutions of this Schrodinger equation will cor-
respond to the poles in the staggered susceptibility. In
Secs. IV and V we report analogous calculations for QD
and QC phases, respectively. Finally, in Sec. VI we state
our conclusions and discuss open questions.
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II. THE SIGMA MODEL

Our starting point is the partition function for the O(3)
nonlinear sigma model in Euclidean space

Z= Dnibn, —1

0 1/T
2 1

x exp —— dv d F —
2 07-A~

2h Cp

The value of the spinon mass m can be obtained in the
1/M expansion by solving the constraint equation to any
given order in 1/M. The nonzero solution for m implies
that the rotational symmetry is unbroken. A more de-
tailed discussion of the derivation of the CP model
can be found in Ref. 15.

At M = oo, the theory is particularly simple, because
it describes kee massive spinons. The spinon Green's
function Gp(p, ur ) is given by

+(0;n{)' (2.1)

1
Gp(»~-) = „,+ (2.6)

where i = x, y; l = 1, 2, 3, and g, and cp are the bare spin
stiffness and spin-wave velocity. For simplicity, through-
out the paper we choose the units where 5 = 1 and
cp ——1. Vector n describes local staggered magnetiza-
tion. In the CP representation (1.1), Z transforms into

Z= DzDzb z2 —1

1/T
x exp —2g, d7. d r O„z + zt9~z

0

(2.2)

Here p = r, x, y. Introducing the Hubbard-Stratonovich
vector 6eld A„ to decouple the quartic term, we obtain

Z = DzDzDA„b z —1

and the constraint equation reads

T) Gp(p, (u„) = —.dp 1
(2.7)

Using the Pauli-Villars regularization of ultraviolet di-
vergencies, we obtain

]n 1 g™/~& T

where g, = 8'/A, and A is the ultraviolet regulator. De-
pending on the values of g/g, and the teinperature, the
solutions of (2.8) are2's (i) RC regime (g, ) k~T): mp ——

k~T exp (47rg, /M—T), where {p, = (M/2) (1/g —1/g, ) is
the renormalized stifFness; (ii) QD regime (mp ) k~T):
mp = A + O(exp A/T), wh—ere A = Sz(1/g, —1/g);
(iii) QC regime (T ) g„A): mp —— Ok~T, where
O = 2 in[(~5+1)/2j.

1/T
x exp —2g d~ d r t9 —iA„z A. Staggered susceptibility

(2.3)

Now we generalize the doublet z to the M-component
complex vector, rescale the z field to z -+ QMz, and
introduce the coupling constant g = M/2{p, . Introducing
then the constraint into the action in a standard way, we
obtain for the partition function

1/k~T d I'
y(k, o)h b = d~, (s.(r, ~) sb(o, o))

a P 27r 2

x exp[ —i(k + Q) . r I, (2.9)

The static staggered susceptibility is defined in contin-
uum limit as

Z = DzDzDA„DA

1/T
x exp —— d7. d r 0„—iA„z

0

+zA{~~z~~' —M)]). (2.4)

where k is a small momentum, Q = (7r/a, vr/a), and X,
is the number of spins in the system. As each spin is a
by product of z fields, the physical susceptibility is re-
lated to the polarization operator of z, II(k, 0) = II(k) =
T g J(d q/4m )G(q, w) G(k+ q, m). In the RC and QC
regimes, the relation between y(k, o) and II(k) can be
obtained in the same way as in Ref. 3. We find

i(A) = m, (A„) = 0. (2.5)

This is the partition function for the CP model.
The action in (2.4) is quadratic in the z, z fields, and
we can therefore integrate them out. This generates an
effective action for the A~ and A fields, which contains M
only as a prefactor. ' At large M, this effective action
can be well approximated by the quadratic fj.uctuations
of A~ and A around their saddle-point values

(2.10)

where Np and g, are the fully renormalized on-site mag-
netization and spin stiffness at T = 0. Notice that
there is a factor of 2 difference with the analogous ex-
pression for frustrated systems. s In the QD regime, the
rescaling factor between susceptibility and polarization
operator can be related to the overall factor in the local
susceptibility. However, in this regime, we will only ob-
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tain II(k) up to an overall factor, so there is no need to
discuss the exact relation between y(k) and II(k) in the
QD regime.

B. Polarization operator

We now present the expressions for the polarization
operator at M = oo. In the RC regime, the summa-
tion over &equency reduces to the w = 0 term, and one
obtains

11,(k) = k T
d'J 1 1
4~' (p —k/2) ' + m' (p + k/2) ' + m'

(2.1i)

elude the propagators of the gauge Geld, A, and the con-
straint field, A. We will see that to study confinement,
it is suKcient to know the propagators of A and A at
distances much larger then the spin-correlation length.
At k « (, the fluctuations of A and of the tempo-
ral component of the gauge field are well screened. '

However, there is no screening for the spatial part of the
gauge field. ' ' The spatial component of the gauge-
field propagator is given by

dk
II„„(q,0) = 2b„„k~T) Gp(k, (u)

dk
k~T)— Gp(k, (u) Gp

27r

The momentum integration yields ' '

Iio(k) =
4vrb Qb2 —m2o

gS2 —m'+ ~
ln p

mp
(2.12)

where we introduced b = k /4+ mo. Clearly, Ilo(k) has
a branch-cut singularity at b = 0, i.e. , at k = —4mp.
Near the singularity, we obtain

x (k + q, ur + 0) (2k + q) „(2k + q) „, (2.15)

where ko ——u, qo ——B. For the RC and the QC regimes,
& k~T, and at k && ( we can also restrict to the

0 = 0 component of II. The evaluation of integrals in
the limit of q &( mp is then straightforward, and we Gnd

Iio(k) = (2.1S)

The behavior of II(k) near the branch cut determines
the long-distance behavior of the spin susceptibility in
real space. Evaluating the Fourier transform of (2.13),
we obtain y(r) exp( r/()/r, wh—ere ( = I/2mo at the
mean-field level. At the same time, the susceptibility in
the O(%) sigma model has a simple pole at k = —(
and its long-distance behavior is y(r) exp( —r/()/~r.

For the QD regime, the leading term in II(k) is the
T = 0 piece. The frequency summation is then replaced
by the integration, and, to leading order in b, one obtains

Iip(k) =
16' mp

(2.14)

We see that the polarization operator has only a weak
logarithmical singularity. In real space, the singularity
in IIo(k) gives rise to y(r) exp( —2mor)/r, which is
again different &om the mean-field result for the n-Geld
model in this regime, y(r) exp( r/()/r. —

Finally, for the QC regime, elementary considerations
show that the most singular behavior in II(k) comes from
the u = 0 term in the summation over &equency, and
hence II(k) is still given by (2.13). This result is in-
tuitively obvious as the QC regime is the interpolation
regime between the classical and the quantum-disordered
ones, and the singularity in II(k) is much stronger in the
classical regime.

Inverting now II~„ in the Coulomb gauge, we Gnd for the
gauge-field propagator D„at small momenta

(2.17)

where p, (v) = 2:, y, and the values of A are A = mo2/k~T
(RC regime), A = 20k~T/~5 (QC regime). In the QD
regime at T = 0, 0 is a continuous variable, and q, 0 are
the components of a 3D momentum. We found that Eq.
(2.17) is still valid in this regime, A = 2mo, and p and v
are running over x, y, and w.

We now consider separately 1/M corrections in the
three scaling regimes.

III. RENORMALIZED-CLASSICAL REGIME

A. First order in 1/M

As we said above, we only have to consider the 1/M
corrections associated with the Quctuations of the gauge

C. Gauge-Held propagator

In the next sections, we will show that the mean-Geld
(M = oo) behavior of susceptibilities changes drastically
at finite M. The 1/M corrections to susceptibility in-

FIG. 1. The first-order 1/M corrections to the polarization
operator of spinons.
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A
D

p, v
expansion are collected in Fig. 2. A simple power count-
ing argument shows that the most singular corrections
appear if we select a contribution proportional to the ex-
terna/ momentum, k, at each interaction vertex with the
gauge Geld. We then obtain near k = +2imo, and setting
G(p) = G(p, (u = 0),

FIG. 2. The diagrammatic representation of the spinon and
the gauge-field propagators and of the spinon-gauge-field in-
teraction vertex.

=1 d pd l
II,/M (k) = —(k~T) 4 G(p —k/2) G(p + k/2)

xG(p+ I+ k/2)

field. Corrections related to the fluctuations of the con-
straint Geld renormalize the spinon mass, but these fluc-
tuations are screened at q ( 2mo and are therefore irrele-
vant for the confinement. The first-order 1/M corrections
to the polarization operator II(k) are shown in Fig. 1, the
propagators and vertex function which appear in the 1/M

I

x 2G(p i k/2) —G(p + l —k/2) k„k„

or, in explicit form,

(3.1)

+1/M (k)
2

'(k~T)' D(t)
16vr (p + b ) +4m2p cos2&p

xi 2
(p+ t + b' —i2mo(pcosp+ Icos@) p + h —i2mepcosp

[(p+ t5 + b'2] + 4m20(pcos&p+ t cosa/i) (p + ~ ) + 4mocos

[(p + l) 2 + Sz]z + 4m2o (p cos p + l cos @)z )
(3.2)

where rp and g are the angles between p and k, and I and k, respectively. The key point in the computation of
IIi/M(k), as well as in other computations later in the paper, is that for b « mo (which is the only one we consider),
the angular integration is confined to a region where p, Q +7r/2. For practical purposes, it is convenient to restrict
the angular integration to the vicinity of m/2, but extend the integration over p and I Rom —oo to +oo. Rescaling
the angular variables, rp —+ p/2mop, @ ~ vP/2mo/, we then obtain

II&gal(k) = ——
~ 2 ~ f dp f dl f dp f d@

x] 2 (p —I)'+ ~' —i(V + @) p'+ h' —'V

[(p t)2 + $2]2 + (p + @)2 (p2 + $2)2 + (p2

1

[(p —t) + b ] + ((p + vP) )
(3.3)

The angular integration extends up to ~&p~, ~vP~ O(1/h). The integrals are convergent in the ultraviolet, so we can
safely set the limits of the angular integration equal to infinity. The integration is now trivial, and we Gnd

II,/ (k) = ——
~ ~

dp dl D(l)
1 (kgyTi 1 f 1

M q4
1

(p —I)'+ ~') (3.4)

We emphasize at this point that only the momenta per-
pendicular to the e~ternal momentum k contribute to the
angular integration. This implies that the evaluation of
the 1/M correction to the polarization operator in 2 + 0
dimensions in fact reduces to a one-dimensional problem.
This dimensional transmutation will play a key role in
our analysis of the series of 1/M terms. Finally, substi-
tuting D(l) &om (2.17) and performing the momentum
integration, we obtain

I

Notice the absence of divergencies in the integration over
this is the result of including both self-energy and ver-

tex corrections into IIi/M(k).
In obtaining (3.5), we implicitly assumed that b

(k + 4mo)/4 & 0. Calculations for h2 & 0 proceed along
the same lines, and the result is

12m2T
II / (k) =i, k +4m -+ —0. (3.6)M k2+ 4mzo 2'

3vrmoT"/ (")=-M(k +4,)
(3.5)

The 1/M corrections to the polarization operator in
the RC regime were studied earlier by Campostrini and
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Rossi. They numerically evaluated the leading singu-
larity in II&~~(k) for h2 ~ +0 and found the same result
as in (3.5), with the numerical prefactor S.425 which, as
we show, is in fact exactly 3'. However, their estimate
for IliyM(k) for negative 8 is inconsistent with (3.6).

Let us now discuss the 1/M results. Our first obser-
vation is that the I/b divergence of IIiyM(k) is stronger
than one could expect assuming that II(k) preserves its
form (2.13), and the two-spinon mass has a regular 1/M
expansion [the latter would correspond to IliyM(k)
O(8 s)]. A crude estimate that provides insight into this
singularity may be obtained by absorbing the 1/M cor-
rection into a mass renormalization and solving a self-
consistent equation for the mass. 0 One then obtains
II (k2 + m2) i~2, where m = 2mo[1+ O(1/M2~s)],
which is consistent with Witten's result for the mass
renormalization. However, this self-consistent procedure
is clearly not exact, even for large M, because near
k2 = —m2, b M i~s, and the 1/M contribution to
II has the same order O(l/M i~s) as the leading term. io

Moreover, simple estimates show that the higher-order
1/M corrections behave as b (Mb ) and therefore all
have the same order near k = —m .

We will demonstrate in the next section that the self-
consistent procedure yielding II (k2+m )

i~ is actu-
ally incomplete because the 1/M corrections contribute
to both the mass renormalization and to the renormal-
ization of the spinon wave function. To see this, we will
need to solve the problem exactly by summing up the
series of the most divergent 1/M corrections (but we will
still assume that M &) 1 and neglect terms which have
relative smallness in 1/M).

ladder

+ 2

FIG. 3. The full polarization operator and the equation for
the full vertex function. The most divergent corrections to the
mean-field value of II(k) near k = +2imo comes form ladder
series. For convenience, both vertex and self-energy terms are
absorbed into the vertex renormalization.

We will first discuss the solution of the ladder series and
then show that other diagrams are relatively smaller at
large M.

It is convenient to formally include both self-energy
and vertex renormalization terms into an efFective vertex
renormalization, such that

d2
II(k) = k~T I'(p, k) G(p+ k/2)G(p+ k/2).

B. Solution of 1adder series (3.7)

The relevant diagrams at each order in 1/M are pre-
sented in Fig. 3. These diagrams form a ladder series.

I

The integral equation for the vertex can be written down
as

d2l
I'(p, k) = 1+ I'(p+ L, k) G(p+ k/2+ L)G(p —k/2+ l)(2p+ k+ l)„(2p —k+ l)„D„„(l)

d2l
+ I'(p, k)G(p+ k/2)G(p+ k/2+ l)(2p+ k+ l)„(2p+ k+ LJ„D„„(l) (3.8)

Again, the angular integration over both p and l is con-
6ned to a narrow region ( 8) in which both internal mo-
menta are nearly orthogonal to the external momentum
k. We assume that I'(p, k) and I'(p+ l, k) are nonsingular
for these values of the angles. We then can set p, l to be
orthogonal to k in I' and perform angular integration in
the Green functions. Restricting, as before, to the inte-
gration only near vr/2, and extending the integration over

p and l &om —oo to +oo, we obtain

2~M (p —l)'+ h'

mokaT I (p k)
2vrM p2 + b2

(3.10)

Substituting now I'(p, k) = (p +h )4(p), we can rewrite
(3.10) as

4mp 2x p'+82' (3.S) dla l 4 p —4 p —l . 3.11

where Finally, performing a Fourier transformation to real



ANDREY V. CHUBUKOV AND OLEO A. STARYKH 52

space,

(3.12)

k~T f2) ~ Z

g. 2~@. q Mr k'+ m' ' (3.is)

we obtain for 4(2:) a one-dimensional Schrodinger equa-
tion with a source

( d2.+ &(*)+ b'
I
+( ) = b( )

E d* (3.i3)

The potential V(x) is given by

v(*) = ' f a—(~) (i —.-*') =

(3.i4)

Notice that the integral over I is &ee &om divergencies.
This is again the result of including both self-energy and
vertex corrections in the ladder series.

Going back to (3.9), we see that II(k) takes a simple
for m

II(k) = -4(x = O).
4mo

(3.i5)

6~m',I»(s)@x=o = ——
2 M r Ai'(s) ' (3.i6)

where s = b (6m.mo/M) ~, Ai(s) is the Airy function,
and Ai' is its derivative with respect to the argument.
For positive s, both A.i and Ai decay exponentially, but
for negative s, they have zeros. The singular contribu-
tions to @(z = 0) indeed come &om the zeros of Ai'.
Expanding near each of these zeros, we obtain

Ai'(s) = (s —s„) Ai" (s„) = —~s„~(s —s„)Ai(s„),
(3.i7)

where s„(0 is the nth zero of the derivative of the Airy
function. Clearly, the polarization operator now has a
set of simple poles at b2 = s (6vrmo/M)2rs.

Finally, we remind that we are actually interested in
the long-distance behavior of the spin-correlation func-
tion. At long distances, only the pole with the smallest
mass is relevant. Near this pole, we can approximate the
polarization operator and, hence, the staggered suscepti-
bility as

I

We emphasize at this point that 4(x) is not a wave
function of the 1I3 Schrodinger equation, but rather a
Green's function of the inhomogeneous difFerential equa-
tion (3.13). This equation was solved earlier in the con-
tent of the weak localization theory, and we simply
quote the result:

where Z = (3m ) ~ /2~sq~, sq —1.02, and the renor-
malized mass m is given by

(6~)"m'=4m, ' i —s,
~

—
~

I, Mr
(3.19)

This last result coincides with the expression for the mass
obtained by Mitten.

Equation (3.18) is the key result of this section. We
see that the series of divergent 1/M corrections near the
branch cut not only produce nonanalytical renormaliza-
tion of the two-spinon mass, but also change the branch-
cut behavior of the staggered susceptibility to a set of
poles at discrete values of k. In real space, we then have

y(r) M ~ exp( —mr)/vtr at very large distances
which agrees with the result for the n-field sigma model.
Notice, however, that the residue of each pole contains
a factor M / and vanishes in the limit of M = oo.
In this limit, the spacing between neighboring poles van-
ishes, and one recovers the mean-field. branch-cut solu-
tion for II(k), and hence y(r) exp( —2mor)/r. It is not
difficult to show that at Rnite but large M, the asymp-
totic behavior associated with the lowest pole exists only
at very large distances, mr ) M /, while at smaller
distances the behavior of spin correlations remains the
same as in the mean-Beld theory. Indeed, at large M,
the asymptotic behavior is of no practical relevance, since
at mr ~ M / )) 1) the spin correlation function is al-
ready negligibly small. However, for the physical case
of M = 2, we expect the behavior associated with the
pole to dominate at all scales larger than the correlation
length.

Notice, however, that the existence of the nonanalyt-
ical corrections to the spin correlation length makes it
very difficult to obtain the exact expression for ( = m
in the CP model. The exact value of ( in the O(K)
model is known at arbitrary N. 3 The M = 2 value of
the overall factor Z in the staggered susceptibility (3.18)
(Z = 3.26) is also substantially larger than Z 2 ex-
pected for the O(3) model &om the 1/N expansion. 2

Before concluding this section, we show that the terms
not included in the ladder series do not contribute to
the renormalization of the polarization operator to lead-
ing order in 1/M. The key point is that if we allow the
gauge-field propagators to cross each other even once, the
integral over the internal momentum of the two Green
functions located between the propagators gives zero be-
cause the poles are located in the same half-plane. To
illustrate this, consider the second, "umbrella"-like, dia-
gram in Fig. 4. The analytical expression for this diagram
1s

16m4o (kgb T)2 d pd ld q sin /sin
M2 64m (p +8 ) +4m p cos rp

1 1

[(p+ qg2+ b2]2+ 4mo(pcos p+ qcosp) [(p+ l)2+ b ] + 2imo(pcos&p+ icos@)
1

X
[(p + l + u) 2 + b2] + 2imo (p cos p + l cos @ + u cos p)

(3.2o)
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Here y, @, and p are the angles between the external momentum k and the internal ones p, l, and q, respectively.
As before, the relevant M z(k2 + 8 )

~~ contribution &om this diagram is confined to the integration over internal
momenta which are nearly orthogonal to k. Expanding the angles around m. /2, rescaling them in the same way as in
(3.3), and shifting the variable g -+ @ —p, we find that the angular integration in (3.20) reduces to

OO OO 1 1

(p2 + b2)2 + yz [(p q)2 + b2]2 + (p + p)2
dp d(p

1 1
x dg

[(p —/) ' + b'] + i@ [(» —/ —q)' + b'] + '(v + @)
. (321)

The integration over @ then gives zero. The same is
true for all other "crossing" diagrams, as well as for the
"rainbow"-like graphs for the self-energy (see Fig. 4).
Note that this result does not depend on the dimension-
ality.

IV'. QUANTU'M-DISDRDERED RE&ION

We now perform the same type of analysis for the QD
regime. This is the low-temperature regime at g ) g,
when long-range order in the ground state is destroyed
by quantum fluctuations. The ground state is then a to-
tal spin singlet, and there is a gap L towards the lowest
excited triplet state with S = 1. The temperature correc-
tions to the staggered susceptibility in the QD regime are
exponentially small, and we therefore restrict our analysis
in this section to T = 0. At zero-temperature &equency
becomes a continuous variable, and perturbative 1/M ex-
pansion has to be performed in a three-dimensional space
time. The higher dimensionality has already shown up in
the computation of the polarization operator at M = oo,
which in the QD regime has only a weak, logarithmic
singularity at k2 = —4mo [see Eq. (2.14)].

A. I/M corrections

1 dzpd / D(l)
4vr2M 16~ p + b2

(
X p2+ b2 (P+ l)2 + b2

~

(4.1)

Evaluating this integral, we find

can easily verify that the typical internal momenta in the
3D analog of (3.2) are of the order of b and nearly orthog-
onal to the external momentum k. This, in turn, implies
that all internal momenta are con6ned to the plane per-
pendicular to k, which makes the problem electively boo
dimensional.

Technically this can be seen as follows. Consider 3D
vectors»7 and /. Let thein form angles p and @ with k,
respectively. Then p l = p/[cos y cos @+ sin p sin @cos 0],
where // is the azimuthal angle (0 ( 8 ( 2'). In the
spirit of our approximation, we expand p and @ around
~/2. Then immediately p / = p/[cos 0+ O(b )] pl cos 0,
which is the scalar product in 2D.

Performing the angular integration in the same way as
in the previous section, we obtain

The computation of the leading 1/M corrections pro-
ceeds exactly in the same way as in the RC regime. One

II,(M(k) =—,(ln1/b+ C) ) (4.2)

FIG. 4. Examples of the second-order diagrams which do
not contribute to the ladder series. All these diagrams are less
divergent near the branch cut singularity than those included
in Fig. 3.

where C is a constant. As in the RC regime, the 1/M
correction to II has a stronger dependence on b than is
required for a regular 1/M expansion for the two-spinon
mass in (2.14). However, contrary to the previous case,
the (lnb)/b corrections come only &om the self-energy
term. Vertex corrections only contribute to a constant
C term in (4.2). Meanwhile, if we look back on how the
transformation of a branch cut into a pole was obtained
in the previous section, we can see that this transforma-
tion is primarily due to vertex corrections. The inclusion
of the self-energy terms only serves to make the Fourier
transform of D(/) in&ared-finite, and allows the correct
mass renormalization. By analogy, we can expect that
the series of logarithmic terms will only contribute to
the mass renormalization, but the mean-6eld form of the
polarization operator will survive. We performed an ex-
plicit computation of the ladder series of the logarithmic
1/M corrections, and found that with the logarithmic
accuracy, the polarization operator is given by
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where

1 dp p 12m p ln mp/b
8vrmp p2 + 82 M p2 + 82

( 12mp ln mp /b"+' )
1 GP 'P

2+ p2+ 12mp ] ~m

(
167rmp (k + m2 )

m =4mp
~

1+—ln2/ 6 mp
M m2 —m2p )

= 4m',
(
1+ —ln M + O(M)

/

.
6

r

(4.3)

(4.4)

(k'+ m')
12mp ( M M ) 48m2p

(4.9)

where m, is given by (4.4). Polarization operator is again
related to 4(r = 0) via II(k) = (vr/2mp)@(r = 0).

Surprisingly, to the best of our knowledge, no exact
solution of the 2D Schrodinger equation with a logarith-
mic potential ("2D hydrogen atom") is known. How-
ever, as V(r) ln~r~ is unbounded &om above, there
exists a discrete set of energy levels for the homogeneous
Schrodinger equation, and, just as in the RC regime, 4(0)
will have an infinite number of simple poles at some dis-
crete e 0(l):

n

We see that II~„(k) still has a logarithmic singularity at
k2 = —m2. However, this result is still incomplete, and,
in fact, we have to go beyond the logarithmic accuracy
and include vertex corrections, which are crucial for the
renormalization of the functional dependence of the prop-
agator. Therefore, we must again consider the full ladder
equation for the polarization operator.

B. The ladder diagrams

@(4)(4*+4')= '+ M /, 77(()@(7 +')

2D l e I (4.5)

In real space, this equation is again equivalent to the
Schrodinger equation with a source

(- ~' +V(r) + b') 4 (r) = h(r), (4.6)

where V(7) is the Fourier transform of the gauge-field
propagator

d2l 12m2
V(r) =+ 77(l) (7 —e'") = (n~r~. (47)

The integral over l is again in&ared finite. The depen-
dence on M in this equation can be eliminated by a

12mp 1/2-
rescaling r —+ ( ~ '

) P, and we obtain

As before, the ladder equation for the polarization op-
erator is obtained by multiplying the equation for the
vertex function I'(p) [which is a 3D analog of (3.8)j by
G(p+k/2) G(p —k/2) and integrating over 3D momentum
p. This procedure is completely equivalent to that in the
RC regime, and we present only the result. Introducing
4(p) = I'(p)/(p2+ b2), we obtain

(4.10)

Here A is the (unknown) residue of the nth pole. Us-
ing the WKB approximation it is easy to estimate that
at large n, e ln(n), and A n . Also observe
that momentum k in (4.10) is a vector in 2 + 1 space-
time dimensions. Hence, Eq. (4.10) in fact describes the
dynamic staggered susceptibility.

Equation (4.10) is the key result of this section. We
have found that, just as was the case in the RC region,
the mean-Beld expression for the staggered susceptibil-
ity is also invalid at finite M in the QD region, al-
though the corrections to the two-spinon mass and to
the susceptibility have diferent dependence on the ex-
pansion parameter 1/M in the QD case. The stag-
gered susceptibility computed to order 1/M contains
an infinite number of simple poles. The lowest pole
governs the behavior of the spin-correlation function at
very large distances. Performing the Fourier transform
of (4.10), we obtain for equal-time spin-spin correlator
y(r) ~ (1/M) exp( —mr)/r, compared to the mean-field
expression y(r) exp( —2mpr)/r . As in the RC regime,
there is a crossover between the two regimes, which oc-
curs at mr M.

A confinement of spinons due to the logarithmic po-
tential was qualitatively discussed by Wen. A compli-
mentary scenario of spinon confinement in the QD phase
was considered by Read and Sachdev. They argued that
the long-wavelength action (2.4) contains an extra Berry-
phase term (which we did not consider). This term is
absent for any smooth configuration of the z field, but it
is present for singular "hedgehog" spinon configurations.
Due to the Berry term, spinons experience a linear con-
fining potential at distances (c ( '~', pi —0.06.2

At large M, this scale is much larger than the typical
confinement scale, M(, which appears in our consider-
ation. The two scales, however, may become comparable
at small M.

+1nr +e 4r =br, (4.8) V. QUANTUM-ClRITICAL R,KCIME

where the derivatives are taken with respect to r, and we
introduced

Finally, we consider the QC regime, which is the in-
termediate regime between the RC and the QD regimes.
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At T = 0, the CP model action describes D=3 criti-
cal theory which possess no confinement. The M = oo
susceptibility behaves as 1/k, and the 1/M corrections
&om both constraint and gauge fluctuations are of the
form ln(1/k)/k. Evaluating the 1/M terms and expo-
nentiating the result we obtain y(k) k ~2 "l, where
g = 1 —,M. Notice that the correction to the mean-
field result for g is large. On the contrary, for O(N)
sigma model at the critical point we have g = 0 which
is much closer to the Monte Carlo result for the O(3)
model —g = 0.03.

At finite temperature, the confinement does exist, and
we proceed in exactly the same way as in the two previous
sections. In the QC regiine, the typical frequencies are
of the order of k~T, so, in principle, one has to perform
full frequency summation in the 1/M formulas for the
polarization operator. However, the situation is simpler,
as our earlier results show that the confining potential is
much stronger in the RC regime than in the QD regiine.
As a result, the most divergent contributions in the 1/M
series always come from the u = 0 terms in the &equency
summations. This observation makes the analysis of the
confinement in the QC regime very similar to that in the
RC regime; the only difFerence is in the form of the gauge-
field propagator. Using (2.17) and the results of Sec. III,
we obtain after simple manipulations that the branch-
cut behavior of the spin susceptibility is indeed replaced
by a set of poles. Near the lowest pole, the polarization
operator behaves as

X/3

II (k) =
20)si( I M ) k +m

where T = (202)/~5 = 0.828471, and the bound-state
mass is given by

(5.2)

VI. CONCLUSIONS

We summarize the key results of the paper. We con-
sidered here the form of the static staggered susceptibil-
ity in the CP model of an M-component complex
unit vector in two spatial dimensions. The M = 2 limit
of this model describes two-dimensional Heisenberg an-
tiferromagnet, and the 1/M expansion we discuss in this
paper is a systematic way to calculate various observ-
ables. The elementary excjtations in the CPM —1 model
are S = 1/2 bosonic spinons. The spin variables are bi-
linear in spinon fields, and all physical excitations are
collective modes of two spinons. In the mean-field ap-
proximations, the spinons behave as noninteracting par-
ticles, and the static staggered spin susceptibility has a
branch cut along the imaginary It. axis, terminated at
k = —4m0, where m0 is the mass of a spinon.

We have shown that in all three scaling regimes at finite
T, the fluctuations of the gauge-field give rise to diver-

gent 1/M corrections near the branch cut. We selected
the most divergent corrections and have shown explicitly
that they form ladder series. We then found that the
ladder problem is equivalent to a Schrodinger equation
with the b-functional source in dimension D —1, where
D is the space-time dimension for the original problem.
Schrodinger equation has a discrete set of solutions, and
expanding near each of the solutions, we obtained, in-
stead of a branch cut, a sequence of simple poles. This
in turn quantitatively changes the behavior of the spin-
correlation function at large distances compared to the
mean-field predictions.

The result that the staggered susceptibility has a pole,
and not a branch cut, is consistent with the results of the
alternative perturbative technique for 20 antiferromag-
nets, which is the 1/N expansion for the O(N) sigma
model for an ¹ omponent real unit field. The latter
model describes Heisenberg antiferromagnet at 1V = 3.
Eleinentary excitations in the O(N) sigma model carry
S = 1, and, at any N, the static staggered spin suscepti-
bility has a well defined single pole at imaginary momen-
tum k = +i( i, where ( is the correlation length in the
system.

Comparing now for the CP and the O(N) sigma
models, we conclude that although the difFerences be-
tween them found at the mean-field level are now gone,
in practical calculations it is more convenient to use the
O(N) model. The reason is that the perturbative series
in 1/N is regular for this model, and converges much
better than the 1/M series for the CP~ i model. The
latter can even be nonanalytical in some cases, e.g. , when
calculating the spin-correlation length.

Our results still leave a minor discrepancy between the
two approaches: in the O(N) model, the static mean-
field susceptibility has a single pole, and 1/N correc-
tions do not lead to the appearance of new singulari-
ties. On the contrary, in the CPM model, we found,
to leading order in 1/M, an infinite set of poles. In-
deed, O(N) and CPM i models are equivalent only for
N = 3 and M = 2, when they both describe Heisen-
berg antiferromagnet. However, Bethe ansatz solution
for the O(3) model also indicates that there is a single
mass in the problem because the &ee energy as a function
of the uniform magnetic field, 6, has a single threshold
at h = m. ' We therefore expect that all the poles that
we have found in the CP model, except for the low-
est one, should disappear for M = 2. At present, we
can only speculate how this may occur —the most likely
possibility, in our opinion, is that the solutions of the
Schrodinger equation with n & 0 simply acquire a finite
lifetime due to higher-order corrections in 1/M. If this
is true, then the susceptibility in the CP model has
a single stable pole at any M, while all other poles that
we have found to first order in 1/M, form an incoher-
ent continuum where both real and imaginary part of
susceptibility are present. This is corroborated by an ob-
servation that the n-field propagator of the O(3) model,
evaluated at zero &equency and along imaginary A: axis,
also has an imaginary part for ~k~ ) 3m (k = ik) due to
decay of a S = 1 quanta into three others [the simplest
way to see this is to substitute a fixed-length constraint
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on n field by the u(n ) interaction term and do a pertur-
bative expansion in u (Ref. 23)j. We, however, emphasize
that this issue is irrelevant for the long-distance behavior
of the spin-correlation function as this behavior is associ-
ated with the lowest-energy (n = 0) pole, which is always
stable.

A Anal remark. In this paper, we considered a field-
theoretic description of the commensurate antiferromag-
net. One can also study the anisotropic version of the
CP model, with the extra factor (1 —p) in front of
~zg„z~ m (2.2) (0 & p ( 1). For p g 0 the gauge-field
propagator acquires a mass, which prevents the effective
potential V(r) in the Schrodinger equation from becom-
ing arbitrary large. As a result, even without damp-
ing, the number of poles in the staggered susceptibil-
ity decreases and Anally, when p exceeds some critical

value, the disordered phase possesses deconfined 8 = 1/2
bosonic spinons. The disordered phase with deconfined
spinons was also obtained in Ref. 3 by a direct 1/M ex-
pansion at small 1 —p. This limit is of particular interest
as the z-field model with p 1 describes incommensu-
rate quantum antiferromagnet near the critical point.
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