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A general discussion of the temperature dependence of the magnetic anisotropy of single-ion origin
is given based on the connection between the experimentally measured anisotropy constants and the
theoretically more fundamental anisotropy coeKcients. The cases of uniaxial and cubic crystal
symmetry are considered in turn and the qualitative and quantitative difFerences between them
are treated. General analytical arguments valid for at least a whole class of untrivial collective-
excitation theories including the mean-field theory are implemented to describe exhaustively the
types of temperature dependence of the anisotropy constants in the two-parameter phenomenological
expression for the free energy. Anisotropy-flow diagrams in the plane (Kz —Kz) are given for both
the uniaxial and the cubic cases. In both cases, three crossover-inducing wedges have been detected
in the anisotropy phase diagram. A system which resides in one of these wedges at 7 = 0 inevitably
runs away to a phase with another easy-axis orientation at some spin-reorientation temperature
1s when the temperature is increased. Tg is determimed for some representative cases. In the
experimentally interesting case when a uniaxial system evolves from a tilted axis to an easy axis
along the c axis or in an easy plane perpendicular to it, the temperature dependence of the cone
angle 8(T) is given and a critical angle O„resolving between the two possible crossover scenarios
is determined. Prospective generalizations and applications are described for the implementation
of the general procedures to the characterization of anisotropy in technologically important hard
magnetic materials as typified by Nd&pe&4B.

I. INTR.ODUCTION

It is the purpose of this paper to show that very gen-
eral theoretical arguments lead to the prediction of a va-
riety of possibilities for the temperature dependence of
the experimentally measured magnetic anisotropy con-
stants which rank among the most extensively studied
and important properties of magnetic materials. On one
hand, this variety is in itself a much desired. qualitative
match to the corresponding variety of experimental tem-
perature behavior of anisotropy. On the other hand, the
proposed method has the power to introduce quite gener-
ally quantitative systematics into this variety. The anal-
ysis is carried out by using the connection between the
respective sets of anisotropy constants and anisotropy
coefficients. The set of constants arises when one im-
plements the phenomenological thermodynamic expan-
sion of the direction-dependent part of the free energy
in powers of direction cosines, while the set of coeK-
cients corresponds to the expansion of the same quan-
tity in spherical harmonics. The constants are the ones
measured in experiment, while the coeKcients are theo-
retically much more convenient because of their superior
transformation properties. The set of coeKcients is
also the more fundamental one, because it emerges nat-
urally at the statistical mechanical level of treatment of
magnetic anisotropy, where one starts with the formu-
lation of the relevant quantum mechanical Hamiltonian

and proceeds with the development of the thermodynam-
ics by eventually computing the partition function. The
fundamentality of the anisotropy coefFicients is then seen
to stem &om the group-theoretical classi6. cation of the
spin operators describing the magnetic anisotropy at the
quantum mechanical level. An enlightening description
of the possible levels of treatment of magnetic anisotropy
and magnetostriction can be found in Ref. 4.

Prototype substances to which the following discus-
sion of single-ion anisotropy applies immediately are all
those cases where there is a well-defined single-ion con-
tribution to the overall anisotropy coming from magnetic
rare-earth (RE) ions. However, the described procedures
are certainly applicable to other cases of anisotropic ma-
terials where anisotropy-producing mechanisms may still
be cast in the form given in the next section, although
for them there might not exist a rigorous justifying
procedure comparable to the well-established operator-
equivalent method. '

II. STATISTICAL TB.EATMENT
OF ONE-ION ANISOTROPY

As is well known, the partition function can be calcu-
lated exactly only in rare cases or under special unreal-
istic assumptions. To the purposes of treatment of mag-
netic anisotropy, however, there are quite general and
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commonly met conditions under which a Grst-order ther-
modynamic perturbation theory produces rather satisfac-
tory quantitative results. This is the dominant-exchange-
interactions case when the crystal-Geld anisotropy terms
are much smaller than the quantum-mechanical ex-
change, usually represented as a Heisenberg-exchange
term in the Hamiltonian, which is responsible for the
strong magnetic behavior of the system of interacting
moments. ' The starting point is then the Hamiltonian

'R = 'Rp + 'R~,
where the bare part contains the dominant exchange in-
teraction and, in an applied magnetic Geld, the Zeeman
term, while 'R~ is the anisotropy part and may, in prin-
ciple, contain one-ion and two-ion contributions. The
latter will not be our concern. In the Grst-order perturba-
tion theory they contribute additively to the anisotropy
constants, whereby sufBciently general and satisfactory
information about the temperature dependence of the
two-ion contribution has now long been known and ap-
plied successfully.

Treating the one-ion anisotropy within the spin-
operator-equivalents method, ' one finds for 'R~ the ex-
pansion in Stevens' operators 0„:

(2)

p= IJ] (5)

[J] being the integer part of J.
A further important and very significant restriction ex-

ists for the above-mentioned prototype case of RE-ion
dominated anisotropy. It can be traced back to the prop-
erties of the 4f-electron charge density. In fact, the f
electrons with an individual orbital momentum of 3 can-
not have multipole distributions of order greater than 6
(in calculating the average of the crystal-field perturba-
tion over the electronic states, all matrix elements with
m~ ) 3 will be zero for f electrons). ii In other words,
all B (n ) 6) are then identically zero Fin. ally, crys-
tal symmetry also imposes strict conditions. Not only
does it determine the type of B (m g 0) for a given n,
but it requires that in cubic symmetry H2 (any m) be
identically zero.

With these assumptions, the anisotropy free energy is

ally, it starts &om n = 2, since the term with n = 0 pro-
vides for a constant rather than for an angle-dependent
contribution to E~. On the other hand, for any given an-
gular momentum number the highest independent power
of any angular operator is 2J + 1 because of the well-
known commutation relations. Combining both require-
ments means that the sum in Eq. (4) runs from 2 to 2p
with

The &ee energy corresponding to the Hamiltonian &om
Eqs. (1) and (2) in the first-order perturbation theory is
then simply

2p

F~ = ) B„(O„)Y„(8)
n=2

(6)

+ = +o + &~

with the anisotropy energy

I'~ = ) H„(Q„)Y„(8), (4)

where (. .) denotes averaging with respect to the bare
(dominant-exchange plus Zeeman) part in Eq. (1), Y is
the corresponding spherical harmonic, and 0 is the an-
gle between the magnetization and the z-axis which is
usually taken along one of the principal crystallographic
directions. In deriving Eq. (4), cylindrical symme-
try has been assumed. i This means that one neglects
anisotropy eKects in the plane perpendicular to the z
axis. This restriction is not dramatic, because only a
few B (m g 0) are nonzero and because the in-plane
anisotropy is usually negligible or is averaged out due to
special experimental circumstances. Considering only
m = 0 would help emphasize the most general features
of the analysis which lead to di8'erent types of temperature
dependence of the anisotropy constants and which would
otherwise be blurred by an unnecessary complication.

There are important restrictions which are implicit
in the expression (4) and which have di8'erent physical
sources. One such group of restrictions originates in the
general quantum-mechanical properties of angular mo-
mentum operators. The summation in n is over even inte-
gers because of the time-reversal symmetry; convention-

with p = [J] as explained above. It is assumed that
we have only one magnetic sublattice to worry about.
The way to relax this restriction in some technologically
important hard magnets will be discussed later. Besides,
in many important cases the contributions &om difFerent
sublattices can be accounted for additively.

Now we introduce the magnetic Oni sotropy
coeffi ci ents

as the thermal averages of the Stevens' operators normal-
ized against their zero-temperature values. The bar is to
remind of this normalization. The zero-temperature val-
ues are certain J-dependent products which will hence-
forth be denoted as p (J). Both R, and p (J) can be
computed &om Table IX of Ref. 6 with the result

1
[3M, —J(J+ 1)],

p~ J
—[35M4 + (25 —30J —30J )M2

p4(J)
+3J'(J + 1)' —6J(J + 1)],

1
(231Ms + [735 —315J(J + 1)]M4

&s(J)
+[294 —525J(J + 1) + 105J (J + 1) ]M2
—60J(J + 1) + 40J (J + 1) —5J (J+ 1) ), (8)
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where E~ = Kl sin 0+ K2sln 0+ K3sln 0+

are the moments of the operator J computed with the
bare Hamiltonian 'Ro. The products p (J) = (D ) (T =
0) are:

The bound for J &om below in the last equations de-
rives from the general properties of the Stevens' opera-
tors. The important point is that all moments M and,
consequently, all K 's can be expressed via the first mo-
ment Mi (or, equivalently, via the reduced magnetization
pcI' site m = Mi/ J)

Mi(x) = JBJ(Jx)

for a w hole class of untrivial collective-excitation
theories. This theorem will be substantial below. In
the last equation, Bg(y) is the Brillouin function, while
x is the generalized efFective field related to the average
number 4(T) of magnetic quasiparticle excitations.

One thus comes to the very important representation
of the anisotropy part of the &ee energy of one-ion ori-
gin as a linear combination of a restricted number, not
greater than p, of the functions (K ) which carry the
temperature dependence of E~.

The temperature behavior is now carried by the
anisotropy constants (K, (T)j and the tacit assumption
is that there are infinitely many of them. There imme-
diately arises the problem of how many terms one must
keep in this expansion. Order can be brought into the
discussion by simply noting that E~ ——E&, so far as
only the purely angular part is envisaged in both cases.
Simple argument based on the orthogonality properties
of Y (0) and sin 0 shows that the highest admissible
power of sin0 in the phenomenological expression is ex-
actly 2p. This means that the one-ion phenomenological
anisotropy expansion Eq. (13) has only a few terms (their
nuinber is at most p = [J] and this can only be infinity in
the classical case of J = oo). Therefore, one must clearly
recognize the fact that E& &om Eq. (13) is a finite-term
trigonometric expression. Hence

E& ——Kl sin 0+ K2 sin 0+ -. + K„sin P0

with the same p (p = [J]) as in Eq. (6). The consider-
ation of B (m g 0) does not change the validity of the
above italicized statement; it would only increase by a
few the number of terms for any given J.

Now one is in the position to systematize the connec-
tion between the K's and the K's in cylindrical symmetry
for one-ion anisotropy. Starting with the highest allowed
Kp, one has, generally,

Kp ——apK2p,

Kp l ——bp lK2(p l) + bpK2p,

(12)

Note that it is exactly the role of (R„) as a finite, nor-
malized basis which spans the temperature dependence
of anisotropy which is important here and below.

III. TWO H.EPRESENTATIONS
FOR THE MAGNETIC ANISOTROPY ENERGY:

ANISOTH. OPY CONSTANTS
AND ANISOTROPY COEFFICIENTS

The form (12) is the output of the perturbative sta-
tistical treatment of the microscopic problem of interact-
ing magnetic moments. It has to be compared with the
phenomenological expression for the anisotropy energy
as a symmetry-dictated expansion in direction cosines of
magnetization with respect to the crystal axes. These
expansions have been known for quite some time.

A. Uniawial ease

Let us Grst discuss in greater detail the uniaxial case.
Neglecting once again the in-plane anisotropy, the phe-
nomenological expression reads

K2 ~l K4 + + Cp lK2(p 1) + CpK2p

Kl dlK2 + d2K4 + + dp ]K2(p l) + dpK2p.

These relations can also be cast in a matrix form with
a triangular transformation matrix, but it is hardly nec-
essary to do so here. The triangularity comes &om the
simple observation that a term of the form K,. sin '0 in
the phenomenological expansion cannot contain contri-
butions &om R2i Y. (8) with j smaller than i since this
would imply that K, multiplies also terms of lower pow-
ers in sin 0 which is impossible by the definition of K;.
The coeKcients in the above linear combination involv-
ing the "temperature basis" (R, ) can all be expressed
via p independent parameters.

Several words of caution are due already here. The
connection between constants and coefficients is so sim-
ple only in the Grst-order thermodynamic perturbation
theory which we are exclusively preoccupied with. Be-
sides, in a purely phenomenological ad hoc approach one
may use eKective values of J which are not integer or
half-integer at all; such an approach cannot be justified
theoretically, although it may oKer a better experimen-
tal fit via, say, a better correspondence between experi-
mental and mean-field (MF) magnetization curves calcu-
lated with this arbitrary J value. Finally, if one includes
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magnetoelastic effects in the Hamiltonian, terms in sin0
which are of order higher than 2p may arise in the phe-
nomenological expansion. ' The same would happen if
one proceeds with higher orders of the perturbation the-
ory.

Leaving aside for the time being magnetoelastic effects
and unjustifiable values of J, it is important to note that
the application of the system of linear combinations (15)
is subject, via the connection with the coefI«cients K, to
the same restrictions as the application of E~ from Eq.
(12). At this point, some thought leads to the simple but
important corollary that a given p-constant expression
for E& is strictly relevant for only two values of J: J = p
and J = p+ 2. One may want to know the answer to the
inverse question: given a half-integer or integer J, how
many terms must be included in the phenomenological
expression for E&? Summarizing the above considera-
tions, the answer is that one needs either p = [J] terms if
J is a fictitious quantum number whose most prominent
characteristic is that the number 2J+ 1 accounts for the
correct multiplicity of the relevant lowest-lying spectro-
scopic levels, ~s or else p' = min(3, [Jj) for any 1 if one
is dealing with single-ion anisotropy originating from the
nominal quantum angular momenta of RE ions.

The representation (15) is paramount to the under-
standing of the general underlying reasons determining
the temperature dependence of the anisotropy constants.
First, as already emphasized, there is only a limited num-
ber p of anisotropy constants for a given J. Second, the
greater the index i (i = 1, 2, . . . , p), the smaller the num-
ber of the basic ingredients (K~). The immediate corol-
lary is that the most rich temperature behavior as re-
gards possible types of temperature dependence of the
anisotropy constants is to be expected and observed, in
principle, for the first constant K« in the phenomenologi-
cal expansion for E&. The fact that this is really the case
has been recorded many a time, but it appears that no
one has tried to explain simply and generally this state
of matters. Third, the parameters (a; 6;. . . ; c; d) in Eqs.
(15) have the dimension of energy per volume and set
both the scale and the sign of the contribution of the
respective normalized and positive temperature depen-
dent ingredients R,2~(T) (0 & P 2~ & 1 for T, & T & 0),
thus allowing for the possible variety just mentioned. Be-
sides, all these parameters can be expressed via p basic
parameters only. The basic set can be chosen as the
set of p parameters B (n = 2, 4, . . . , p).s An even more
straightforward and experimentally appealing choice will
be discussed below.

Furthermore, if some of the allowed terms in E& have
been thrown overboard in a certain anisotropy analysis,
the relations (15) provide insight and control on what ex-
actly has been neglected by doing so. Finally, the highest
possible constant Kp is simply proportional to K2p which
should facilitate the estimation of its contribution at dif-
ferent temperatures.

~1(~1~2 + ~2~3 + ~3~1) + ~2(~1~2~3) + ' 'cf 2 2 2 2 2 2 2

where the a's are the direction cosines of the magnetiza-
tion with respect to the reference frame whose z axis is
usually along a principal crystallographic direction.
The K representation of the K,. 's proceeds quite anal-
ogously to Eq. (15). The natural enumeration of the
anisotropy constants starting from the highest K; meets
the trifiing complication that here B2 and, hence, the
contribution from K2 are identically zero, so that the first
constant K«starts with a term proportional to K4. To
keep up in accord with the existing literature, it is natu-
ral to shift by one some of the indices as given below:

Kp « = ap «K2p

Kp 2 ——bp 2K2(„«) + b„«K2„,

K2 C2K6 + ' ' + Cp 2K2(p «) + Cp —«K2p&

K«d«K4 + d2 K6 + + dp 2 K2( «) + dp «K2p

It is to be understood that the parameters fa; 6;. . . ; c; d)
are different from those in the corresponding system of
relations for the uniaxial case (15). One observes that,
quite generally, the allowed number of constants in the
cubic case is one less than the corresponding number in
the uniaxial case for a given value of J and that the lin-
ear combination of K~ s for a given K~ is one term shorter
in cubic symmetry than in uniaxial symmetry for the
same value of J. This implies relatively restricted pos-
sibilities for the temperature variation in the cubic case
as compared with the uniaxial one. Now all parameters
(a;. . . ; d) can be expressed, in principle, via the set of
p —1 parameters B (n = 4, . . . , 2p) or via an equiva-
lent suitable set to be introduced shortly. Once again,
if one considers 4f-electron anisotropy and not a ficti-
tious J, the situation is much simpler. The one-constant
anisotropy energy is exhaustive for J = 2 and 5/2, while
the two-constant expression for the free energy is ade-
quate for any J & 3 . The reason is that only B4 and B6
would be nonzero, and correspondingly only K4 and K6
would contribute, if the one-ion anisotropy comes from
a rare-earth ion sitting on a site of cubic symmetry. In
other words, the one-ion anisotropy of rare-earth ions in
a locally cubic environment is adequately described by a
two-constant E&'. This observation makes the following
analysis of the two-parameter cubic case rather conclu-
sive under the described circumstances. In this way, al-
ready the qualitative analysis brings forward important
differences between the uniaxial and cubic cases. Further
insights will be gained by carrying out the quantitative
investigation in each of the symmetries (see Sec. V).

IV. THE IMPORTANCE
OF THE ZERO-TEMPERATURE VALUES K;.

OF THE ANISOTROP Y CONSTANTS K;(z )

B. Cubic case

For the case of cubic symmetry, the phenomenological
expansion E&' is

At this place we introduce the following simple idea
which allows an immediate connection of the general
analysis as given above with experimental measurements
of one-ion anisotropy on specific substances. We namely
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choose as independent parameters the set of quantities

K, =K,(T=O)

(1 (i ( p in the uniaxial case 1 (i ( p —1 in the cubic
case). In other words, the chosen parameters are the in-
trinsic anisotropy constants. On one hand, the K; 's Gx
the energy scale for the K; (T) 's most straightforwardly
and, at the same time, most simply. Because of the initial
"fIatness" of the observed and calculated temperature de-
pendences of the Ki's (all of them have a vanishing first
derivative as T -+ 0), it suffices to take the liquid- He
temperature value of K, as the zero-temperature value
when magnetic materials with T, ) 100 K are consid-
ered and this should present no serious experimental difB-
culty; an extrapolation procedure would also do. Besides,
the estimates of other contributions to the anisotropy
of the examined substance which may come in through
other anisotropy-generating mechanisms or because of
another magnetic sublattice as is the case with a series
of rare-earth —transition-metal —boron compounds, are es-
pecially trustworthy at T = 0, since general ground-state
considerations are usually available and helpful. It is
therefore quite appealing to develop the scheme in this
experimentally-friendly way. The contact with micro-
scopic ab initio calculations of the whole set fB ) is
not lost, because both sets (K;) and (R ) are express-
ible through each other. Therefore, one can also proceed
kom the ab initio end of the problem, whereby the en-
ergy scale for the temperature variation of the anisotropy
constants K, is set by the theoretically determined quan-
tities B . The road thus being open, in principle, for a
two-way comparison and mapping, we proceed to exam-
ine the "experimental" approach &om a closer distance.

In view of the previous remarks, the expression E~ ——

K~ sin 0 is exhaustive for J = 1 and J = 2, since then
p = [J] = 1 and no higher terms are allowed. Besides
following the traditional argument, the same expression
can be used as a reasonable approximation in Inaterials
with higher J but higher constants K;(i ) 1) which are
much smaller than Kq by modulus over the temperature
domain of specific interest. The expression (19) is trivial
only in as much as a single temperature-dependent ba-
sis function K2(T) is used. The computation of the lat-
ter, however, is by far not trivial. ' lt has been found,
among other things, that R2 (T) is a convex-upwards func-
tion of T in the MF approximation. Calculations in the
random-phase approxiination (RPA) to the Green's func-
tions approach which gives the correct low-temperature
behavior of magnetic anisotropy, though by now car-
ried out for cubic symmetry only, indicate that, sig-
nificant as they are, the difFerences between the MF ap-
proximation and the much more involved RPA do not
change the qualitative character of the quantities com-
puted. That is, one should expect that the convexity of
r2(T) holds beyond the MF approximation. The conclu-
sions are thereby immediate and clear: for substances of
uniaxial symmetry with J = 1 or J = 2, the tempera-
ture dependence of anisotropy is given by R2 as scaled by
Ki. If Ki is positive, so is Ki(T) over the entire range
between zero and the Curie temperature T, while the
easy direction is along the z axis. If K& is negative, one
Gnds an easy-plane anisotropy. This case exhibits the
remarkable feature that it can be solved for the temper-
ature dependence of the relevant anisotropy coeKcient
and constant explicitly by using the exact analytical in-
version of the Brillouin function for J = 1 and J = 3/2.
Details of how to apply this inversion to compute P2(T)
analytically and not parametrically are given in Ref. 19.

V. TYPES OF TEMPERATURE VARIATION
OF K;(T): GENERAL ANALY'SIS 2. The two-conatant uniazial case: p = 2

Now we shall analyze the first two possible cases (those
with one and two anisotropy constants, respectively).
The method can then serve as a basis for detailed anal-
yses of more complicated particular cases and it will be
seen that the diKculties in extending the method are only
technical and surmountable. Besides, it will become ob-
vious that not only is the suggested systematizing ap-
proach capable of accounting for some unusual types of
temperature behavior of anisotropy, but it can also pro-
vide for an ample quantitative characterization of these
types under rather general conditions.

A. Uniaxial case

The "tf ieial" uniaxial caae: p = 1

The "trivial" case in the sense envisaged here is when
only the term with K~ is kept in the phenomenological
expression (14). This case can be named the one-constant
case. By Eqs. (15) with p = 1,

K, (T) = a, a2 —K;a, .

E& ——K~ sin 0+ K2 sin 0 .

Working from top of Eqs. (15), one has

K2(T) = a2~2„(T) = K2K4(T);
Ki(T) = biK2(T) + b2K4(T) .

(21)
(22)

Here p = [J] = 2; hence the expression (20) is exhaustive
for J = 2 and J = 2.

Now we have to carry out the proclaimed program and
express all parameters in (21) as functions of Ki and
K2. To avoid distracting discussions of the normalization
of Y and B which is amply described in Ref. 22, we
prefer to use as most suitable and straightforward the
connection between the K's and the K's as given for this
two-constant case in Ref. 23:

8
7 (23)

This is the simplest untrivial uniaxial case when taboo

anisotropy constants in the expression (14) are consid-
ered:
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K2 ——]c4 —K, ~4, (24)

where the unnormalized K, 's can obviously be represented
as r~ = lc~(0)R~. Examining both equations [(23) and
(24)] at T = 0, one has two independent conditions for
the two quantities v2(0) and r4(0). Solving for these as
functions of Ki and K&, one finds in the tv;o-constant
formalism

0.8—

0.4—

8 & 8
Ki(T) =

~

K + —K2 ~R2 — K2K—4,)
K2(T) = K2rc4 . 0.2 0.4 0.6 0.8 '].0

t=T/T,

Thereby one easily identifies the constants bi and b2 from
Eqs. (21) as bi ——Ki + &K2 and b2 ———&K2 . Using
the definition of the operator equivalents Q as given by
Hutchings, s one finds for the parameters B of Eq. (2),
with the normalization for Y chosen in Ref. 23,

8B2= ~Ki+ —K2 i,

B = K4 (J) 2'

(27)

(28)

The explicit connection with the microscopics is thus es-
tablished. The two-parameter expressions for the one-ion
anisotropy &om Eqs. (25) can now be used by feeding-
in either experimental data (Ki, K2) or ab initio data
(B2,B4). In this paper we shall consistently use the ex-
perimental onlook and take representative (Ki, K2) val-
ues.

An important point is that if one works with the nor-
malized constants Ki and K2, the temperature behavior
is in fact determined by the ratio r—:K2/Ki:

Kg
K1

K2
K2

8= ~1+ —r ~r2 ——rR4,
7 ) 7

OI
K2
K1

=r K4

or

Ko

X~

K,-

(i = 2, 3, . . . , p),

(i = 2, 3, . . . , p) . (32)

With this normalization, the reduced anisotropies K;/K, -

always start &om the positive value of unity at T = 0.
Sometimes this does not allow to grasp at once whether
some of the K, 's are negative for T + 0 . It might
therefore be advantageous to normalize against ~K, ~.

It is clear that the normalization can be carried out
in the general relations for the uniaxial and cubic cases
(15) and (17). This will then be their most compact
and expressive form, but we deliberately postponed the
discussion of this point up to now in order to demonstrate
the issue on the simplest example. In the general case
of p allowed anisotropy constants, the duly normaLized
constants depend on p —1 parameters only. They can be
chosen as

FIG. 1. Magnetic anisotropy coeKcients k2 and R,4 as func-
tions of reduced temperature t = T/T, for J = 2 and j= 5/2
in the MF approximation. In each pair of curves the upper one
corresponds to smaller J. Note the sign-invariable convexity
of Rq(T) over the whole range 0 ( T ( T, and the existence
of an inflexion point of R4(T) approximately halfway down
from T, .

That is to say, the anisotropy constants are then mea-
sured in units of Ki.

Now we come to the most interesting part of the ap-
plication of the general method outlined in Sec. III to
the two-constant (Ki and K2) case: the possible types of
temperature behavior as given by Eqs. (29) and (30).
One clearly needs the temperature dependence of the
magnetic anisotropy coefBcients Fc~. For R2 and P4, this
has been reported for the quantum case of finite J in
Refs. 19 and 20. The results were found in the MF ap-
proximation for the uniaxial case and in the RPA and
MF approximation for the cubic case. Any value of J
can be treated within this formalism. To be consistent,
at this point we prefer to give only the curves related to
J = 2 and J =

2 (Fig. 1) since, as explained above,
the two-K analysis of one-ion anisotropy is exhaustive
for these values in the first-order thermodynamic treat-
ment. However, the temperature curves for any J for
which the corresponding K~ is defined can be used in an
approximate approach when higher constants with i ) 2
are allowed but have been neglected for experimental or
computational reasons.

Mathematically, we are facing the problem of exam-
ining the result [Ki &om Eq. (25)] of superposing two
strictly monotonically decreasing, continuously differen-
tiable functions [R2(t) and R4(t)] on the interval 0 (
t ( 1, t = T/T . Note, however, that even in the
MF approximation the temperature dependence of the

s is not explicit. It has been found in a graphical
and tabular form by implementing a special parametric
procedure described in detail elsewhere. ' Hence a self-
suggesting procedure would be to study numerically or,
which is the same, graphically all possible values of the
ratio r = K2/Ki, —oo ( r ( +oo, and to see what types
of temperature behavior one gets for Ki(T), the behav-
ior of K2(T) being known by Eqs. (21) and (8) and from
Fig. 1. However, with just two components R2 and R4
contributing to Ki(t), it is possible to carry out an ex-
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Om, OfD

Bt BT
0(t &1. (33)

(ii) the effective field acting on a given moment goes to
zero for t -+ 1; (iii) the 2n(n+ 1) law for the variation
of R with magnetization at low temperatures has been
evoked:

—,
' n(~+i) for (34)

Clearly, all these assumptions hold much more gener-
ally than in the MF approximation only. The first one is
valid beyond any particular model, provided that one ex-
amines ferromagnetic interactions between moments on a

plicit and conclusive analytical classification of the possi-
ble types of temperature behavior of Ki(t) which is valid
beyond the MI" approximation. The latter is then ap-
plied to corroborate the analytical results and to present
graphically their salient features.

In doing so, the central idea has been to examine the
signs of the first derivative of Ki(t) at both ends of the
interval of variation 0 ( t & 1, i.e. , for t ~ 0 (T -+ 0) and
t -+ 1 (T -+ T, ) . By Eq. (25), one must then reckon
with the derivatives of Kq(t) and R4(t), whereby several
assumptions and results have to be used. They can be
summarized as follows: (i) the (reduced) magnetization
per magnetic moment rn is a monotonically decreasing
function of temperature, so that

single magnetic sublattice (at that, this is a sufficient con-
dition only). The second one is just as general as the first
when taken conceptually without recourse to any partic-
ular ansatz leading to some particular model-dependent
self-consistent description of the collective effect of all
moments acting on a given moment, i.e., when "effective
field" is not restricted to denote "mean field, " "molec-
ular field, " or the like. The third assumption has been
celebrated and generalized ever since 1936 (Refs. 7, 8,
25) as being the result of a purely symmetry argument.
The domain of its validity is discussed in Ref. 3 and it
is certainly consistent with the assumption of negligible
anisotropy in the perpendicular plane.

To carry out the quantitative evaluation of OKi/Ot in
the vicinity of t = 0, one needs nothing more than the
zn(n+ 1) law. At the other end, t ~ 1, one needs the
explicit expansions of M (x) for small x. These can be
found froin the generating function O(a, x) of the mo-
ments M (Ref. 15):

M-(x) = „n(a, x) ~.=o

8" sinh[ 2+' (a + x)]/ sinh[(a + x)/2]
(35)

sinh( 2+' x) / sinh(x/2)

One finds for x -+ 0 (t -+ 1)

M2(x) = —J(J+1)+ J (4J +8J + J —3) x,
3 90

M4(x) = —J (3J + 6J + 2J —1) + J (24J + 72J + 34J —52J —23J+ 15) x
15 630

J(128J + 512J + 696J + 296J —246J —388J —53J + 105) x
37800

M, (x) = —J (3J'+ 9J'+ 6J' —3J' —2J+ 1)
21

+ J (20J + 80J + 65J —85J —87J + 61J + 37J —21) x
1

630

J (224J + 1120J + 1948J + 1072J —1075J —2273J —519J + 1761J + 577J —525) x
83160

Sp ——8 K2 —3 Ki,
while the sign of BKi/Ot for t -+ 1 is given by the sign
of the expression

~i = —
/
Ki + —KZ

I
.8

(40)

The expression in the brackets is the same as in Eq.

where we have preserved only as many terms as are nec-
essary for the present analysis [the expression for Ms and
the O(x ) term in M4 will be needed in the cubic case
below]. Carrying out the required calculations, one ob-
tains astonishingly simple results. It turns out that the
sign of OKi/Ot for t -+ 0 is the same as the sign of the
expression

I

(25). In fact, the calculation of the first derivative
OKi/Ot for t ~ 1 with the help of the expressions
(36) serves to establish explicitly that a complicated J-
dependent polynomial which multiplies Si is positive for
all physically relevant values of J, so that the sign of
OKi/Bt is ultimately determined by (coincides with) the
sign of Si. The algebra involved should not disguise
the persistence and importance of the simple expres-
sion Ki + &K& which originates &om a purely symmetry
transformation between two equivalent representations of
the anisotropy &ee energy; this suggests that the sign of
OKi/Ot is determined by Si beyond any particular the-
ory or class of theories. Hence the whole argument based
on the examination of the signs of the above expressions
should be expected to be quite generally valid.

The classification of possible types of temperature de-
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generality of the conditions derived in Eq. (41) to see
how the last condition emerges as a necessary condition
by building on the most pronounced experimental feature
of the corresponding regime, namely, the change of sign
of Ki(T) at some temperature Ts & T,. By Eq. (25),
the fact of change of sign is formalized by requiring that
Ki(T) be zero for Ts, i.e. ,

(. 8.) 8
i Kr + K2—

~

rc2(Ts) — K2K—4(Ts) = 0 . (44)
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This is easily transformed to

PIG. 2. Uniaxial case with J = 5/2. The arusotropy con-
stant Ki(t) as normalized against its zero-temperature value
Kz in the MF approximation for some typifying ratios of
r = K2/Ki. The value of r is given next to each curve.

Type 1:
Type 2:

Type 3:

r ) 3/8;
—7/8 &r &3/8;
r & -7/8.

(41)
(42)
(43)

It is very instructive and informative as regards the

pendence of Ki(T) is therefore reduced to considering
simultaneously a simple system of inequalities and con-
secutively examining all possible combinations of signs.
Already here, one can see that there are at most four
possibilities (two times two combinations of plus and mi-
nus signs of Se and Si). In fact, only three of them are
allowed for a given sign of Ki. The results, illustrated in
Fig. 2, can be described as follows.

For positive Kz & 0, one finds the following.
(a) For sKr & K2, Se is positive, while Si is negative

implying that Ki(T) increases upon increasing the tem-
perature &om T = 0 and that, furthermore, Ki(T) has
at least one local extremum between T = 0 and T on
continuity grounds for its first derivative.

(b) For —I~Kr & K2 & sKr, both S and Si are
negative. This corresponds to the usual expectations of
a monotonically decreasing anisotropy constant from the
positive value of K& at T = 0 to zero at T .

(c) For K2 & —
s Ki & 0, Se is negative, while Si

is positive. Hence Ki(T) must have at least one local
extremum between zero and T .

Since the linear combination for Ki(T) from Eq. (15)
involves two strictly monotonically decreasing functions
only, there is no ambiguity with the number and char-
acter of the extrema. One has namely a single positive
maximum, no extremurn (strictly monotonic decrease),
and a single negative minimum which goes together with
a change of sign of the anisotropy constant for the cases
(a)—(c) above, respectively.

To avoid sup erQuous repetition and with the un-
derstanding that there exists mirror symmetry of the
anisotropy curves Ki(T) with respect to the temperature
axis upon changing the sign of Ki, the three types per
sign of Ki can be summarized in terms of the parameter
r = K2/Kr, as follows:

8 r K, (Ts) &0.
7 1 + sr rc4(Ts)

(45)

The positivity requirement which stems &om the de6ni-
tion of the basis functions R, (T) can be met by either
r ) 0 or r & —7/8. Only the latter is also sufficient as
already proved above by the investigation of the signs of
the derivative of Ki(T).

Before we give some representative curves for Ki(T)
calculated in the MF approximation, it must be empha-
sized that within the formalism of Refs. 19 and 20, one
can compute without di%culty the dependence Ki(m),
whereby the temperature dependence can be obtained
for every particular material by using the temperature
dependence of the magnetization m(T) as measured in
experiments on the same material. Thus one can avoid
discrepancies which might arise when the MF tempera-
ture dependence m(T) as calculated theoretically for the
same substance is introduced into Kr[m(T)]. Results
along this line will be reported separately. Here we pro-
ceed with the calculation of the Ki(T) dependences in
the MF approximation for the regimes specified by the
inequalities [(41)—(43)]. To this end, the parametric ap-
proach introduced in Ref. 24 and improved in Refs. 19
and 20 is applied. In brief, its salient features are that
all interesting quantities R,2, R4, K~, and K2 are explic-
itly expressed as functions of the generalized effective
field x from Eq. (11). On the other hand the temper-
ature variable t is also parametrized by 2:. Computing
the functions R, and K and t as functions of x, one col-
lects pairs of points computed with the same value of
x and plots or tabulates the interesting temperature de-
pendences [Ki(T) in this case]. The values of Kr and
K2 enter as input (experimental) parameters and set the
scale and sign of the temperature dependences. Noting
once again that it is only the ratio of Ki and K2 that
matters in the case of two-constant anisotropy energy
E& we will not pursue specific cases and values, but will
rather choose values for these two parameters that typify
a given case without specifying the units of energy per
volume which is otherwise the dimensionality of K,

The results for Ki(T) are given in Fig. 2. There
are three possible generic scenarios for each sign of Ki.
For the sake of brevity, however, we give the plots
for Kr(T)/Kr, thus avoiding the presentation of curves
which are mirror re8ections of each other for the same
~Kr

~

but with opposite signs. The borderlines between
the different regimes as specified by the inequalities (41)
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are drawn with thick lines. Several curves are given inside
each of the three possible scenarios for the temperature
behavior of Ki (T)/Ki. One is thus able to discover a fur-
ther interesting feature in the "normal, " strictly mono-
tonic case: there is a range of positive values of r where
the temperature dependence of Ki(T) is convex uptuards
over the whole interval and is in this sense dominated by
the temperature behavior of R2(T) which has the same
property. This type of curve has been recorded exper-
imentally. Two early examples are the hexagonal ferrite
BazCo2Fei2oz2 known also as Co2Y (Ref. 26) and Tb
(Ref. 17) (in the latter case, the tail for T i T, is due
to the applied external Beld. , because the measured quan-
tity was the corresponding magnetostriction constant; cf.
Fig. 1.2.2 in. Ref. 3). The range of persistence of such
behavior can also be determined for the general Callen
and Shtrikman class of theories if the second derivative
of Ki(T) is considered along the lines of the previous
section. This means that one can determine a number
r, such that, for r; ( r ( s, Ki(T)/Ki is convex up-
wards for all temperatures below T . The value of r,.
is certainly negative, because with r = 0, Kz would be
zero which means that one remains with Ki(T) R2(T)
and, hence, with a convex-upwards function of T. Even
without analytic calculations based on the examination
of the second derivative, one can probe, with the help
of the parametric approach, diQ'erent values of r and
determine to a very good approximation the value of
r, , above which Ki(T)/Ki is convex upwards and be-
low which it has an inBexion point. We Bnd that this
value is r; = —1/8. It marks the splitting-up into two
subdomains of the domain —7/8 ( r ( 3/8, hence, the
subscript i in r, stands for "internal" borderline. More
precisely, for —7/8 ( r ( —1/8 one has the "usual" tem-
perature behavior of Ki(T)/Ki with an in8exion point,
while for —1/8 ( r ( 3/8 one finds a convex-upwards
regime. One comes to the important conclusion that in
uniaxial symmetry the "normal, " monotonically decreas-
ing bell-shaped dependence for Ki(T) with an inflexion
point can only be realized if the intrinsic constants Kz
and K2 are of difFerent signs, i.e. , it is necessary that r
be negative. The ratio inHexion to convex as measured
by the size of the corresponding domains in r is 3:2 which
means that the range of values of r for which the convex-
upwards behavior may be observed is almost as large as
the "usual" one. In Fig. 2, the inner borderline curve
for the regime specified by the relation (42) is the fourth
from above or below (r = —1/8). Apart &om its role of
an inner dividing line inside the generic regime of strictly
monotonic decrease of Ki(T)/Ki, it is interesting in it-
self, since it can be approximated quite well with two
straight pieces: a horizontal part stretching from T = 0
to T —0.2T and a part of linear decrease from T —0.2T,
to T.

The whole procedure of dealing with this ixnportant
feature of the temperature behavior of Ki(T) inside the
regime defined by the second inequality in Eq. (41) em-
phasizes the indispensability of the parametric approach
in probing the diferent regimes.

In both cases of positive or negative Kz the tempera-
ture dependence of Kz(T) is given, up to scale and sign of

80
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K2= -1/2K,
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FIG. 3. Thermodynamically stable phases with uniaxial
anisotropy: (i) easy-axis phase: Ki ) 0, K2 ) —Ki, (ii)
tilted-axis phase: Ki ( 0, K2 ) —Ki /2; (iii) easy-plane
phase: the rest of the (Ki, K2) plane. Thick lines are border-
lines between different thermodynamic phases, while dashed
lines represent borderlines between regimes with different
types of temperature dependence of Ki(T). Systems start-
ing their temperature evolution at T = 0 in one of the wedges
I, II, or III would cross over to a more stable phase at a certain
spin-reorientation temperature Ts ( T, (see text and Fig. 4).
Systems evolving from any other point would not change their
thermodynamically preferred phase.

K2, by the corresponding dependence of r4(T) (cf. Fig.
1).

It is not by chance that we keep recalling about K2(T)
as well. It is the set of both constants Ki and Kz that
determine in a standard thermodynamical procedure the
equilibrium directions (the easy axes) of magnetization.
In Fig. 3 we reproduce the well-known phase diagram for
easy-axis directions when the uniaxial anisotropy energy
is given by Eq. (20); the thick lines are the borders be-
tween the three thermodynamically allowed phases. The
three possibilities are that the easy axis is (i) along the
z axis, (ii) in the plane perpendicular to the z axis, or
(iii) tilted under an angle 0 with respect to the z axis
so that sin 0 = —Ki/2K2. This picture is static in the
sense that for a given temperature, say Ti, Ki(Ti) and
K2(Ti) have definite values which determine a point in
the plane (Ki, K2). Suppose now that at T = 0 the
system is specified by the point (Ki, K2) in the phase
diagram of Fig. 3. As both anisotropy constants change
with temperature quite differently (cf. Figs. 1 and 2),
by increasing the temperature from T = 0 to T the sys-
tem will be forced to evolve along a speciBc trajectory
[Ki(T),K2(T)j parametrized physically by the tempera-
ture T. All possible trajectories Bow into the origin at
T = T since both one-ion anisotropy constants are zero
in zero external field. It is then quite possible that, at
some value of temperature which depends on the initial
conditions at zero temperature, this trajectory crosses
over to some neighboring dom. ain. Accordingly, at this
particular temperature the easy axis must switch to the
new easy direction. Such behavior has been observed in
many uniaxial materials and notably in Nd2Fe~4B.
Furthermore, whenever the temperature evolution of the
anisotropy constants (i.e. , the anisotropy trajectory as
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described above) is such that the uniaxial system starts
&om the tilted-axis domain of Fig. 3 over some temper-
ature range, the temperature evolution of the angle g can
also be described ivithin the same formalism. Following
the analysis of the preceding sections, we are now in the
position to describe and predict such crossovers and pe-
culiarities in great detail. The initial condition (Ki, K2)
is of exceptional importance. Given this pair, the tem-
perature flow of the anisotropy is deterministic within
the discussed theory.

Following the introduced systematics, we give the tem-
perature evolution of the anisotropy constants assuming
initial conditions which lead in turn to one of the generic
types of behavior of Ki(T) described above. The gen-
eration of the corresponding trajectories is efFectuated
within the parametric approach of Refs. 19, 20, and 24
as outlined above. One need only make a minor efFort
and collect pairs of points (Ki, K2) which have already
been calculated in the parametric sweep of x necessary
for the computation of Kq and K2. A brief thought leads
to a very important observation: physically, it is the
temperature that drives the Bow of the anisotropy con-
stants in the plane (Ki, K2); however, in our approach
the temperature itself is parametrized by the generalized
efFective field x of Eq. (11); therefore, by generating the
anisotropy fIows we are practically using the parametriza-
tion [Ki(x), K2(z)]. In this way one avoids the necessity
to use the MF expression connecting temperature t and
effective field x which means that the trajectories in the
plane (Ki, K2) given beloiv are valid for the ivhole claas of
untrivial collective-excitation theories. Note once again
the great potential power of the parametric approach.

Illustrative results are given in Fig. 4 for all typi-
cal initial conditions. Theoretical How diagrams for the
anisotropy corresponding to the three generic regimes
given in Fig. 2 are being presented.

We begin the scrutiny of the anisotropy Bow diagrams
by the general remark that in the two-constant case for
the anisotropy energy as given in Eq. (20) the anisotropy
constant K2 evolves upon variation of temperature with-
out changing its sign [cf. the first Eq. (21)]. Therefore,
a flow starting in the upper (K2 ) 0) or lower (K2 ( 0)
half-plane will not leave it. Whenever a trajectory crosses
one of the phase lines as given in Fig. 3 and reproduced
in Fig. 4, the system runs away to another thermody-
namic phase. The analysis indicates that three distinct
crossovers may take place: cone-to-axis, cone-to-plane,
and axis-to-plane. The crossovers are unique (there are
no successive crossovers to other easy axes or backward
crossovers) and take place at a certain spin-reorientation
temperature Tp. The existence and the type of crossover
are determined. solely by the initial conditions, i.e., the
values of Ki and K2. Thus there are three wedges in
the phase diagram (Ki, K2) (I, II, and III in Fig. 3)
which correspond to the three distinct crossovers. Two
of the wedges are in the second quadrant and one is in
the fourth quadrant. It is clear that there is no symme-
try with respect to the sign of K~ when the temperature
evolution of the anisotropy is concerned. This empha-
sizes once again the necessity to treat with care the signs
of the zero-temperature values Kz and K2. The wedges

80
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FIG. 4. Anisotropy flow diagrams in the (Ki, K2) plane
for the uniaxial case with J = 5/2 . Thick lines are borders
between the three thermodynamically stable phases; dashed
straight lines come from the analysis of the types of temper-
ature dependence of Ki (Fig. 3). The representative initial
conditions (Ki, K2) can be read ofF the coordinates of the
empty dots. The arrows indicate the direction of temperature
evolution as T increases from zero to T, . The point where a
given trajectory crosses a thick line corresponds to the spin
reorientation at a temperature Ts ( T, (cf. Fig. 5).

are now named by the type of crossover to which they
lead on increasing the temperature and are defined as
follows:
(i) the cone-to-axis wedge I (second quadrant):

K, (0;
(ii) the cone-to-plane wedge II (second quadrant):

—-K &K, & —-K, ,
1 - - 7
2 x 8

K~ &0;

(iii) the axis-to-plane wedge III (fourth quadrant):

Kq &0. (48)

It is thus clear that the difFerent phases as defined by
thermodynamic minimization (Fig. 3) are of different
relative stability under variation of temperature. The
tilted-axis phase (Ki ( O, K2 ) —2Ki in Fig. 3) is
the most unstable in the sense that systems starting
their temperature evolution &om within this phase run
away to either of both neighboring phases. The c-axis
phase is of intermediate stability; in fact, up to the ex-
istence of the thin wedge III, the systems starting &om
within this phase remain within. The easy-plane phase
is the most stable in this sense and a system starting
at T = 0 from within never leaves it. This is exactly
the picture one observes in rare-earth —transition-metal—
boron compounds. ' Further quantitative analysis of
this correspondence will be given elsewhere.

So far as the temperature Ts of the corresponding
crossover is concerned, the plots K2 versus Ki are only
indicator plots. However, establishing with their help the
existence of a crossover between preferred directions, one
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FIG. 5. Uniaxial case with J = 5/2: p(t) = jCq/Kq
in the MF approximation. The thick horizontal lines
p, „=0, —1, —2 are the thick borderlines of Figs. 3 and 4 in
the representation p = p(t); crossing these lines corresponds
to cone-to-axis, axis-to-plane, and cone-to-plane crossovers,
respectively, while the crosspoints give Tz in the MF ap-
proximation. For each type of crossover three representa-
tive curves with difFerent ratios r from within the corre-
sponding crossover-inducing wedges are given; from above:
(i) cone-to-axis (wedge II); (ii) axis-to-plane (wedge III); (iii)
cone-to-plane (wedge I). The relevant values of r are given in
the plot.

may proceed and determine this crossover temperature.
The answer is readily found by using the parametric ap-
proach and plotting the ratio

Kg(T)
K2 (T)

(49)

In Pig. 5, we give p(T) for some representative cases for
which one detects a crossover. From the intersections
of p(T) with the lines of crossover p„„=—2, —1, 0, re-
spectively, one is able to determine unambiguously T~ for
the corresponding crossover. There is a clearly expressed
correlation between the width of the three crossover-
inducing wedges and the sensitivity of the crossover tem-
perature T~.. the narrower a wedge is as measured by the
corresponding value of the dimensionless parameter r of
Eq. (41), the more sensitive the spin-reorientation tem-
perature Tg to changes of these parameters within the
given wedge and, correspondingly, the wider the spread
of Tp on changing r. For example, varying the ratio of
K2 and Kf by about 10% for the narrowest axis-to-plane
wedge [Eq. (48)] brings about a threefold change in T+,
while varying the said ratio by a factor of 2 within the
w'idest cone-to-axis wedge [Eq. (46)] initiates "only" a
1.5-times variation in the corresponding values of Ts (cf.
Pig. 5).

Finally, in Fig. 6 we give the temperature dependence
of the cone angle 8(T) for some representative cases &om
the previous plots where the system's anisotropy sets ofF
along its temperature-variation trajectory from within a
wedge corresponding to a domain of a tilted-axis phase
at T = 0, i.e. , from one of the two wedges in the second
quadrant [inequalities (46) and (47)]. While the analytic

FIG. 6. Uniaxial case (J = 5/2). Temperature depen-
dence of the cone angle 8(t) in the MF approximation.
From above: cone-to-plane crossover (wedge I); cone-to-axis
crossover (wedge II).

form of the curves 8(T) is the same in both cases and is
given by

8(T) = arcsin
Z, (T)
2%2(T)

their appearance depends on the detailed temperature
variation of both anisotropy constants. Prom Eq. (50)
one can determine a critical angle

(50)

8„=8(T = 0, ~r~ = 7/8) = arcsin(4/7) / = 49.1

(51)

B. Cubic symmetry

Now we shall present as concisely as possible the cubic
case. The details being explained on the example of the
unzaxsal system, only the most important considerations
and results will be mentioned.

The one-parameter cubic case

This is when only the term with Kz in the phenomeno-
logical expression (16) is kept. By Eqs. (17),

K, (T) = a, a, (T) = K;K, (T) . (52)

such that for the cone-to-axis inducing wedge we have
8 E [0, 8„], while for the cone-to-plane inducing wedge
the angle 8 is restricted to the domain [8„,vr/2]. Prom
another point of view, already a single measurement of
the cone angle at any temperature for which the system is
in the tilted-axis phase indicates to which part (or wedge)
within this phase in the second quadrant the system be-
longs. Reversing the argument, one can deduce the ratio
r from a single measurement at a suKciently low (T ~ 0)
temperature, provided that there are no other contribu-
tions to the anisotropy energy or that they have already
been subtracted.

The thermodynamic analysis of the uniaxial case is
thus complete.
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FIG. 7. Magnetic anisotropy coefficients R.4 and R,6 as func-
tions of reduced temperature t = T/T for J = 3 and 7/2 in
the MF approximation. Within each pair of curves the up-
per one is for smaller J. Both coefficients have a typical bell
shape with K6 falling oK much faster.

Following the analysis of the previous sections,
this expression characterizes exhaustively the one-ion
anisotropy in cubic symmetry for J = 2 and J = 5/2.
It would be a reasonable approximation for higher J as
well, if the constants ~K;(i ) 1)

~
&& ~Ki~. The scale and

sign of Ki are set by the zero-temperature value Ki,
while the temperature dependence is that of R4(T). This
has been shown to have the characteristic bell shape in
both the MF and in the RPA with an in8ection point as
discussed above (Fig. 1). Note that here a calculation in
an untrivial collective-excitation scheme giving the cor-
rect spin-wave result at low temperatures is available.
To do this, a more elaborated version of the parametric
approach was developed and explicit expressions for the
number of magnons in all cubic lattices have been found
by computing the relevant Bose-Einstein lattice sums.
This means that the general thermodynamic analysis of
possible types of temperature dependence of anisotropy
constants in cubic materials can be carried out to the end
beyond the MF approximation.

Just like in the uniaxial case, the arguments leading
to the description of the various general types of possible
temperature behavior of magnetic anisotropy of single-
ion origin suggest validity beyond that characteristic of
any given member of the Callen and Shtrikman class.
Besides, so far as the explicit temperature dependence
is concerned we prefer to treat the cubic case on equal
footing with the uniaxial one, i.e. , in the MF approxima-
tion. Apart &om the "homogeneity-of-treatment" con-
siderations, we feel that (i) it is always recommendable to
start the description with the MF approximation which
has proven to give sound physical insights into the na-
ture of the examined problems, (ii) it will be possible to
compare both cases on the higher (RPA) level once cur-
rent calculations of the required lattice sums in uniaxial
symmetry are brought to an apphcable form, and (iii) an
even more promising collective-excitations scheme which
implements the Callen decoupling scheme could also
be applied. Remarking that the calculations can be per-
formed equally easily for any J, in Fig. 7 we give in the

MF approximation only the curves P,4(T) and Rs(T) for
J = 3 and J = 7/2 which will be needed in the two-
parameter case. Note that the temperature dependence
of rs(T) in the MF approximation has not to our knowl-
edge been reported previously in the literature.

2. The two-parameter cubic case

This is when two anisotropy constants are considered
in the expression (17). The relevant anisotropy is now
given by Eq. (16), where

Ki(T) =
~
Ki+ —K2 ~rc4(T) ——K, Ks(T);11 11

K2(T) = K2rcs(T) .

(53)

(54)

The anisotropy energy as given by Eq. (16) is exhaustive
for J = 3 and J = 7/2 and can be taken as a good
approximation even for J ) 7/2 if there are reasons to
assume that ~K;(i ) 3)

~

&& ~Ki ~, ~K2~. More significantly
and as commented earlier, for a rare-earth ion sitting in a
(local) cubic environment the two-parameter expression
for E&' is exhaustive for any value of J.

Working along the lines of the "uniaxial" section, one
finds that the signs of BKi(T)/OT at both ends of the
temperature interval (0, T,) are determined by (coincide
with) the signs of the following expressions:

T-+0: S. = K —10K
T mT, : Si = —(Ki+ iiK2) . (55)

Here the superscript c stands for "cubic." In the above
expression for S, the coeKcient of 10 originates from
the 2n(n+ 1) law. The expression in the brackets of the
equation for Si is the one from Eq. (53). Straightforward
algebra using the asymptotic (t ~ 1) expansions of the
moments M (x) [Eqs. (36)] produces no less than the ex-
plicit proof, within the Callen and Shtrikman class of the-
ories, that a certain complicated J-dependent polynomial
which multiplies Si in the expression for BKi/Bt(t -+ 1)
is positive for all physically relevant values of J, so that
the sign of BKi/Bt(t m 1) is ultimately determined by
the sign of S& as stated above.

As before, the possible types of temperature dependence
of Ki(T) are determined by considering simultaneously
the corresponding simple system of inequalities involving
all possible signs of S and S&. Once again, three generic
types per sign of Kz are allowed.

For positive Kz ) 0, one finds the following.
(a) For 10Ki & K2, S' is positive, while Si is negative.

Ki (T) increases from its positive zero-temperature value,
passes through a positive maximum, and falls ofF to zero
at Tc-

(b) For —11Ki & K2 & 10Ki, both So and Si are
negative. Ki(T) decreases strictly monotonically from
Kz at T = 0 to zero as T ~ T . For all values of this
interval, which is much larger than the corresponding
interval in the uniaxial case, one finds the characteristic
bell shape of Ki(T). There is no range of values of K2
for which Ki(T) is convex upwards over the entire range
[O, T,]. This difFerence from the corresponding uniaxial
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case arises because none of the basis functions R4(T) and
Ks(T) is convex upwards over the whole range, contrary
to k2(T) in the uniaxial case.

(c) For K2 ( —11K~, So is negative, while S~ is pos-
itive. Kq(T) decreases, changes sign at some Tg ( T„
passes through a negative minimum, and goes to zero
from the negative side.

The three cases with negative K& follow by recalling
the reflection syxnmetry of the anisotropy curves with
respect to the temperature axis upon changing the sign
of K

In terms of the parameter r = K2/Kz, the respective
types are compactified to

Type 1: r &10;
Type 2: —11&r &10;
Type 3: r & —11.

(56)
(57)
(58)

—ll & r & 10 (r = Kg/Kf) (59)

which comprises both possible signs of Ki and Kz de-
fines the limits of validity of this built-in belief The.
issue is further illuminated in Fig. 8. There, the low-

An important conclusion based on the above general
inequalities is that the two outermost types could hardly
be realized in practice, since they require that ~K2

~

be
more than an order of magnitude greater than ~Kf

~

and
this seems rather improbable, although it cannot be ruled
out by general arguments. Therefore, while one is in
his right to expect, theoretically, three generic types of
temperature behavior for each possible sign of Ki, in
cubic symmetry it seems more realistic to expect to de-
tect only one generic type per sign of Ki. Now one is
in the position to explain the paradigm confirmed in
many experimental studies of magnetic anisotropy and
magnetostriction32 that the single-ion anisotropy con-
stant Kq(T) in cubic symmetry should be a bell-shaped,
monotonically decreasing curve. The compact inequality

est and the highest curves are typical for the outermost
generic regimes and it should be noted what large ra-
tios ~K2/Kf

~

are involved in each of these theoretically
possible generic cases. The interior between the thick
borderline curves in both figures is the regime described
by the inequality (59). One must realize that changing
the ratio ~K2/Kf~ by more than an order of magnitude
in both the positive and the negative direction of values
of K2 induces but relatively small variation in the Kz(T)
curves within the interior of the domain specified by the
inequality (59). Moreover, in order to feel more clearly
what is going on with the Kq(T) dependence upon vari-
ation of the K2 value in cubic symmetry, we have given
in the same figure the curves corresponding to variation
of K2 between (—Kf) and (+K)), i.e., for

—1&r & l.
In Fig. 8, the corresponding domain comprises just the
narrow region bounded by the innermost pair of curves.
In other words, nothing much is happening qualitatively
and quantitatively within a range of values of K2 as wide

As before with the uniaxial case, all curves are gen-
erated with the help of the parametric approach as de-
scribed in Refs. 19, 20, and 24. We recall once again that
only the curves which involve an explicit temperature
dependence make use of the MF approximation. Now
that we proceed with the analysis of the anisotropy flows
in the (Kq, K2) plane, it should be emphasized that all
conclusions reached by analysis of these flows in the said
plane are valid beyond the MF approximation. As before,
it is the set of both constants Kq and K2 that determine
the equilibrium directions (easy axes) of magnetization.
The well-known diagram for the thermodynamically pre-
ferred directions of magnetization as described by the
two-constant phenomenological expression E&' is repro-
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FIG. 8. Cubic symmetry with J = 7/2 ln the MF approx-
imation. Kf(t) as normalized against Kf(0) for typifying
ratios of t' (given in the plot). Thick lines are borderlines
between different temperature scenarios (see text). K,. are
superscribed with c for "cubic" only in the 6gures, not in
text.

I IG. 9. Thermodynamic stability for cubic anisotropy:
easy axis along (i) an edge of the cubic cell
(Kf ) 0, Kz ) —9K)); (ii) a face diagonal (Kf ( 0,
K2 ) —4K)); (iii) a body diagonal (the rest of Kf —K2
plane). Thick lines are borders between these thermody-
namic phases, while dashed lines represent borderlines be-
tween regimes with di8'erent types of temperature dependence
of Kq(T). The wedges I, II, and III induce a crossover to a
neighboring phase whenever the temperature evolution starts
from within them at T = 0.
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FIG. 10. Anisotropy flow diagrams for the cubic case with
J = 7/2. Borderlines of phases and crossover-inducing wedges
are as in Fig. 9. Arrows mark the direction of the temperature
evolution.

11K~ (K K, &0;

duced in Fig. 9. In the same figure we give for the first
time the borderlines between the different regimes as de-
fined by the joint examination of the possible signs of S
and S, .

Now there are three thermodynamically allowed easy-
axis directions: (i) along the edge, (ii) along the body
diagonal, and (iii) along the diagonal of a face of the
cubic cell. Contrary to the uniaxial case, within none of
the three phases may the easy axis change its direction
continuously.

The general discussion concerning the temperature-
driven flow of the system in the (Ki, K2) plane pro-
ceeds as for the uniaxial case. In Fig. 10 we give the
anisotropy flow for cubic systems. The results are valid
for the whole class of theories of Callen and Shtrikman,
at least. Representative values (Ki, K2) have been cho-
sen. As before, a flow which starts in the upper (K2 ) 0)
or lower (K2 ( 0) half-plane will not leave it. Whenever
a trajectory crosses one of the phase lines, the easy axis
switches to another direction. Note that, in contrast to
the crossovers &om the tilted-axis phase in the uniax-
ial case where the direction in fact slides continuously to
the easy crystallographic axis or plane of the neighbor-
ing thermodynamic phase, in the cubic case one has an
abrupt switching to another direction when the trajec-
tory crosses a phase border. This issue can be further
analyzed by means of the theory of erst-order magnetic
processes ' which is also the relevant theory if the in-
fluence of an externally applied magnetic field is to be
studied. The analysis indicates that only three distinct
crossovers may take place: (110) to (100), (110) to (ill),
and (ill) to (100) (here the brackets denote the cor-
responding crystallographic directions). The crossovers
are unique and take place at a certain spin-reorientation
temperature Ts. The existence and the type of crossover
are determined solely by the initial conditions, i.e. , the
values of Ki and K2. Thus one identifies three wedges
in the phase diagram (Ki, K2) (I, II, and III in Fig. 9)
which lead to three distinct crossovers. The wedges are
defined by the inequalities:

(i) wedge I (second quadrant):

(iii) wedge III (fourth quadrant):

—11K, &K, ( —9K, , K&) 0.

0.5
r — -1/20 -1/15 -2/25

-1.0— r = -2/5 -1/3 -2/15

-2.0—

-3.0
0.2 0.4 0.6 0.8 1.0

FIG. 11. Cubic case with J = 7/2: p(t) = Ki/K2
in the MF approximation. The thick horizontal lines
p, ,~„= 0; —9/4 are the thick borderlines between the (110)
phase and its neighbors from Figs. 9 and 10. Upper crossover:
(110) to (100); lower crossover: (110) to (111). The cross-
points of the p(t) curves with the dotted borderlines give the
corresponding Tg.

It is thus clear that the phase with an easy axis along
the plane diagonal is unstable under the temperature evo-
lution of the cubic anisotropic system: the temperature
flow trajectories will always leave the corresponding part
of the phase diagram and cross over to the neighboring
more stable phases with easy axes along the edge or the
body diagonal. On the other hand, the phase with an
easy axis along the edge is the most stable one in the sense
that, if a system belongs there at T = 0, it will remain
there under the temperature evolution of anisotropy, i.e.,
the easy axis will not change its direction over the entire
range between 0 and T . The phase with an easy axis
along the body diagonal has marginal stability in the
above sense: up to the existence of the very thin wedge
III, a system which has been within the domain at T = 0
will evolve without crossing over to a phase with some
other easy axis; for systems represented by points &om
within the wedge III there will occur a crossover to the
easy-edge phase at some temperature.

As in the uniaxial case, once the existence of a
crossover for a given system as specified by its initial
point (Ki, K2) has been established, one may proceed
and determine the crossover temperature with the help
of the parametric approach. As mentioned earlier, for
cubic systems one may go beyond the MF temperature
dependences of the various interesting quantities [here
p(T) = K2/Kij. ' We prefer, however, to give only
the MF curves at this stage. In Fig. 11, we give p(T) for
some representative cases of runaway from the most un-
stable phase (110) to its phase-diagram neighbors (100)
and (111). The third possible runaway from (111) to
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(100) has not been presented in the same figure for rea-
sons of discernibility only; it is just as easily treated as
those given in the figure. From the intersections of p(T)
with the critical lines of crossover p„„=—24, —ii 0,
one is able to determine unambiguously T~. The correla-
tion between the width of the crossover-inducing wedges
and the sensitivity of Tp to the initial ratio r at T = 0
is as follows: the narrower a wedge is, the more sensitive
the spin-reorientation temperature Ts to changes of the
ratio r within the given wedge and, correspondingly, the
wider the spread of Tp. For example, varying the ratio
of Kz and Ki by about 15% for the narrowest wedge
III [Eq. (63)] brings about a threefold change in Ts [not
given in Fig. 11], while varying the said ratio within the
other two wedges is not so drastic in its efFect on Ts.

The thermodynamic analysis of the cubic case is thus
complete, too.

VI. PROSPECTIVE GENERALIZATIONS
AND APPLICATIONS

OF THE GENERAL ANALYSIS

A. Analyses of cases of particular interest

The temperature dependence of Nd2Fei4B can be re-
analyzed in view of the present development and on
the basis of the by now well-established picture, the
two-sublattice model, for the hierarchy of interactions
between magnetic rare-earth and transition-metal ions
which results in the observed high magnetization and
magnetic anisotropy in this and related materials.

The starting and encouraging point is the observation
that the ratio of the experimentally measured constants
K2 and Ki (Ki ( 0) is approximately (—3) (Refs. 10
and 28) and falls into the third group from the classiffca-
tion for the uniaxial case above. It is satisfactory to see,
by comparing the relevant typifying curve for this case
(the lowest curves in Figs. 2 and 6) and the experimental
results, that the general analysis is confirmed by the char-
acter of the curve Ki(T) in this complex magnetic ma-
terial. Furthermore, beside the qualitative scenario for
Ki(T) one gets qualitatively correct predictions, by gen-
eral arguments only, for the spin-reversal temperature Ts
(Fig. 5) and for the teinperature dependence of the cone
angle 8(T) (Fig. 6). Note that these reference figures
are not generated with the actual values of J and K,- for
Nd2Fei4B, but are just the characteristic curves for the
thermodynamical regime as defined for the correspond-
ing uniaxial type. It is beyond doubt that the careful
analysis suggested below would improve the agreement
between theory and experiment on a basis which is free
from further "convenient" ad hoc assumptions.

The necessary steps are as follows. First, the con-
tribution of the Fe sublattice has to be subtracted
&om the anisotropy constant Ki(T), thus leaving the
pure RE contribution. The Fe contribution can be
taken &om measurements on the isostructural material
Y2Fei4B (Ref. 39) scaled to the critical temperature
of its Nd counterpart; there, it is the only anisotropy
contribution

Second, the estimation of the contribution of the Nd
sublattice starts with the assumption that the Nd + ions
have J = 9/2 as in their &ee state. By our analysis,
one needs to consider K; up to i = 3. The relevant pa-
rameters (o.; 6;. . . ; d) for the triangular transformation
between anisotropy constants and anisotropy coefBcients
being known up to p = 3, ' and the zero-temperature
constants being carefully measured also up to p = 3,i
one possesses the physical input necessary for the imple-
mentation of the analysis as outlined in this paper.

Third, care has to be taken to avoid a blind appli-
cation of the parametric approach discussed above and
used for the generation of the typical curves. Namely,
the generalized e8'ective field x acting on the RE atoms
is not a self-consistent Geld stemming from the RE-
RE exchange which is negligible in this and related
materials. ' Within the established MF approximation
for the treatment of the RE—transition-metal ion inter-
actions, the zero-field Hamiltonian Ao is proportional to
J . Hp„where HF is the strong eQ'ective magnetic field
proportional to the magnetization of the Fe sublattice.
The bare Hamiltonian thus having 2J + 1 relevant levels
with J = 9/2, the generating function O(a, x), the mo-
ments M (x), and the normalized anisotropy coefficients
R (x) remain the same functions of x as given earlier in
this paper. However, here x is treated as an efFectively
external field acting on the RE ions. The difficulty here
is recognized by the fact that, unlike an externally ap-
plied magnetic Geld, this effective field varies with tem-
perature as the magnetization of the Fe sublattice and
goes to zero as T —+ T . Since the temperature depen-
dence of mF, (T) is assumed known from the duly scaled
isostructural measurements and since, furthermore, the
transition temperature T, is one and the same for both
sublattices, one must only feed in into the formalism
mp, (T) as taken &om experiment. Alternatively, one can
take mF, (T) from a theoretical self-consistent calculation
within the MF approximation with J = S = 1 within
the same parametric approach (assuming that the iron
sublattice magnetization comes &om ions with quenched
orbital momentum and efFective spin number S = 1).
In fact, it will be interesting to see how much these two
procedures differ as regards the final outcome for the one-
ion anisotropy. Besides, even the small contribution &om
the RE-RE exchange can be accounted for in the efFective
Geld x within the parametric approach additively and on
equal footing with the dominating contribution &om the
Fe sublattice as can also be done with an externally ap-
plied magnetic Geld. If this program is carried out to
the end, one would have the most detailed analysis of
the one-ion contribution to the anisotropy in the series
of novel hard magnetic materials typified by Nd2Fei4B.
Obviously, the program is not restricted to this material
only and even not to this series only.

B. Exact energy levels

Further progress with respect to the accuracy of the
theoretical predictions on the basis of the suggested
scheme is to be expected if the averages involved in the
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statistical-mechanical treatment are taken with the ex-
act spectroscopic or theoretical levels characteristic for
each particular material and not necessarily with the
equidistant 21+1levels leading to the specific form of the
generating function A(a, x). Such nonequidistant averag-
ing would not change the general expressions for K; and
Fc as functions of the moments M (x) but will compli-
cate the computations and eventually change the values
of the moments. These modifications are not very dra-
matic as has been found in preliminary calculations by
the present authors for comparing the present approach
with the calculations of Wolf with nonequidistant energy
levels. Nevertheless, the utmost objective would be to
compute the averages for the moments with the relevant
exact energy levels involved in each specific case. On
the other hand, the general inequalities derived here for
the two-constant case are unlikely to be modified, since
they are based on quite general thermodynamic consid-
erations.

VII. SUMMARY

We have determined and systematized from a general
viewpoint the possible types of temperature dependence
of single-ion anisotropy in uniaxial and cubic ferromag-
nets. The analysis has been based on the general rela-
tion between anisotropy constants K; and coeKcients K

the latter serving as a fundamental basis spanning the
temperature dependence of anisotropy &ee energy. As
there are no explicit analytic expressions for the calcula-
tion of the interesting anisotropy characteristics, a very
powerful parametric approach has been used through-
out. This approach has made it possible to trace down
the temperature-driven evolution of the anisotropy in
any given system whose intrinsic anisotropy constants
Kz and K2 are known. The analysis of the flow dia-
grams, combined with the parametric method, has en-
abled us to determine regions in the general anisotropy

diagram (Kq, K2) which lead, upon increasing the tem-
perature &orn T = 0, to the experimentally observable
transitions (crossovers) between thermodynamic phases
with difFerent easy axes of magnetization. The crossovers
themselves as well as the loci of the corresponding spin-
reorientation temperature Tg have been determined and
presented graphically for a series of typical values of the
relevant parameter r = K2/Kf . Special attention has
been given to the temperature evolution of the tilted easy
axis in the uniaxial case.

The analysis is the outcome of the first-order
statistical-mechanical treatment of one-ion anisotropy.
Most of the results are valid for the whole untrivial class
of Callen and Shtrikman theories, i.e. , beyond the MF
theory; only those temperature-flow diagrams which con-
tain explicit temperature dependence (temperature axis,
respectively) are bound to the MF theory. For cubic ma-
terials, even these can be extended to the RPA scheme,
since the necessary analytic basis has already been set
up. Prototype materials to which the analysis is im-
mediately applicable are those in which the one-ion con-
tribution comes &om RE ions such as RE—transition-
metal compounds or the RE metals themselves.

In view of the fundamental theory of magnet-
ostriction, most of the conclusions about the tempera-
ture dependence of anisotropy reached in this paper are
immediately applicable to the characterization of magne-
tostriction in the corresponding substances.
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