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We present analytic evidence for the occurrence of an upsilon point, an infinite checkerboard
structure of modulated phases, in the ground state of a spin model with uniaxial modulation. The
structure of the upsilon point is studied by calculating interface-interface interactions using an

expansion in inverse spin anisotropy.

I. INTRODUCTION

Simple spin models can have surprisingly complex
phase structures, even at zero temperature. In particular,
near multiphase lines, along which the ground state is in-
finitely degenerate, a perturbation such as temperature,’
quantum fluctuations,? or softening of the spins® can re-
sult in infinite sequences of stable phases.

The existence of upsilon points (YT points) in Frenkel-
Kontorova models has been pointed out recently.®®
These occur when two multiphase lines meet at a first-
order boundary. A small perturbation about such a point
can stabilize an infinite checkerboard structure of com-
mensurate phases as shown in Fig. 1. In many ways
the T point can be thought of as a two-dimensional gen-
eralization of the behavior customary near a multiphase
point.

The occurrence of an Y point in a spin model was re-
cently suggested by the numeric work of Sasaki.® Here we
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FIG. 1. Schematic representation of an Y point. Finer de-
tails are not shown.
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present analytic evidence for the existence of an T point
in a spin model. The system we consider is the chiral XY
model with sixfold spin anisotropy in a magnetic field.”
We identify a candidate for an YT point at infinite spin
anisotropy D and show that, as D is reduced from infin-
ity, the softening of the potential wells allows formation
of a T-point structure.

We follow the method introduced by Fisher and
Szpilka® and extended by Bassler, Sasaki, and Griffiths®
and identify the multiphase structures as comprising in-
terfaces separating domains of the different phases. The
behavior near a single multiphase point can be analyzed
in terms of a unique type of interface. However, there
are two (or more) different phases stable near an Y point
and hence different types of interface must be identified in
the analysis. It is the interactions between the interfaces
which are responsible for breaking the multiphase degen-
eracy and a knowledge of their sign and dependence on
separation allows determination of the phase diagram.
Here the interface-interface interactions are calculated
using an expansion in D713

II. MODEL

We consider the classical chiral XY model with six-
fold spin anisotropy, D, in the presence of an external
magnetic field h. The Hamiltonian of the system is

H= Z{—cos(&_l —0; + 7wA/3) + h[1 — cos(6;)]

+D[1 — cos(60,~)]/36}, (2.1)
where 6; is the angle between the ith spin and the
magnetic-field orientation. We shall concentrate on the
behavior of the model near the limit D = oo, where
n;, defined as 36;/m, can take only the integer values
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{0,1,...,5}. Although we restrict ourselves to one di-
mension the results apply equally to models with ferro-
magnetically coupled layers and an uniaxial modulation
driven by the interactions (2.1) perpendicular to the lay-
ers.

The ground-state configurations of the Hamiltonian
(2.1) satisfy

OH

8_91:0 V’L.

(2.2)
For a given ¢, Eq. (2.2) enables us to express 6,1 as a
function of 6; and 6;_;. This fact, together with the ob-
servation that n; € {0,1,...,5}, is sufficient to conclude
that, for D = oo, there will always exist periodic min-
imal energy configurations. It will be convenient to la-
bel a periodic configuration {...,0x,60:,02,...,0n,01,...}
as (nynz..ny).

We can now discuss the phase diagram for D = oo,
obtained using the Floria-Griffiths algorithm,!® and pre-
sented in Fig. 2. We have restricted the labeling of the
phases to the first quadrant (0 < A < 3;h > 0); the re-
maining phases can be constructed through appropriate
symmetry operations on the n; sequences. The transi-
tion lines between regions A and J and regions J and F
are first order. The remaining boundaries are multiphase
lines, that is loci where all phases (including nonperiodic
ones) built from arbitrary combinations of the two neigh-
boring phases are degenerate.!

If the spin anisotropy is reduced from oo it seems nat-
ural to expect the degeneracy along the multiphase lines
to be lifted as the spins soften from the clock positions.
Although n; is no longer constrained to assume integer
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FIG. 2. Ground state of the Hamiltonian (2.1) for D = co.
A = (0); B = (012345); C = {(024),(153)}; D = (01245);
E = (0135); F = {(03),(14),(25)}; G = (02514);
H = {(025),(014)}; I = (015); J = (15). The dashed lines
are first-order boundaries.
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values, nevertheless, for high values of D, the angles 6;
will be close enough to the clock positions to allow us to
continue to use the same labeling scheme.

We are particularly interested in the possible appear-
ance of T points for finite D. An T point can occur when
a first-order transition line separating, say, phases ()
and (B) (that, for simplicity, we now assume to be nonde-
generate) approaches a commensurate-incommensurate
transition. An infinite number of phases spring out from
the multicritical point at the end of the first-order line (as
represented in Fig. 1). The phases appearing are made
of sequences of () and (B8). As o # [ the interfaces
separating them, which we shall call I,5 and Ig, are also
generally distinct. In the example of Fig. 1 the gen-
eral form for a phase in the fan is (a”I,38™Igs), where
the integers n,m increase approaching the (o) and (3)
boundaries, respectively.

The multiphase point P highlighted in Fig. 2 seems
to be a good candidate for becoming an T point when
D is relaxed from oco. P lies at the end of a first-order
transition line and it seems reasonable to consider the
two multiphase lines J-G and G-F' as special cases of
accumulation lines. Therefore we might expect to observe
a structure similar to Fig. 1 for small values of 1/D.

III. (o) BOUNDARY

Consider the J-G boundary (at a finite distance from
the point P). When D = oo the phases (a) = (51) (region
J in Fig. 1) and (51402) (region G) coexist, and it is
easy to check that along the boundary all phases built
with o sequences separated by a [402] = I block (i.e.,
(a™Ia™...)) are degenerate. We want to study how this
degeneracy is lifted when D assumes finite values.

It is physically appealing to regard the I block of spins
as an interface separating pure a sequences. Following
Ref. 8 one can conveniently write the energy per spin of,
say, phase (a™I) as

E = EY + [2n(E2 — E?) + 0 + V,(2n)

+Voa(2n,2n) + -]/ (ng + 2n), (3.1)

where ny = 3, EY (EQ) is the energy per spin of phase (I)
({@)), o is the creation energy of I, V,(2n) is the inter-
action energy of two interfaces I separated by a distance
2n, Vaa(2n,2n) is the interaction energy of three inter-
faces, and so forth. In the (a) region the interface ten-
sion o is positive; as the phase boundary is approached o
decreases and eventually, when it balances the interface
interactions, it will be favorable for the system to replace
the pure o phase with a modulated one. The nature of
the transition depends on the form of the interface inter-
actions, which we now calculate to leading order using
an expansion in inverse spin anisotropy.

In the large D limit V,(2n) dominates the energy con-
tribution from the interface interaction terms. It can be
obtained using the reconnection formula®

Va(2n) = E1 + E2 - E3 — E4, (32)
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where E; is the energy of configuration 7 as sketched in
Fig. 3.

Equation (3.2) is exact, but is not convenient for our
purposes, as we want only the leading term of V,(2n).
In fact, we can exploit the rapid decay of the V,, with n
to substitute all infinite segments in Fig. 3 with finite
(though sufficiently long) ones. Thus Eq. (3.2) can be
approximated by

VQ(ZTL) ~ FEjr+ Ep — Ec¢, (3.3)
where A, B, and C, are the periodic configurations
sketched in Fig. 4. no + 2n and N — 2n — 2n; — ng
are assumed to be both a large multiple of 2n and much
greater than njy.

We label the spins of configurations A, B, and C
as {a1,82,...,8n, = a0}, {bng+1s--sbN = bn,}, and
{c1,¢2,...,cN = co}, respectively. For D large the spins
will deviate from their clock positions {a?}, {67}, and
{c?} by an angle analytic in D~! and we write
b; = b9 + b, (3.4)

0 ~ 0 ~
a; = a; + a;, ¢ = ¢; + ¢;.

We can choose to label the spins such that

no+1<i<N.
(3.5)

__ .0
=C;,

a0=CO ISZSTL(), bo

k2

Then using a superscript tilde to indicate we are working
only to second order in the spin deviations {a;}, {b;},
{€;} the two-interface interaction can be written

no

Va(zn) = 7:L(a'"u’ a‘~1) + Z 7:I'(a'i—-ly a'i) + 7:I'(I;Na Eno+1)
=2
N ~ ~ ~
+ Z H(bi—1,b;)
i=no+2
~ N ~
—H(En, &) + D H(Ei1,8), (3.6)
=2
where
H(dio1,8:) = iy i{aio —ai+ A7 ;)
+he(a; + €2)? + Da? /2, (3.7)
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FIG. 3. Configurations needed to calculate the

two-interface interaction; see Eq. (3.2).
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FIG. 4. Periodic configurations appearing in the approxi-
mate reconnection formula (3.3).

with
Ji = cos(al_, —ad + wA/3)/2, (3.8)
hg = heos(af) /2, (3.9)
Af ;= tan(a)_; —a] +wA/3), (3.10)
€2 = tan(a?). (3.11)
It follows from (3.5) that
€ =€, he = ht (3.12)
for all 7 and that
1 = i1 i—1i = A1 2<1<ng
(3.13)
Jf’—u =J 16 A':ll)—l,i =A7_ 15 ng+2<:< N.
(3.14)

For the cases considered here it will be possible to label
the phases so that (3.13) is also true for ¢ = 1 and (3.14)
for ¢ = ng + 1. Under these circumstances we may drop
the a, b, and c superscripts on the quantities defined
in (3.8)—(3.11). It is then possible to use the recursion
equations (2.2) to simplify (3.6). After some algebra one
obtains
Va(2n) = —Jo,1{(@n, — bN)(C1 — Cng+1)

—(@1 — bro+1) (BN — Eno)}- (3.15)

The quantities appearing in (3.15) can be obtained to

leading order in 1/D using the recursion equation (2.2).

An example of how to calculate V,(2n) is given in the
Appendix. The result for general n is

f/a(Zn) = C;CZ_I{S‘; _ 53}2/D2n + O(I/D(2n+1)),

(3.16)

where
S; = sin[r(A —1)/3], (3.17)
C; = cos[n(A —1)/3]. (3.18)

Terms of higher order than quadratic in the Hamilto-
nian (2.1) will not contribute to the leading term of the
interface-interface interaction and hence to leading order
Va(2n) and V,(2n) will be equal. Therefore we shall not
distinguish between them below.

A knowledge of the leading term in the interface-
interface interaction, Eq. (3.16), allows us to take the first
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step in determining the ground-state configurations. Be-
cause we are considering only two-interface interactions
the interfaces must be equispaced in the ground state.
Inspection of Eq. (3.16) shows that V,(2n) is always pos-
itive and convex near P. This is enough to conclude that,
for D large, all transitions {(a™I) — (a™!I) occur as o
is lowered.®

To this order of approximation the {a™I) : (a™*!I)
phase boundaries remain degenerate and higher-order in-
terface interactions can introduce qualitative changes in
the phase diagram. This will be discussed further in Sec.
V.

IV. (3) BOUNDARY

We now focus our attention on what happens along
the (8) boundary in the two-interface interaction approx-
imation. In the F' region of the phase diagram (Fig. 2)
three phases coexist when D = oo, namely 3, = (14),
B2 = (25), and B3 = (03). However, when D is relaxed,
only phases 3; and (3, continue to stay degenerate, while
phase (33 has a higher energy.

Consider the boundary between one of the phases
(a™I) and region F. Along this boundary, in
the absence of interactions between the interfaces
I, = (51)"4, I, = 0, and I3 = 2, all phases
((51)™ 4(14)™ 0(30)% 2(52)P* (51)"4(14)™20(30)'22(52)P>
....) are degenerate.

Now we turn on the two-interface interactions. In
this approximation, the possible ground states are peri-
odic and have the form {(51)"4(14)™0(30)!2(52)?), where
m, I, and p depend on o. In the following analysis we
shall hold n fixed and assume that o can be varied to
trace out the phase sequences.

The energy per spin can be written

E = {(1 + 2n)E11 + Eg,2m + Er, + Eg,2p + Ej,
+Eg,2l + o + Vg, (2m) + Vp, (21) + Vg, (2p)}/L,
(4.1)
where L = (2m+2p+2l+3+2n) and o includes the energy

tension of the three interfaces Iy, I, and Is. Simple
calculations show that

Ep, = Bp,, Ep, = Bp, +3h%/(8D) + O(1/D?). (4.2)

Proceeding as in Sec. III and the Appendix the two-wall
interactions between interfaces bounding phases (8:),
(B2), and (Bs) are to leading order

Vaﬂlﬁzmﬁz (277'7 2m,2p,2q,..., 23) = Va(zn)taﬂ1 Vﬁ1 (2m)tﬁ1ﬁz Vﬁz (Zp)tﬂzaVG(Zq) RS 7 N Vﬁz (23)’
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FIG. 5. Schematic phase diagram near the Y point
in the two-interface interaction approximation. The
notation [n,m,l,p] is used to indicate the phase
((51)™4(14)™0(30)'2(52)"). The bold solid lines are accumu-
lation lines. The dashed line is a first-order boundary.

Vs, (2m) = Vg, (2p) = D-Cm+D {5, — 55} C2m+1)
Vs, (21) = DV, (21)/Cs. (4.3)

We now want to find the values 7, p, and I which
minimize (4.1) for a given n and o. By symmetry argu-
ments one has m = p. It follows from (4.2) that I must
be bounded from above. Indeed an explicit calculation
of the energy O(1/D) shows immediately that [ = 0 or 1
and that the sequence of phases as o is lowered is, using
the notation [7,m,, p], [A,0,0,0] = [#,0,1,0] — F.

The boundary between [, 0,0, 0] and [#, 0,1, 0] is non-
degenerate and cannot be split by terms of higher or-
der in D~!. The boundary between [7,0,1,0] and F
remains degenerate to all phases of the form [#,m, 1, m].
The effect of higher-order terms can be deduced by not-
ing that Vj,(2m) and Vp,(2p) are positive and con-
vex. This implies that all the transitions [fi, m,1,m] —
[A,m + 1,1,m + 1] are stable.® Figure 5 summarizes the
results of the two-interface interaction analysis.

V. HYPERFINE STRUCTURE

We now restrict our analysis to the richest region of the
phase diagram, i.e., where I = 1. We already know that,
in the two-interface approximation, the possible ground
states can be written in the form (a™I187* 05 15) =
[n,m,m], where I; = 4, I, = 030, and I3 = 2. Bassler,
Sasaki, and Griffiths® have shown that for exponentially
decaying interactions such as is the case here the general
form of the interaction energy of an arbitrary number of
interfaces can be constructed as

(5.1)
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where the V’s are defined in (3.16) and (4.3) and to lead-
ing order we find

tops = D3{Ss — S5} °C2CE,

tap, = D{(S3 — 52)(S4 — 85)} ",

tBra = lap, - (5.2)

The formulas (5.2) follow from calculations similar to
that described in the Appendix. For example, taking the
phases A = [n,m,m], B = [n,m+1,m+ 1], and C =
[n,m, m,n,m+1,m+1] the right-hand side of Eq. (3.15)
is equal in leading order to Vg, (2m)tg, s, Vs, (2m + 2).
ts,p, can then immediately be extracted by using the
expression (4.3) for Vg, and Vj,.

With the aid of (5.1) it is possible to examine the ef-
fects of three-interface interactions on the superdegen-
erate boundaries in Fig. 5. Consider the general case
represented in Fig. 6(a). All four boundaries are multi-
phase lines where any sequence of the two neighboring
phases are degenerate within the two-interface interac-
tion approximation. For the [n,m,m] : [n + 1,m,m]
and [n,m+ 1,m+ 1] : [n + 1,m + 1,m + 1] boundaries
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FIG. 6. Detail of the phase diagram in (a) the two-interface
approximation; (b) the three-interface approximation; (c) the
four-interface approximation. First-order lines are dashed.

this exhausts the possibilities and the three-interface
interactions are not of sufficiently long range to split
the degeneracy. For the [n,m,m] : [n,m + 1,m + 1]
(ln+1,m,m]: [n+1,m+ 1, m + 1]) boundary, however,
the phases [n,m+1,m] and [n,m,m+1] ([n+1,m+1,m]
and [n + 1,m,m + 1]) are also degenerate and there
is the possibility that these may be stabilized with re-
spect to [n,m,m] and [n,m+1,m+1] ([n+1,m, m] and
[n+1,m + 1,m + 1]) by the three-interface interaction.
To check this we need the energy differences®®

2E[n,m+1,m] - E[n,m,m] - E[n,m+1,m+1] = 2E‘[n,n'l,rrHrl] - E[n,m,m] - E[n,m+1,m+1]
~ Vﬁlﬁz (me + 1) + Vﬁxﬁz (m + 1,171,) - Vﬁlﬁz (m +1,m+ 1) - VﬁlBZ (m7m)’

which are dominated by Vg, g,(m,m) and which are
therefore negative. Similarly the [n + 1,m,m] : [n +
1,m+ 1, m + 1] boundary is unstable with respect to the
formation of {[n + 1,m + 1,m],[n + 1,m,m + 1]}. The
resulting modification to the phase diagram is sketched
in Fig. 6(b).

(5.3)

The V,; terms do not cause further splitting of the
multidegenerate lines of Fig. 6(b) but they qualitatively
change the phase diagram near the two points where four
lines meet. In proximity of the upper one the structure
of the phase diagram is determined by the signs of the
energy differences®

AVy = Vg, g, (nym,m) + Vag,p, (n + 1,m + 1,m) — Vag, p, (n+1,m,m)— Vag, g, (n,m + 1,m),

AV; = Vg, gya(m,m,n) + Vg, g,a(m + 1, m,n + 1) = Vg, gra(m + 1,m,n) — Vg, gya(m, m,n + 1).

With the aid of the factorization formulas (5.1) it is
possible to check that the two energy differences (5.4)
are positive. This means that phases [n + 1,m,m| and
{[n, m, m+1],[n, m+1, m]} are separated by a short first-
order line; similarly one can show that {[n + 1,m,m +
1],[n+1,m+1,m]} and [n,m+1, m+1] also coexist at a
first-order transition. In this approximation the structure
of Fig. 6(b) must be modified as in Fig. 6(c).

The factorization formulas (5.1) allow us to go further
and study the effect on the phase diagram of interface-

(5.4)

-

interface interactions of all orders. Bassler, Sasaki, and
Griffiths® showed that the form of the phase diagram
depends upon the sign of the two-interface interactions
(3.16) and (4.3) and the t’s, Eq. (5.2). Here these are
all positive corresponding to a case where the superde-
generate boundaries at the end of the first-order lines in
Fig. 6(c) split under the effect of higher-order interface-
interface interactions, giving rise to a structure analogous
to that in Fig. 5 (but where the phases have longer peri-
odicity). Furthermore one can carry the analysis further
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by studying again the splitting near the points where
four lines meet and so on, finding a structure similar to
the one in Fig. 6(c). The analysis can then be repeated
ad infinitum, showing that the YT point has, indeed, a
self-similar, fractal structure.

VI. DISCUSSION

The analysis presented above was based on retaining
only the leading-order term in the interface-interface in-
teraction. We cannot rule out the possibility that the ne-
glected higher-order contributions could affect the phase
diagram. In particular there will be correction terms
O(I2/D?) where [ is the period of a given phase which
could introduce qualitative changes for [ large and D not
sufficiently small.

The results were checked numerically in two ways.
First we used the Floria-Griffiths algorithm® on a grid of
size 1200 to check which phases appeared. It was possi-
ble to resolve phases with [ up to 13. Secondly we used a
mean-field analysis, exact at zero temperature, to check
the positions of the phase boundaries. In this way the
formulas for the interface-interface interactions could be
verified for short-period phases (typically ! up to 9).

To summarize, we have presented analytic evidence for

i=’no; 1, 2,
I

A: 3dd/w 5 1 5 1
T = N;no+1,

14
B: 3b/w 5 1 515 1
z=N, 1, N, No
4 + 4
C: 3¢/w 5 1 515 1

We can now use (3.15) to calculate V,(6) to leading order.
The quantities (Gn, —bn), (@1 —bno+1), (€1 —Eng+1), and
(én — €n,) can be obtained correct to leading order from
the linear approximation to the recursion equation (2.2),

b = {<2h2(l + 80 + 200 0s = A1)

2703410 — Gigr + A?,i+1)}/Da (A2)
where we have used the definitions (3.8)—(3.11).
Let
o o
0,-——1—)— Dzt (A3)

Substituting into (A2) and equating like powers of D!
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the existence of an Y point in a spin model. The phase
diagram has been constructed inductively by calculat-
ing the interface-interface interactions to leading order
in 1/D, the inverse spin anisotropy. Following arguments
due to Bassler, Sasaki, and Griffiths® we have argued that
the T point has a self-similar, fractal structure.
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APPENDIX: CALCULATION
OF THE TWO-INTERFACE INTERACTION

As an example of how to obtain the two-interface in-
teraction we consider explicitly the calculation of V,(6).
Following Fig. 4 we need to consider the periodic phases
listed below where no =4, N =24, and n =n;y = 3. A
choice of labeling that satisfies (3.13) for 1 < ¢ < ng and
(3.14) for ng +1 < ¢ < N is as shown:

402 51515151402

+1, ...

515 140251515151402. (Al)
[
gives
92'1 = 2Ji9+1,iAg—1,i - 2Ji9,i+1A?,i+1 - 2hfef, (A4)
07 = “2hf9;l_l - 2Jf—1,i(9?:11 -7
=20 (077 - 070, n> L (A5)

To calculate (@1 — bp,41) it is helpful to display explic-
itly a and b%_,; as a function of s:



It is important to point out that the labeling used in Eq.
(A1) is not unique. Any labeling which satisfies (3.13) for
1 < i< ngand (3.14) for 1 < ng+1 < N will give the cor-
rect results for V,(6). However, in general (@1 — @ng+1),
etc. will contain lower powers of 1/D which cancel when
the difference in (3.15) is taken. The choice given above,
which maximizes the distance of the position (*) where
a? first differs from b3 ., avoids such cancellation and
leads to the easiest calculation.

It is important to mention that because the interface-
interface interactions decay very rapidly (exponentially)
with increasing interface-interface distance the values of
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i e 3-2-10 1234 .. It follows immediately from (A4) that
* *
3al /7 515 15:15151 51
362 i/ 025 15:15140 25 -
ot * * (a3 — bpe+3) = %{sin gA——?)J —sinli-g—A——4] }
(A6) (AT)
The *’s mark where af first differs from 5¢,, when
moving away from the dotted interface in either direction. Two further iterations of (A5) give
J
- = 1 ™ T - =
(@1 — bpg+1) = Dz o8 [gA +ad - ag:| cos I:EA +ad — ag] (@3 — bry+3)
1 iy ™ s L™
= s 08 [g(A - 4)} cos [g(A —2) {sm[gA - 3] —sin [-?;A — 4:| } (A8)
(@n, — by') may be calculated in an analogous way
(@no — bn) = — (@1 — bngt1)- (A9)
Similarly
(E1 — Enot1) = (BN — Eno) = (@1 — bno+1)- (A10)
Using Jo,1 = cos[5 (A — 2)]/2, from the definition (3.8) and substituting (A8)—(A10) into (3.15) gives
) 2 2 3
7 . ™ . ™ U s
.Va(ﬁ) = ———D—g{sm[—gA - 4] —sin [EA — 3] } cos [Z’;(A — 4)] cos [E(A - 2)] . (A11)

no +2n and N — 2n — 2n; — ng need not in fact be much
larger that 2n and n;. That sufficiently large values have
been chosen can be checked a posteriori by verifying that
increasing the values of ng and N does not change the
result (A1l).

Finally we give an explicit expression for the interface
energy o defined in (3.1). A leading-order calculation
gives

1
oc=0C; +C4—2C3 +5{S§ - 25:3 — 285554 + 4535, — SZ

+hV/3(82 — 2S5 + S4)} + O(D7?) . (A12)
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