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Hole dynamics in generalized spin backgrounds in infinite dimensions
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We calculate the dynamical behavior of a hole in various spin backgrounds in infinite dimensions,
where it can be determined exactly. We consider hypercubic lattices with two di8'erent types of
spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary
spin probability on each sublattice. This model corresponds to a thermal average over all spin
configurations in the presence of staggered or uniform magnetic fields. On the other hand we
consider a definite spin state characterized by the angle between the spins on di8erent sublattices,
i.e. , a classical spin system in an external magnetic field. When spin Quctuations are considered,
this model describes the physics of unpaired particles in strong-coupling superconductors.

I. INTR.ODUCTION

It is well known that the discovery of high-T supercon-
ductors has triggered an extensive study of highly corre-
lated systems. The Hubbard and t-J models have been
prototype models towards the understanding of most of
the features of those materials. For low doping (near
half-filling) the system consists of dilute mobile holes in
a spin background.

A lot of effort has been devoted to the understanding
of the dynamics of holes in spin backgrounds. Brinkman
and Rice (BR) Ref. 1 considered several configurations
of the spin background [ferromagnetic (FM), Neel, and
randoin] and studied the density of hole states and dc
conductivity. Their calculation was based on Nagaoka's
expansion of expectation values in terms of background-
conserving hole paths. Of these, they only considered
retraceable paths, i.e., no loops were taken into account.
They obtained very accurate results for single-particle
Green's functions of a hole in the Neel background, be-
ing exact in one dimension (where all paths are retrace-
able). This retraceable paths approxiination (RPA) was
used to study many other quantities such as dynamical
conductivity, electrical resistivity, thermal conductivity,
thermopower, and specific heat.

Using different approximations, many other analyti-
cal approaches have been reported for the ground state
and excited properties of a single hole. There are also
numerous studies using exact diagonalization techniques
in low dimensions. ~ These results show a well defined
quasiparticle peak for J t whereas for small enough
J/t an incoherent spectrum carries most of the spectral
weight.

Most of the studies have been concentrated on the dy-
namics of a hole in an antiferromagnetic background.

The case of the polarized t-J model has been studied
in connection with strong coupling superconductors.
The negative-U' Hubbard model with n particles is equiv-
alent to a positive-U case with one particle per site and a
net magnetization given by S = ( 2"~. 3 So the dynam-
ics of a single unpaired particle moving in a background
of strongly bounded paired particles (strong negative-U
limit) is described by the t Jmodel. -

In the present work we study the single-particle
Green's functions in certain backgrounds, extending the
results of Metzner et Ol. to generalized spin back-
grounds and in particular to one that describes the
physics of holes in strong coupling superconductors.

The calculations are performed for infinite dimensions
where the results are exact. The limit of high lattice
dimensions, d ~ oo, has been used to study correlated
fermions and helped to clarify the validity of several
approximations and construct new ones.

A self-consistent approximation for finite dimensions
can be performed in a similar way as in Ref. 1. More
realistic calculations applicable to high-T, superconduc-
tors, for example, should also include interactions be-
tween holes and spin fluctuations. We neglect spin fluc-
tuations since they disappear in infinite dimensions, and
concentrate on the corrections due to the inclusion of
loops to the BR retraceable path approximation. This
latter approach does not distinguish between different,
spin backgrounds since paths without loops are always
background conserving. While in the Neel background
the BR approximation is correct up to order 1/d, where
d is the dimension, the contribution of loops becomes im-
portant whenever there are clusters of aligned spins. In
particular, in a FM background, any hole path leaves the
background unchanged, leading to Nagaoka's theorem.

The paper is organized as follows: in Sec. II we cal-
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culate the dynamics of a hole in an ensemble of spin
configurations in a hypercubic lattice, considering arbi-
trary spin averages or probabilities in each sublattice; in
Sec. III we consider a definite spin state characterized
by the angle between the spins on difFerent sublattices
and we obtain expressions for the local and A:-dependent
propagator. We summarize in Sec. IV.

for the Green's functions in powers of t/z. z For our hy-
percubic lattice we have to distinguish two local Green's
functions:

[
—S ()] [ -S ()]'

(4)

II. ONE HOLE IN A GENERALIZED SPIN
BAC K GROUND

We consider the t;J model for infinite dimensions with
J = 0, which with standard notation reads

II = t ) —(1 —n; )ct c, (1.—n~ ) .
(ij),o.

where Sx (X = A, B) is given by the sum over all
graphs for which the hole returns to the starting point
only once. Due to the simple topology of the loop trees,
S~ can be written as a sum over loops with dressed ver-
tices C~. This dressed vertex is given by the bare one
plus all possible S~ insertions, so we have

Cx (z) = px ).[Sx(z)]' =
I,=O

and

To keep the average kinetic energy finite in d ~ oo,
one must scale the hopping amplitude t as SA(z) = ).) .n2-[Ca-CA. ']

I —, Ikz) (6a)

(2)

t* fixed, where Z is the number of nearest neighbors (Z =
2d in a hypercubic lattice).

The Green's function of a hole in an arbitrary spin
background S is

(t' )
S~ (z) = ).) .~2- [CA.Ca. ']

I

—
I)

(6b)

where u is the number of self-avoiding return paths of
length n.

Defining a generating function for u

G,', (z) =) G,',.(.),
G~ (z) = (ct c,

S

M(() = 1+) u„(",
n=2

(3) Eq. (6) can be written as

where ( .)s = Ps, ms (S'~ . ~S') and ms is a normal-
ized distribution of spin configurations S'. The spins of
difFerent sites are statistically independent. We consider
a hypercubic lattice and characterize the spin ensembles
by assigning a probability for spin 0 in the sublattice
X: px' , X = (A, B) and 0 = (g, $). The random case
considered in Ref. 1 corresponds to p~ ——pB and inter-
polates between the FM (PA = 1) and the unpolarized
random (pA = 1/2). We generalize the calculation to
interpolate also between the random and the Neel back-
ground (PA = p~ = 1). The unpolarized random case
corresponds to a thermal average over all spin configu-
rations which contribute with equal weight. The other
polarized cases correspond to thermal averages in pres-
ence of uniform or staggered. magnetic fields.

We follow closely Ref. 14 for the notations. The cal-
culations are based principally on Nagaoka's expansion

.M[—'/CA C~ ] —1
SA z (8a)

.M[—'+CA C~ ]
—1

Sg z
Bo.

(8b)

M(() = 1+0(( ) for small ( ~ M(tG ) = zG . (9)

This implies

M(() = —,G, ($/t*) . (10)

Using this relation in a similar way as in Ref. 14 we
find

From Eqs. (4), (5), and (8) and defining Go as the
free particle Green's function and G ~ its inverse, the
following relations hold in the FM limit (PAg = p~g ~ 0):

1 + PAgpAg(zGAA —1) = ) pA a/PAappaGAAGBBG i QPAapBaGAA BB— (11a)

1 + p&~p&g (z G&& —1) = ) pp agpAapBa GAA GB8—G—j QPAapBa (11b)



4398 HALLBERG, MULLER-HARTMANN, AND BALSEIRO 52

A more compact expression can be obtained in the
symmetric case where p~ ——p~ . This implies G~~ =
Gii~ = G and Eqs. (11) simplify to

(12)

)
—~ /ized t" )

The density of states has exponential tails for large ~cu~

whenever p g 0. These come from the presence of FM
clusters in the spin configuration.

In the Neel limit (p~g -+ 0 ~ p —i 0), to first order in

p~g, Eq. (11) leads to

z —gz' —4t*2
zG —1=t* G mG=

2t* (14)

with p = gp~ p~ ranging from Neel to uniform ran-
dom backgrounds (0 & p & 1/2). The density of states
D(ur) = ——ImG(w + i0+) for this symmetric case co-
incides exactly with the density of states of the tilted
configuration with the correspondence p = n for n ( 1/2
[see Eq. (26) and Fig. 2).

As for ~w~ )) t* ~ G (w) 1/w, Eq. (12) implies
G(u) 1/u and pG Go(w/p). Using the density of
states of a free particle at large ~w~ we have

=G(o) (19)

and that Gx = (Gg ) k = px. G we obtain

G Q(z —Z~ )(z —Zgy ) = p~ G, (20a)
z —Z~

G Q(z ZA~ ) (z Zii~) = p~~ G. (20b)
z —Zg

From Eqs. (12) and (20) we obtain

Z~ = z(1 —pgy )—

E~ = z(l —p~ )—

1 —72

)
pw G
1 —72

p~ G

(21a)

(21b)

These expressions lead to the known results for the
Neel limit (p = 0) and the random case (p = 1/2) (see
Ref. 14). Here ImZ~ (u —i0+) & 0 Vu and there are no
quasiparticles in the system. This is expected since this
system does not have a Fermi surface.

This coincides with the results of the RPA. The corre-
sponding density of states

1
D((u) = /4t*2 —~2 ~ur~ ( 2t*

2~t*2

has a semielliptic shape with band edges at +2t* with a
square root singularity.

We also calculated the self-energy for this symmetric
case. It is k independent for d —+ oo and from sym-
metry Z~ ——Z~ . It is not necessary to use the Na-
gaoka expansion for the o8'-diagonal propagator in the
site representation as we did for the calculation of the
local propagator. Instead, we use the Dyson equation
together with the locality of the self-energy.

In a matrix representation for the A:-dependent Green's
function in the reduced Brillouin zone [ eA,, = —2t(cos ki+

. + cosk~) & 0] we have

III. ONE HOLE IN A TILTED SPIN
BACKGROUND

A more compact and straightforward calculation can
be done by considering a magnetic field acting on the sys-
tem polarizing the spins in a way sketched in Fig. 1. As
in the previous section, we are considering a hypercubic
lattice in a pure spin configuration with spins 0.~ and o.~
lying on the yz plane, forming an angle P between them.
In this way we can continuously connect the Neel (P = 7r)

This leads to

~Acr ek
Z —Kgycr ) (16)

A

G ( )
1 (z —Zii~ —ei

z —E~~ )

D = z —Z~ z —Z~

X Z EQw Z Egg~ +

After some algebra and considering the fact that

(18) FIG. 1. Schematic representation of the spin configuration
in the tilted background, in the presence of a magnetic field
h.
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to the FM (P = 0) background.
As we mentioned in the Introduction, this model also

describes the dynamics of an unpaired particle in a
strong-coupling superconductor. The spin variables up
and down correspond to an empty and. a doubly occupied
site, respectively. The external magnetic field plays the
role of a chemical potential since the total magnetization
is given by the total number of particles S, = (1 —n)/2.
The magnetization in the x —y plane corresponds to the
super8uid order parameter.

By moving along a loop, a hole will replace A spins
with B spins and the overlap between two states at any
given site is

0.40

0.30

0.20—a

0.10—

&2)
(22) 0.00

-4 0 -2.0 0.0
(6/t

2.0

For a 2n loop, 2n —2 sites are changed, therefore

M [nCt*/z] —1
2C

FIG. 2. Density of states for the tilted background for dif-
ferent values of n = cos(P/2): n = 1 (FM case, dashed-dotted
line), n = 0.8 (dashed), n = 0.5 (dotted), n = 0.3 (full), n = 0
(Neel, long-dashed line).

(23)

where M is given by Eq. (7).
Here again e' +~

f g) = cos
/

—
/ / g) —sin

/

—f[ $)&4) &4~
(27)

From Eqs. (10), (23), and (24) we obtain

(24) and on the B sites by changing P by —P. So the Green
function can be written in a matrix way in the spin rep-
resentation

21 —0!
nG(z) = G nz + nG z

(25)

( cos2(~)
AAoo' —

~
. (y) (y)

—sin @ cos ~

sin (~z) ) '

(28a)

This expression is equal to Eq. (12) for the symmetric
random model with the correspondence

n = cos(P/2) = p = gpA pA (26)

for n ( 1/2. But Eq. (25) is more general because n
can assume any value between 0 and 1: o. = 1 corre-
sponds to the FM case and o, = 0 to the Neel case. The
hole dynamics for n = 1/2 (~ P = 2n/3) happens to
coincide exactly with that for the unpolarized random
background.

In Fig. 2 we show the density of states corresponding
to the one-particle Green function of Eq. (25) for sev-
eral values of P. G has been calculated self-consistently
using the Neel Green function (14) as a seed. The only
case without tails is the Neel configuration (P = n) that
presents square root singularities at the band edges. The
states in the tails of the other configurations correspond
to low energy (say u -+ —oo) states due to FM clusters.
It also seems that for all values of o. there is an energy
wo such that D(wo) is independent of n (this crossing
also happens for the real part of the propagator at an-
other energy). But this coincidence is only approximate,
being, nevertheless, a curious feature.

We calculated the full propagator in the tilted back-
ground. For the disposition of axes chosen, the spin on
the A sites can be written as

GBB = G(P ++ —P).

((ckt Icky)) ((ckg lck+~~) )
( )

~ ((ck+g~lck~)) ((ck+&&lck+~~)) ~

Then

I(Gkoo')k = GAAoo' = 0 &'GBBoo' ~

Considering the locality of the self-energy we can write
the inverse of Eq. (29) as

G„, z)= (z —., —Z» —Z».+,„ (31)

For this type of configurations there is a generalized
Bloch theorem. The elements of the symmetry group
that leave the configuration ~X) and the Hamiltonian
invariant are gi = Tie' *~, where i = P i /; i.e. ,
translations coupled with rotations in m about the z axis.
So ckt ——~ licit e'k' is an eigenoperator of Gi with

eigenvalue q such that e'+' = (o'i) e' ' = e'( + +~ &'

and Q = (vr, . . . , 7r). This implies that ck can couple
only to c&+

We define a propagator in the spin representation
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so

(32)
where

D = (z —&i —~~~)(z+ 'A —~~~) —~t~~~~
= —(eA, —E+)(ei, —E ),

1
E~ =

Z
(~~~ —~~~) +

2
(~~~ —~~t) —4~~~~+ + 4(' —~a~) (z —~u. ).

This leads to

+4T + —~I ++ —&k

+z —E' —Zgg z —R+ —Zgt
E —eg,

Using Eqs. (19), (30), and (34) we obtain

1 ( [z—
z (Ztt+Z) i )](G —G~ ) —

z v~W(G +G~ )

Zgg(G —G+) Lz
—iz (Zgg+Zgi)](G —G+)+ ~~ ~W(G +G~) ) (36)

where

~ = (~W —~n )' —4~t~~~~ + 4(' —~tt) (z —~~~)

(37)

Zgl /E —+ 2 cot
~

—
~

(4)
i, 2

Finally the full propagator becomes

(40c)

(2z —Egg —Zgg)(G —G ) = Gv W, (38a)

G++G = Gcos i' —i,o o (38b)

and we have defined Go(E~) = G+.
Equation (36) implies Egg(z) = Zgt(z). Together with

Eq. (28) it also gives a set of three equations for Zg~,
Egg, and Ztg..

tail( ~) f' cot(y/4) —]
2(E+ eA, ) ( —1 tan(Q/4) ) ' (41)

where E+ is given by Eq. (39). From Eq. (29) we see that
the spin-Ripped propagators are obtained by replacing k
by k + Q, i.e., ei, by —

eA.. .
In Fig. 3 we show the spectral density pk(w) obtained

from these equations for several values of P and k = Q.
The Neel case is equal to the local density of states since
it is A: independent. In particular, no quasiparticle peak
is present since the system has no Fermi surface. Only

2Et~(G+ —G ) = —Gsin
~

—
~

~W.. (Ol
E2)

(38c)

1.0

sin (~z)
E+ ——zcos

i

—
i +

& 2 p G cos(@)
(39)

We cannot obtain separate expressions for the self-
energies but II g ~ can be calculated by knowing the
ratios Z~~/E, Z~~/E, and Zt~/E . From Eq. (38)
and the definition of E (34), we have, for E ~ oo

From these equations we obtain G = 0 which im-
plies E —+ oo as well as the three self-energies. From
G (E+) = Gcos( ~) and Eq. (25) it follows that
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Zgl /E m 1 —tan
(.4i (40a)

0.0
-4.0 -2.0 0.0

(0/t
2.0 4.0

Zgt/E m cot
~

—
~

—1, (4't
FIG. 3. Spectral density for the tilted background for

k = Q and difFerent values of cr = cos(P/2): the symbols
correspond to those of Fig. 2. The FM case presents a delta
function at w = 0.
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the FM background presents a quasiparticle peak that
corresponds to the dynamics of a free particle.

IV. SUMMARY' AND CONCLUSIONS

We have obtained general expressions for the single
particle Green's functions describing the dynamics of a
hole in a generalized spin background in infinite dimen-
sions. Our calculations are a generalization of those per-
formed in Ref. 14.

We characterized the ensemble of spin configurations
in a hypercubic lattice by the average value of the spin
in each sublattice. Closed expressions were found for
the symmetric case (p~ = p~ ), interpolating between
Neel order and the unpolarized random case.

We also performed the calculations considering a mag-
netic field acting on the system that tilts the spins in such
a way that spins of difFerent sublattices form an angle P
between them. In this case we obtain expressions for the
local and A: dependent propagator as a function of the
angle P, so the results interpolate between the FM and
Neel configurations.

The local density of states gets narrower when depart-

ing from the Neel order and acquires exponential tails
that come from the contribution of FM clusters to the
hole motion. The spectral function pi, (a) also shows this
behavior. A quasiparticle peak is seen only in the FM
case and it corresponds to the movement of a free parti-
cle.

A self-consistent calculation for finite dimensions can
also be carried out in a similar way as in Ref. 14, con-
sidering the exact expression for G in d dimensions and
scaling the hopping as in Eq. (2). Nevertheless, one has
to take into account that in this calculation only loop
trees have been considered. Paths with loops on which
a hole walks around more than once or with multiply
connected loops are suppressed with respect to the loop
tree by some integer power of I/d. Also, in the Neel
case, at the band edges, where the density of states is
small, corrections become very large. Another important
feature that is neglected in these calculations is the pres-
ence of spin Quctuations that become important at low
dimensions. Nevertheless, this approximation can always
be corrected by properly taking into account all the rel-
evant hole paths (for the two-dimensional Neel case see
Ref. 18) or by allowing background restoring spin Hips
along the path.
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