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Dynamic spin correlation functions (S, (t)S ) for the one-dimensional S = — XX model H =
—JZ, (S; S,+i + S,". S,".+i) are calculated exactly for finite open chains with up to N = 10 000 spins.
Over a certain time range the results are free of finite-size effects and thus represent correlation
functions of an infinite chain (bulk regime) or a semi-infinite chain (boundary regime). In the
bulk regime, the long-time asymptotic decay as inferred by extrapolation is Gaussian at T = oo,
exponential at 0 & T & oo, and power-law ( t ) at T = 0, in agreement with exact results. In
the boundary regime, a power-law decay is obtained at all temperatures; the characteristic exponent
is universal at T = 0 ( t ) and at 0 & T & oo ( t ), but is site dependent at T = oo. In
the high-temperature regime (T/ J )) 1) and in the low-temperature regime (T/ J « 1), crossovers
between different decay laws can be observed in (S, (t)Sf ). Additional crossovers are found between
bulk-type and boundary-type decay for i = j near the boundary, and between spacelike and timelike
behavior for i g j.

I. INTRODUCTION

The long-time behavior of correlations for quantum
many-body systems in general and for quantum spin sys-
tems in particular has been a notoriously difBcult subject
of theoretical research. Approximation schemes tend to
have little reliability in this Beld. There exist very few
exact results for nontrivial cases, and many of them ex-
hibit nongeneric features for one reason or another. In
classical many-body systems, long-time correlations can
be investigated by means of computer simulations, but no
practical quantum counterpart of that approach exists.

In some cases, useful conclusions on the long-time be-
havior can be drawn f'rom a moment expansion via rig-
orous bounds, but the time intervals over which strin-
gent bounds can be established are often too short for
that purpose. The continued-fraction analysis based
on the same number of moments can be used to predict
the exponent of a power-law in&ared singularity in the
frequency domain, but this approach tends to be insen-
sitive to subtle changes in the long-time decay if it does
not involve power laws. '

The one-dimensional (1D) S = 1/2 XY model

N —1

IIxy = —) IJ S; S;+i+ J„S,"S,"+i+hS;)

is one of the very few many-body systems with non-

trivial dynamics for which time-dependent correlation
functions have been calculated exactly at zero and
nonzero temperatures. This model is equivalent to
a system of noninteracting lattice fermions. ' The spin
correlation function (S;(t)S') is a simple fermion density
correlation function, and the function (S, (t)S ) can be
reduced to a determinant whose size increases linearly
with the number of sites between i or j and the nearest
boundary of the chain.

The focus of this study is on the dynamics of the spin x
components for the special case J = J„,Ii = 0 of (1.1)—
the XX model. For quite some time it has been known
that the function (S, (t)S, ) of the infinite system exhibits
a Gaussian decay at T = oo (Refs. 12—14) and a power-
law decay at T = 0. ' A more recent study states that
the long-time asymptotic decay of the same correlation
function is exponential at Bnite nonzero temperatures.
Numerical evidence for exponential decay was also found
for (S,. (t)S, ) in the XXZ model at T = oo.s

For a semi-infinite XX chain the available evidence
indicates that the function (S, (t)S; ) exhibits a power-
law decay at all temperatures. Rigorous results exist for
T = oo, and the result of a finite-chain study for
T = 0, but no results for 0 ( T & oo appear to have
existed prior to this study.

The purpose of this paper is (i) to fill in the miss-
ing links on the question of long-time asymptotic behav-
ior and (ii) to elucidate various kinds of crossovers be-
tween the different decay laws that can be found in the

0163-1829/95/52(6)/4319(8)/$06. 00 4319 1995 The American Physical Society



4320 JOACHIM STOLZE, ANGELA NOPPERT, AND GERHARD MULLER 52

II. FEB.MION HEPR, ESENTATION

The Jordan-Wigner transformation

1S —ac. ——
2 2

(2 1)

S+ —
( ] )Ra=i ~a~~ot S. —0,, ( ] )Ra=i ~1 ~~ (2 2)

between the component and ladder operators S;. , S,+.

S; + iS,". for an array of localized spins with S = 1/2 and
the creation and annihilation operators at, a; of an array
of fermions converts the Hamiltonian of an open-ended
XX chai~,

autocorrelation and paircorrelation functions (S; (t) S ).
The determinantal expressions for these functions have
been known for a long time. However, only with to-
day's advanced computer technology can they be evalu-
ated for systems large enough to yield data &om which
conclusions can be drawn with some confidence about the
long-time asymptotics for infinite and semi-infinite chains
at arbitrary temperatures. In Sec. II we describe the
method used for our analysis, in Sec. III we present our
results for the infinite system, and in Sec. IV we discuss
boundary effects.

into a Hamiltonian of noninteracting fermions,

JIIxx = —— .(&,&'+i + &;+go') . (2 4)

The energies of the one-particle eigenstates are

V&
eI, ———Jcosk, k=, v = 1, . . . , ¹%+1' (2.5)

(-1) ""= (a~+a~)(a~ - ~~) (2.6)

The spin correlation functions (S;(t)S') are then in
essence density correlation functions for the band (2.5) of
&ee fermions. Their characteristic t long-time asymp-
totic behavior at zero and nonzero temperatures ' is
a consequence of the band-edge singularities in the one-
particle density of state and (for T = 0) the singularity
at u = 0 generated by the Fermi function. For the spins
at the boundary of a semi-infinite chain, difFerent power-
law decays of (S;(t)S ) pertain to T = 0 ( t if both
i and j are odd and t otherwise) and T ) 0 ( t
for all i and j). A boundary-to-bulk crossover can be
observed for sites near the end of a semi-infinite chain at
T = oo.4

The correlation functions (S; (t)S-) have a much more
complicated structure in the fermion representation.
With the fermionic identity

N —x

IIxx = -Z ) (S,*S,*„+S,". S,",), (2.3)

applied to (2.2), this correlation function may be ex-
pressed in terms of the auxiliary operators AA, ——a& + aI,
and R& zt& a& as follows:

(S, (t)S~ ) = —(Ag(&)Bq(&)A2(&)B2(&) . A; g(&)B; q(&)A;(&)AgBgA2B2 . . A~ gB, gA, ) .
2 4 (2 7)

This expectation value of a product of 2(i + j —1) fermion operators may be expanded via Wick s theorem in terms
of more elementary expectation values. The result is most compactly expressed as a PfafBan:

I(A1(t)B1(t)) (Al(t)A2(t)) ' (Al(t)A1) (Al(t)B1) ' ' ' (Al(t)A))
( (t) (t)) . ( (t) ) ( (t) ) . ( (t) )

4(S; (t)S, ) = (2.8)

0 ~ ~

(B, ,A, )

The square of the Pfa%an is equal to the determinant of the antisymmetric matrix with the elements of (2.8) above
the diagonal. The matrix elements can be evaluated &om the expressions

(A, (t) A)) = e P&a) sin kj sin kl cos s1,t —i sin sj,t tanh%+1 2
k

(2.9)

(A'(t)B~) = 2 PEasin kj sin kl i sin sgt —cos syt tanh%+1 2
(2.10)
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and the relations

(&2'(t)&x) = —(+2(t)&x) (&2(t)&x) = —(&2(t)@).
(2.11)

All elements (2.9) with odd j —/ and all elements (2.10)
with even j —l vanish. For t = 0 the elements (2.9) are,
in fact, zero for all j g l. All results for the correlation
functions (S, (t)S. ) of the XX model presented in the
following have been derived via numerical evaluation of
the deterxninant associated with (2.8) for systems with up
to N = 10000 sites. The results are not subject to finite-
size effects on the time intervals shown, except where this
is explicitly stated.

III. BULK RECIME

The spin correlation function (S, (t)S,.+„) of Hxx at
T = oo is surprisingly simple: a pure Gaussian for n = 0
and identically vanishing for n g 0:

(S, (t)S,.+ ) =- —b o exp
J2t2

(T = oo) . (3.1)

No physical argument was ever furnished to explain this
peculiar decay law. At T = 0 that same spin correlation
function exhibits a power-law decay, of which the leading
term in an asymptotic expansion,

(S,*(t)S,*+.) =
4 („, J.t.),q, (T = o) (3.2)

(3.3)

with

with A = 2 ~ exp[3('( —1)j = 0.645 002 48... reflects the
Luttinger liquid nature of the ground state of H~~. Fur-
ther terms of that expansion are known for general n and
many more for n = 0.

Until recently it was not at all clear whether the Gaus-
sian and power-type decay laws persist at any finite
nonzero temperatures. Then Its et al. established on
a rigorous basis that (S, (t)S,+„) decays exponentially
for 0 & T & oo, i.e., more slowly than (3.1), yet more
rapidly than (3.2). From the solutions of the completely
integrable discrete nonlinear Schrodinger model, which is
related to H~~, they were able to derive the following
expression for the two-spin correlation function:

f (n, t) is negative and monotonically decreasing with in-
creasing T; it diverges logarithmically at T = oo, thus
signaling the change in decay law.

In the high-temperature regime, the result (3.3) for the
autocorrelation function (n = 0) can be brought into the
more explicit form:

(S, (t)S; ) exp
2Jt ( 2T)1+in (1« T/J & oo).

vr ( J)
(3.6)

What remains to be filled in for the bulk spin corre-
lation functions (S; (t)S,+ ) is to connect the exponen-
tial decay to the Gaussian decay (n = 0) or the identi-
cally vanishing result (n g 0) in the high-texnperature
limit and to the power-law decay in the low-temperature
limit. These connections are realized by crossovers be-
tween difFerent decay laws at short and long times and
can be investigated systematically in the data of finite
systems. The salient features of the crossovers are de-
scribed in Figs. 1 and 2 for autocorrelations (n = 0) and
in Fig. 3 for paircorrelations (n g 0).

A. Autocorrelations

-200

A
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-400
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V
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The modulus-squared spin autocorrelation function
~(S, (t)S, ) ~2 is plotted logarithmically in Fig. 1 for six
values of T/ J, all in the high-temperature regime (solid
lines). The bulk character of these results for site i = 49
of a chain with N = 100 spins has been ascertained by
comparison with the results of longer chains (with up to
N = 1000 spins). The (parabolic) dashed line represents
the Gaussian (3.1) —the exact result for T = oo.

We observe that the Gaussian behavior persists at fi-
nite T over some range of short times. That range shrinks

1 J cosyf(n, t) = dp ~n —Jtsinp~ ln tanh, (3.4)2' 2T
20 40 60 80

J+1 —(n/Jt)2
v = —ln tanh

27r 2T (3.5)

valid in the spacelike (n/Jt & 1) or the timelike (n/Jt &
1) sectors of the long-time (Jt + oo) and/or long-
distance (n ~ oo) asymptotic regime. The function

FIG. 1. Spin autocorrelation function (S; (t)S, ) in the
bulk regime of H~~ at high temperatures. Plotted is the
logarithm of

~
(S; (t)S, ) ~

evaluated at increments Jdt
0.4 for site i = 49 in an open chain of %=100 spins, for
2T/ J = 10, 10, . . . , 10 (solid lines, top to bottom). The ex-
act result (3.1) for T = oo is shown as dashed line. The slopes
of the dot-dashed straight-line segments represent the decay
rate of (3.6).
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2J 2T1+ ln (T/»») (3.7)

of the asymptotic result (3.6).
The solid lines in Fig. 2 show the same quantity as

in Fig. 1 but now for three values of T/J in the low-
temperature regime. Here the short-time Gaussian be-
havior has disappeared &om the scene. The steepest
curve corresponds to the highest temperature (2T/J =
1.0). The exponential nature of the decay (with mild os-
cillations superimposed) is now realized even at relatively
short times. The average slope is perfectly consistent
with the decay rate inferred &om the asymptotic result
(3.3), represented by the slope of the adjacent dot-dashed
line.

At lower temperatures a crossover between exponential
decay and power-law decay makes its appearance. The
power-law behavior is erst seen at short times. In the

with decreasing temperature. From the common short-
time parabolic shape the individual lines take off like
a bundle of tangents, which represent the exponential
character of the long-time decay. The crossover takes
place quite suddenly. The slight wiggles in the high-
temperature data will turn into stronger oscillations in
the low-temperature regime as we shall see. The observed
decay rate in the exponential regime as represented by
the slope of the tangent lines decreases monotonically as
the temperature is lowered. It is well matched in each
case by the slope of the adjacent dot-dashed line, which
represents the decay rate

center curve of Fig. 2, the crossover takes place prior to
Jt = 20. At longer times the exponential decay is still
clearly visible, and the rate of decay agrees well with the
asymptotic rate

1 —T
7

4 + 0 ~ ~

2 7r
(T/J && 1) (3.8)

B. Paircorrelations

extracted from (3.3) (see adjacent dot-dashed line). The
top curve in Fig. 2 represents the T = 0 result, which has
been investigated in previous studies. The dashed line
shows the asymptotic power law (3.2) for n = 0, which
matches the data shown here extremely well (except for
the oscillations).

The onset of finite-size effects at longer times is shown
in the inset to Fig. 2 for two cases. The rebound of
the T = 0 correlation function at Jt 100 can be in-
terpreted as the echo &om open ends of the ballistically
propagating fermions. In the T & 0 case, the peak at
Jt 100 is absent because of destructive interference.
The erst echo now occurs at Jt 200, the time it takes
a pulse to move through the system twice. The speed
of propagation which determines the echo time is given
by the maximum fermion velocity v = max[deI, /dk]. For
the dispersion (2.5) of Hxx we have v = J. In the pres-
ence of anisotropy as realized in the Hxr with J g J„,
eA, acquires a gap, v decreases, and finite-size efFects set
in later. These echo effects occur at all temperatures.
They are easy to recognize in all data produced for this
study.

In Fig. 3 we show a logarithmic plot of ~(S,. (t)S;+ ) ~

for n=4, 9, 14, 19 at the intermediate temperature

A
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FIG. 2. Spin autocorrelation function (S, (t) S, ) in the bulk
regime of H~~ at low temperatures. Plotted is the logarithm
of ~(S, (t)S, )~ evaluated at increments Jdt = 0.4 for site
i = 49 in an open chain of N = 100 spins at 2T/J = 1.0, 0.1
and for site i = 249 in a system of size N = 500 at T = 0
(solid lines, bottom to top). The dashed line represents (3.2).
The slopes of the dot-dashed straight-line segments represent
the decay rate inferred from the asymptotic expression (3.3).
The inset shows the results at 2T/J = 0 (upper curve) and
0.1 (lower curve) again over a longer time interval and (now
in both cases) for N = 100 in order to illustrate the onset
of finite-size efFects in the form of echos due to ballistically
propagating pulses refIected at the open ends of the chain.

-50

20
Jt

40

FIG. 3. Spin paircorrelation function (S, (t)S ) in the bulk
regime of Hxx at 2T/J = 1, for j = 49 and i = 30, 35, 40,
and 45 (solid lines, top to bottom) in an open chain with
N = 100 spins. Plotted is the logarithm of ~(S; (t)S. )~ eval-
uated at increments Jdt = 0.4 The inset shows the same
function in the same representation, but here the sites are
kept fixed (i = 30,j = 49) and the temperature is varied
(2T/ J = 0.1, 1, 10). The slopes of the dot-dashed straight-line
segments represent the decay rate inferred from the asymp-
totic expression (3.3).
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2T/J = 1. We observe that each function is almost per-
fectly constant up to a time Jt„n, where it bends
smoothly into exponential decay with superimposed os-
cillations. The decay time does not show any significant
dependence on n. The inverse decay time predicted by
(3.3) for the asymptotic regime of the uppermost curve
is given by the slope of the dashed line and matches our
data very well. A numerical analysis of (3.3) shows that
the asymptotic decay time increases slightly with increas-
ing n at fixed temperature. The linear variation with n of
the intercepts at Jt = 0 in this logarithmic plot reHects
the well-established. exponential decay of the equal-time
correlation function (S; S;+ ) exp[—n/((T)].

The inset to Fig. 3 shows again the curve n = 19 of
the main plot along with curves for the same correlation
function at difFerent temperatures. Now the crossover
between the spacelike and the timelike regimes occurs at
one common value of Jt. In the timelike regime, the slope
changes &om one curve to the next, which re8ects the T
dependence of the decay time, while the variable inter-
cept in the spacelike regime reQects the T dependence of
the correlation length.

The correlation length ((T) is known to diverge alge-
braically, 1/T, at T = 0 and to vanish logarithmically,

1/ln(T), at T = oo.2s 2s We have noted in Sec. III A
that the decay time w(T) also goes to zero logarithmically
at T = oo and exhibits the same power-law divergence at
T = 0. Figure 4 shows both the inverse correlation length
and the inverse decay time plotted versus temperature.
In the XXZ model, the two quantities are expected to
have more distinct temperature dependences. The nu-

merical results of Ref. 5 indicate that w(T) stays nonzero
at T = oo, whereas ((T) is expected to vanish in that
limit as it does in the XX model.

IV. BOUNDARY EFFECTS

Here we investigate spin autocorrelation functions
(S; (t)S; ) of a semi-infinite chain for sites i = 1, 2, . . .
beginning at the boundary. The actual calculations are
performed for sites i near one end of a finite open chain
(2.3) of N spins. However, none of the results presented
are aH'ected by the far end of the chain.

The long-time asymptotic decay of (S; (t)S; ) in the
boundary regime of a semi-infinite chain is diferent at
zero, finite nonzero, and infinite temperatures. It is
fastest at T = oo and slowest at T = 0, like in the bulk
regime, but instead of seeing transitions &om Gaussian
to exponential to power-law decay, we now observe tran-
sitions between three types of power-law decay.

At infinite temperature, the power-law long-time
asymptotic decay has the form

(4.1)

with a site-dependent exponent. This result was inferred
&om an exact calculation for sites i = 1, 2, . . . , 5, and
presumably holds for all sites of a semi-infinite chain.
The power-law decay at zero temperature as obtained
from a perturbational treatment of the Pfaffian (2.8) is
site independent,

(4.2)

2

and diH'erent &om the t /' decay in the bulk regime.
Our numerical analysis of the same determinantal ex-
pression at finite nonzero temperatures strongly indicates
that the long-time asymptotic decay is a power law with
yet a di8'erent site-independent exponent:

(0 & T & oo) . (4.3)

0
0

FIG. 4. Temperature dependence of the inverse decay time
1/v as derived from the asyinptotic expression (3.3) (solid
line) and from our numerical analysis of large but finite chains
(circles). The numerical data were derived from an exponen-
tial fit to ~(S, (t)S; ) ~

for i = 49 in an open chain of N = 100
spins, evaluated for 20 & Jt & 60 at increments Jdt = 0.4.
The dashed lines represent the approximations (3.7) and (3.8)
to (3.3) for high and low T, respectively. For comparison we
also show (dot-dashed line) the temperature dependence of
the inverse correlation length 1/( as given by (3.3). Data read
off Fig. 2 of Ref. 28 coincide with the curve shown, as do data
derived from our own numerical results for (S; Sg)/(S, +i')
with ~i

—j~ = 10 or 20 in an open chain of N = 100 spins.

An analytic calculation, which confirms this decay law,
is presented in the Appendix. The five curves in Fig. 5
represent the quantity ~(S; (t)S; )~ for i = 2 at various
temperatures in a log-log plot. The data are subject to
strong oscillations, which makes it hard to distinguish
the di8'erent decay laws in this graphical representation.
Therefore we have smoothed the data at Jt & 40 as de-
scribed in the caption. The three diferent slopes of the
dashed lines represent the decay laws (4.1) —(4.3), i.e. ,
t s/2 for i = 2 (bottom line), t s/2 (intermediate lines),
and t i (top line).

The decay laws of (S; (t)S; ) at a given temperature
and for a given site on the semi-infinite chain may un-
dergo one or several crossovers. Here we have to deal with
bulk-to-boundary crossovers in addition to crossovers be-
tween difFerent temperature regimes. We first look at the
two types individually and then in combination.

At T = oo we observe a bulk-to-boundary crossover,
i.e. , a crossover from Gaussian decay (3.1) at short times
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FIG. 5. Spin autocorrelation function (S, (t)S, ) in
the boundary regime of Hxx at 2T/J = 0, 0.1, 1, 10, oo
(solid lines, top to bottom). Shown is the quantity

~
(S, (t)S; ) ~

evaluated at increments Jdt
0.4 (Jt & 40), Jdt = 1 (40 & Jt & 100), and

JCh = 10 (100 & Jt & 2000) in a double logarithmic plot. The
data pertain to the site i = 2 in an open chain of N = 10 000
spins. At times Jt ) 40 most of the data were smoothed
by the following two-step procedure: (i) retain all local max-
ima of the data set; (ii) eliminate all local minima from the
remaining data set. The 2T/J = 0.1 data did not require
smoothing. The dashed lines represent the power laws t
(top), t (center), and t (bottom).
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FIG. 6. Logarithmic plot of the square of the spin autocor-
relation function (S; (t)S, ) in the boundary regime of Hxx
at T = oo for i = 2, . . . , 11 (top to bottom). The dashed
line represents the Gaussian (3.1) pertaining to the bulk limit
(i —+ oo). The data for i & 5 are obtained from the exact ex-
pressions given in Ref. 4 and the data for i ) 5 from an open
chain with N = 100 spins. The inset shows the time Jt, at
which the relative deviation of (S, (t)S, ) from the Gaussian
6rst exceeds one percent.

to power-law decay (4.1) at loiig times. This is illustrated
in Fig. 6 for the sites i = 2, . . . , 11 near the end of a
semi-infinite chain. The time Jt marking the onset of
the crossover depends linearly on the distance of the site
i &om the boundary as shown in the inset to Fig. 6.
A corresponding bulk-to-boundary crossover between the

FIG. 7. The main plot shows smoothed data of the
same quantity as in Fig. 5 at two very high temperatures
(2T/ J = 10,10 ) and in the inset for two very low tempera-
tures (2T/ J = 2 x 10,10 ). The dashed lines in the main
plot represent the power laws t (top) and t (bottom).
The dashed lines in the inset represent data for temperatures
2T/ J = 0, 0.1 (i.e., the two uppermost solid lines of Fig. 5).

power laws t /2 and t takes place in (S; (t)S; ) at
T=O.

Now we keep the site fixed at i = 2 close to the
boundary and vary the temperature. At high temper-
atures (T/J )) 1) we can observe an infinite-to-finite-T
crossover similar to the one portrayed in Fig. 1 for the
bulk regime. But here in the boundary regime, it is a
crossover between two power laws: t ~ and t ~ . This
crossover is illustrated in Fig. 7. The solid lines repre-
sent smoothed data at 2T/ J = 10 (top) and 2T/ J = 10
(bottom) in a log-log plot. It shows how the crossover is
shifted to longer times as the temperature approaches
infinity. A zero-to-nonzero-T crossover between the re-
spective power laws t and t ~ can be observed at low
temperatures (T/ j« 1). This is illustrated in the inset
to Fig. 7. Again the crossover is difFerent &om the cor-
responding (power-law-to-exponential) crossover in the
bulk regime (Fig. 2).

The two types of crossover in (S, (t)S,. ) of the semi-
infinite XX chain, which we have described separately,
namely, the bulk-to-boundary crossover (Fig. 6) and the
infinite-to-finite-T or zero-to-nonzero-T crossover (Fig.
7), may actually occur in one and the same data set.
One case in point is demonstrated in Fig. 8. It shows
a logarithmic plot of ~(S,. (t)S,. ) ~

at high temperatures
(T/ J )) 1) for a site of the infinite chain (solid lines) and
a site not too far &om the end of a semi-infinite chain
(dashed lines). The solid lines, which represent data al-
ready shown in Fig. 1, exhibit the familiar infinite-to-
finite-T crossover pertaining to the bulk regime. The
same crossover between decay laws (3.1) and (3.6) is also
observable in the dashed lines, but here it is followed by
the bulk-to-boundary crossover at finite T, i.e. , between
decay laws (3.6) and (4.3).

Note that in the lowest dashed curve, which corre-
sponds to the highest temperature, the intermediate
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APPENDIX. : DECAY LA%VS
IN THE BOUNDARY REGIME

A

(Q
~

0-50

0)
V

0-100

f t(t) = —(—)~ ' dx Ql —x2 U~ i(x) U) i(x)
—1

xe' ' f(PJx), (Al)

The t ~ decay law of the spin autocorrelation func-
tion (S; (t) S; ) in the boundary regime at finite nonzero
T can be recovered by the following analysis of the Pfaf-
fian (2.8) and its elements. For N ~ oo all nonvanishing
expectation values (2.9) and (2.10) are equal to

FIG. 8. Spin autocorrelation function (S, (t)S, ) in the bulk
regime and in the boundary regime of H~~ at high temper-
atures. Plotted is the logarithm of ~(S, (t)S, ) ~

evaluated at
increments ddt = 0.4 for site i = 49 (solid lines) and site
i = 11 (dashed lines) in an open chain of N = 100 spins for
2T/1 = 1, 10, 10, and 10 . The dot-dashed line represents
the Gaussian decay law (3.1).

where f(x) = (e + 1) is the Fermi function and U (x)
is a Chebyshev polynomial of the second kind. The long-
time behavior of f~~ (t) is determined by the singularities
of its Fourier transform

P, i(x) = Ql —x' U; i (x)Ui i(x) f(PJx) O(l —x').
(A2)

decay law has virtually disappeared. Here the two
crossovers overlap. At still higher temperatures their or-
der is reversed. The Gaussian decay law (3.1) crosses
over (bulk to boundary) to the power law (4.1), which in
turn crosses over (infinite to finite T) to the power law
(4.3). Corresponding crossover combinations take place
in the low-temperature regime.
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At nonzero T the only singularities of (A2) are the
square-root cusps gl —

~x~ O(1 —
~x~) at x ~ +1, which

yield fz~(t) ~ e+'~ t ~ . At T = 0 an additional singu-
larity in P~~(x) at x = 0 is generated by the discontinuity
in the Fermi function, but it contributes only to leading
order if both polynomials in (A2) are even, i.e. , for odd
j and l: f~~(t)

Instead of the Pfaffian (2.8) we study the associated
antisymmetric (4i —2) x (4i —2) matrix. Its deterininant
is equal to the square of (2.8) for i = j. That matrix
naturally divides into four (2i —1) x (2i —1) blocks:

16(s,*(t)s,*) (A3)

The blocks M and M' contain only time-independent
elements f~~(0) and the block A oiily time-dependent el-
ements f~~(t). Block M turns out to have the following
general structure:

0
0
0

-fi~(0)
0
0
0

(o)
0

0
0

fi2(o)

0
0

f-(o)
0
0

0
-f-(o)

0
0
0

-f-(o)
0
0
0

fis(0)
0
0

f2s(o)
0
0
0

f2s(0)

0
0
0

-f-(o)
0
0
0

-f-(o)
0

0
0

f2s(o)

0
0

fs4(o)

0
-fi4(o)

0
0
0

-fs4(o)
0
0
0

fi4(o)
0
0

fs4(o)
0

0
(o)

0
0 ~ ~ ~

0 ~ ~ ~

—f2s(o) . .
0 ~ ~ ~

0 ~ ~ ~

0 ~ ~ 0

f4s(o) . .-
0 ~ ~ ~

(A4)

Block M has a similar distribution of nonzero elements. The leading long-time term in the expansion of (A3) is
the one which contains the smallest possible number of time-dependent elements, i.e., the largest possible number of
elements &om M and M . Given the structure of M, it is not possible to pick more than 2i —2 elements &om M
in the expansion of (A3). The same holds true for M . Therefore, the leading term in (A3) contains exactly two
time-dependent elements f~~(t) from A, which explains the decay laws (4.2) and (4.3) at T = 0 and 0 & T & oo,
respectively. At T = oo all elements of M and M vanish, and the asymptotic long-time behavior is solely determined
by block A. This leads to the site-dependent decay law (4.1) as explained in Ref. 4.
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