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Micromagnetics at a finite temperature using the ridge optimization method
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The thermally activated transitions of the magnetization are studied for a chain of three identical in-
teracting ferromagnetic particles. The saddle points are located by implementation of the ridge method
with an initial direction of search chosen at random using the statistical properties of small collective
thermal excitations. The solution is refined using a technique that combines aspects of the conjugate
gradient and a Newton-type optimization. The methodology used identifies the transitions of relatively
high probability of occurrence and deduces the energy barrier of least height. From the study of the to-
pology of the energy surface, it is shown that the irreversible response of the system to an external field is
modified at finite temperature. The model predicts a reduction in the symmetry of the "fanning" mode
of magnetic reversal and a finite probability for transitions to states other than the state of negative satu-
ration that is attributed to the local uniaxial anisotropy of the particles. The field dependence of the en-
ergy barrier exhibits a discontinuity when the final state following the activation process is no longer
stable.

I. INTRODUCTION

In most theoretical micromagnetic studies of hysteresis
in ferromagnetic media, the assumption is usually made
that magnetic reversal occurs in the absence of any
thermal perturbations. The free energy of the system,
which comprises the anisotropy energy, the magnetostat-
ic self-energy, the exchange energy, and the energy of in-
teraction with an applied field, is first minimized, subject
to the boundary conditions for the magnetic potential, to
evaluate the equilibrium state of the magnetization. The
magnetic reversal then occurs for some critical value of
the applied field, the switching field, ' when the local ener-

gy minimum is transformed to a point of inAection,
whereupon an irreversible transition occurs into a new
stable state.

The magnetization reversal, however, is intrinsically
driven by thermal activation over finite energy barriers
which arise for example from the intrinsic anisotropy in
granular materials or the pinning mechanisms in materi-
als whose magnetic behavior is predominantly governed
by domain-wall motion. The thermally activated magnet-
ic reversal results in phenomena of theoretical and practi-
cal interest, such as superparamagnetism and the viscous
decay of a recorded magnetic signal. A framework for
studying thermally activated processes is therefore need-
ed.

The rate of escape over an energy barrier Eb in a bi-
stable or metastable system can be evaluated using a
variety of methods and is given, under the condition of
weak thermal noise Eb/kT))1, by the Arrhenius-Neel
law '

—Eb /kT
r =ve

For a single-domain ferromagnetic particle, analytic
expressions for the rate constant r were derived by
Brown using the Fokker-Planck di8'erential equation

that describes the time evolution of the probability-
density distribution function of moment orientations.
Numerical solutions were given by Aharoni ' for a single
particle and Rode, Bertram, and Fredkin' for a pair of
magnetic dipoles. The Fokker-Planck method, however,
is diKcult to apply in extended ferromagnetic systems
with many degrees of freedom, since it requires the de-
tailed knowledge of the energy surface of the system"
which is not in general available.

An alternative approach is to simulate the thermal ac-
tivation by generating stochastic morDent trajectories
from the metastable state by integrating the Langevin
equations of motion. ' The computational effort, howev-
er, increases exponentially with the size of the energy bar-
rier Eb, so that the usefulness of this approach is limited
to the simulation of near-spontaneous activation process-
es in systems with few degrees of freedom.

Although the prefactor v is dependent in general on
the temperature and the morphology of the energy sur-
face, ' in the limit of weak thermal noise, it can be re-
garded to a good approximation as a constant of the or-
der 10 —10' sec ', ' The rate of escape r then depends
to first order on the barrier energy Eb and the path of
minimum energy through the saddle point of the transi-
tion becomes a good approximation of the magnetization
reversal mechanism. ' It is useful therefore to employ an
optimization algorithm to evaluate the transition state of
the system. Transition states are saddle points with
Morse index 1. This means that the Hessian matrix H
(i.e., the matrix of the second derivatives of the energy} at
those points has a single negative eigenvalue. The calcu-
lation of the transition states is required to determine the
prefactor v, ' as well as the precise heights of the energy
barriers that are essential in any treatment of magnetic
viscosity.

Analytic expressions for the energy barrier of a pair of
magnetic dipoles have been given' and numerical esti-
mates for more complex systems have also been report-
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ed. ' ' In principle, the numerical methods used in-
volve some intuitive choice of an internal variable that is
assumed to vary monotonically during the activation pro-
cess, while the other variables are optimized at fixed in-
tervals. The resultant pathway, however, is not
guaranteed to pass through a genuine saddle point and
different choices of the variable that is assumed to vary
monotonically may produce different results. ' ' An ad-
ditional difficulty is that the equilibrium magnetization
configuration following the activation process is not al-
ways known in advance and may depend, as will be
demonstrated later, not simply on the geometry of the
system but also on intrinsic magnetic properties such as
the anisotropy and the saturation magnetization.

There are considerable difficulties in applying existing
saddle-point methods to multidimensional systems. The
number of saddle points to be found is not known in gen-
eral. The topology of the energy surface may be com-
plex. Any method used should also be efficient and use
for the most part only first-order derivative information
of the energy surface.

There is no one optimization method for finding saddle
points that is rigorous. Most of the progress has been
motivated for application to the isomerization reactions
of organic molecules. For instance, a stable algorithm
has been constructed by minimization along conjugate
directions. ' Two directions p, q, are conjugate with
respect to the Hessian H when p Hq=0. If an initial
search direction p of negative curvature is found
(p Hp (0), minimization in the subspace conjugate to p
should converge to the saddle point. ' The minimization
part of the algorithm can be carried out using the quasi-
Newton method that is quadratically convergent. This
results in an hybrid method that combines the stability of
the conjugate gradient with the efficiency of quasi-
Newton minimization. A good initial guess of the solu-
tion, however, is still required so that the energy can be
approximated as a quadratic function. The method is
therefore best suited to refining a solution and was adopt-
ed here as described in Sec. II.

For more difficult nonquadratic energy surfaces, a
good initial guess of the solution is not available. Con-
vergence in this case can be achieved iteratively by mak-
ing use of only local information on the energy surface.
An efficient method, introduced by Ionova and Carter,
finds transition states by minimization of the energy
along the ridge, i.e., along the hypersurface that forms
the boundary between the domains of attraction of two
stable states. The ridge method uses only gradient infor-
mation to achieve convergence and explores a smaller
area of the coordinate space, so it can more readily be ap-
plied to systems with a large number of degrees of free-
doll1.

The ridge method converges to a transition state start-
ing from any arbitrary starting point on the ridge. This
represents an important advantage over previous
methods that allows a systematic investigation of the pos-
sible transitions from a metastable state. This search is
needed, for example, to evaluate the transition state of
lowest barrier height, since no saddle-point method can
guarantee convergence to a globally optimal state. In our

implementation of the ridge method, the search for tran-
sition states is carried out using a technique that consid-
ers the normal modes of thermal excitation of the system.
This is more similar to "importance sampling" than the
search using a random initial direction. We note that the
computational method is thus intimately linked with the
physics of the problem rather than being developed as a
general optimization method. A description of the im-
plementation is given in Sec. II. In Sec. III, the ther-
moactivated transitions are studied for a model three-
particle micromagnetic system that is simple enough to
be physically transparent while demonstrating interesting
transition phenomena due to its relatively complex ener-
gy surface.

II. DESCRIPTION OF THK METHOD

In the present study, we address the problem of finding
multiple transition states in a micromagnetic system that
are associated with a given metastable state. The transi-
tion states were located by implementation of the ridge
method of Ionova and Carter.

The ridge method relies on the fact that any genuine
saddle point, i.e., a saddle point with one unstable direc-
tion, must satisfy the mountain pass theorem. The
method, shown schematically in Fig. 1, can brieAy be de-
scribed as follows. Suppose xo, x& are two points in a n-
dimensional coordinate space that represent stable
configurations (local energy minima) that belong to
neighbor domains of attraction so that they are separated
by an hypersurface (ridge) of greater functional value. A
linear search is carried out along the direction of negative
curvature [xo,x, ] for a maximum of the potential energy
on the ridge at some point x . A small interval [xo,x', ]
around the point x is then defined by setting
xo=x —p, xi =x +p, where p is a side step vector
parallel to [xo,x, ]. Two new points xo, x", are then
defined from xo'=xo+&po, x&'=x&+ap, where e)0
and po, p& are directions downhill in the energy surface.
A line search along [xo,x", ] is then carried out to obtain

FICx. 1. A schematic illustration of the ridge method. The
saddle point, shown by the symbol S is connected through val-
leys to the minima, A, 8 and through the ridge to the maxima
C, D.
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a maximum x' on the ridge. This procedure is repeated
and a sequence of points x,x'. . . on the ridge is con-
structed that should gradually converge to a saddle point
X

In our numerical tests, the ridge method was found not
to be always stable so that convergence to a stationary
point is not guaranteed. For instance, if the ridge curves
severely, it is possible that the points xo', x &' that are gen-
erated belong to the same domain of attraction. A max-
imum point x' may still be located that does not belong
to the ridge but rather to some local undulation in the en-
ergy surface on the same domain of attraction that de-
cays eventually on a "mountain slope. "A linear search in
the direction [xo,x", ] will not necessarily reveal the ex-
istence of a second maximum so that no error can be per-
ceived by the algorithm until at some stage no maximum
point x' can be found. It is dificult to envisage a test
that avoids failure in this situation, although some ideas
contained in the detour algorithm of Ionova and Carter
may be useful. The fundamental problem appears to be
that the algorithm uses only local information of the en-
ergy surface and it is not possible to know a priori that
the sequence of iterations does not lead to a saddle point.

The rate of convergence of the ridge method is linear.
The position of the saddle point was therefore refined in
our study by implementation of the quadratically conver-
gent Inethod of Bell, Crighton, and Fletcher, when the
gradient on the ridge becomes sufBciently small
~g(x' )~ &e&. The basic requirement of the method, that
the energy surface is of nearly quadratic form, is satisfied
in most cases when e& =0.001. The method of Bell, Crig-
ton, and Fletcher involves an energy minimization in
the subspace Z that is conjugate to the direction of nega-
tive curvature (that is provided here by the ridge
method). For the minimization part of the algorithm, we
have chosen a Newton-type rather than quasi-Newton
optimization, since it was found to be more robust in the
case when the Hessian matrix in conjugate space
Z H(x )Z is ill conditioned, for example close to some
critical points, when the energy curvature at the saddle
point x, about some stable direction becomes rather Hat.
The algorithm was terminated when the condition
~g(x' )~ (e2=2X10 was satisfied.

The main difticulty in the implementation of the ridge
method in a micromagnetic system is that in general one
has knowledge only of the initial metastable state xo but
the position of the second stable state x

&
is not known. If

a direction of negative curvature is found and the ridge
method can be initiated, then a method has been sug-
gested by Ionova and Carter that has the potential of
finding all the transition states that may be present in the
system. In complex micromagnetic systems, however,
the total number of transition states may be excessively
large and our objective is to restrict the search for those
that involve a given metastable state xo.

In principle, it is possible to search for transition states
by generating the initial direction of negative curvature
p = [xo,x, ], without knowledge of x „completely at ran-
dom. However, when studying processes of thermoac-
tivated magnetic reversal, one is normally interested in

those transitions only that have relatively low activation
energies and are therefore more likely to occur. In this
case, it may be of advantage to initiate the ridge method
with a direction of negative curvature [xo,x, ] generated
using the normal modes of excitation of the system
about the metastable state xo.

If [u;, A,;,i = 1,n] are the orthonormal eigenvectors and
respective eigenvalues of the Hessian matrix H(xo), the
direction of search p for a maximum on the ridge is gen-
erated using

p=gy, u, ,
i=1

where the amplitudes y; of the normal modes are ob-
tained numerically at random from the Gaussian distri-
bution defined by

(2)

(y, & =0, (y2& =kT/A,

Equation (3) is consistent with the requirement of
equipartition of energy kT/2 on average for each mode,
in the classic limit. The directions p thus generated are
representative of the spontaneous response of the system
in the low-temperature thermodynamic limit.

The implicit assumption in using Eq. (2) is that the sad-
dle point x, of the thermally activated transition in a mi-
cromagnetic system can be located in a direction that in-
volves primarily the modes of lower frequency. The limi-
tations involved in the assumption can be determined by
considering in more detail the variation in the topology
of the energy surface.

The topology of the energy surface is determined by
the number and the Morse index i (O~i ~n) of the sta-
tionary points. If the energy surface is dependent on k
external (control) parameters c,a= 1, . . . , k, then the
response of a stationary point x to small changes in c is
given by

(4)

where H;, H refer to the matrices of the second-oqder
energy derivatives of dimension n X n and n X k, respec-
tively.

If the Hessian matrix H; is nonsingular, the response
of the stationary point x to small variations in the control
parameters c is linear. A discontinuous response occurs
at critical points x in the energy surface, when both the
gradient and the determinant of the Hessian vanish
( ~g ~

=0, ~H ~
=0). At such critical points, the Morse in-

dex of a stationary point changes and the topology of the
energy surface is modified. The locus of all critical points
c in the space of the control parameters is a ( k —1 )-
dimensional hypersurface, that is defined as the separa-
trix of the system in the framework of catastrophe
theory.

The switching field H, of a micromagnetic system as
defined by Schabes and Bertram' is a generalization of
the concept of a nucleation field that is applicable for
systems with nonuniform magnetization states at equilib-
rium. The switching field is an example of a critical point
c such that the local minimum in the energy surface is
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transformed to a saddle point. In the absence of any de-
generacies, the eigenvalue of the lowest frequency then
vanishes, (A, , =O) and an irreversible magnetic reversal
occurs initially along the direction of the associated
eigenmode u &. If the applied field is smaller but allowed
to approach the switching field there will be a small but
finite energy barrier. During the process, the principal
axes of the saddle point and the energy minimum become
gradually parallel and the eigenvalues associated with at
least one direction tend towards zero. It is evident that
the saddle point must be approaching from the direction
of the principal axis of vanishing eigenvalue, i.e., the
"soft" mode of the system. The soft mode of the system
is therefore a good guess of the position of the saddle
point of the transition in the limit 0,~H,„.

Transition states other than the one traced through the
soft mode may also exist, for a given value of the applied
field. These involve, in general, energy barriers of
different height. The magnetization reversal will be
determined, however, only by transition states of low ac-
tivation energies that are expected to involve mainly the
low-frequency normal modes of excitation. For this
reason, the generation of the initial direction of search us-
ing Eq. (2) should be of some practical advantage.

There are some important limitations in using Eq. (2).
The method can be computationally expensive, since
searches from different starting points on the ridge may
converge to the same solution. A large number of
searches may also be necessary since one has no advance
knowledge whether all the transition states of interest
have been located. It is more efficient to employ the orig-
inal method when the position of the stable states x&
following the activation process are known in advance.
Finally, the method adopted is not applicable to any arbi-
trary system but limited, as discussed above, to physical
systems close to a first-order phase transition, when the
energy of activation is relatively small.

The contribution of different normal modes to the ac-
tivation process can be determined by expressing the de-
viation x, —xo required for the magnetization to attain
the transition state, as a sum over the complete set of
orthonormal eigenvectors uk of the Hessian matrix at the
metastable state H (xo ).

xs xo ak uk
k=1

The amplitude ak then represent the relative contribution
of the kth normal mode to the activation process in the
limit of weak thermal noise Eb/kT)) 1.

FIG. 2. A system of three anisotropic single-domain parti-
cles.

III. THERMAL ACTIVATION
IN A SIMPLE MICROMAGNKTIC SYSTEM

We consider a system of three identical interacting fine
ferromagnetic particles as shown in Fig. 2. Following a
description of the implementation of the method for this
system in Sec. III A, the thermally activated magnetic re-
versal is studied in detail in Sec. III B and a discussion of
the importance of the local particle anisotropy is given in
Sec. III C.

A. Implementation of the ridge method

The fine particles in Fig. 2 may be allowed to have a
point contact and are assumed to possess uniaxial (shape
or magnetocrystalline) anisotropy in the direction of
alignment. An external field H, is applied along the com-
mon anisotropy axis tending to cause magnetic reversal.
The direction of the magnetization of the single-domain
particles is defined in general by polar and azimuthal an-
gles 8;, P; (

—
m 8; ~ n, 0~ $; m, i =1,2, 3) that

represent the internal variables of the system. Using a di-
pole approximation for the demagnetizing field, the free
energy of the system can be expressed as

sin8;sin8 cos(P; —P ) —2cos8;cos8.E=—mH„Q sin 8;+m g g ' ' +mH, g cos8, ,
i j)i iJ
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+ g + 1 —h 5;.
i —l

(7)

where 5;J. is the Kronecker delta function, x=m/(Hkr )

is a dimensionless parameter that is a measure of the
strength of the dipole interaction between neighbor parti-
cles at a distance r and h =H, /Hk is the applied field in

reduced form. The nucleation field H„ is then given as
the value of the applied field H, that will make the lowest
positive eigenvalue of the Hessian vanish.

The implementation of the ridge method starts by
defining the point xo to be the metastable state (000).
The nucleation field H„ is determined and the applied
field is chosen to be close but smaller than that value.
The direction [xo,x, ] is then defined as the direction of
the soft mode (i.e., the eigenvector of lowest eigenvalue)
and a linear search is carried out to obtain the maximum
point x on the ridge. The saddle point x, is then locat-
ed using the ridge/Newton-type optimization procedure.
The value of the applied field is then changed by a small
amount H, ~H, —5H, and two different methods can be
employed to define the initial direction of search

p = [xo,x, ] for the maximum on the ridge.
In the first method, the initial direction of negative

curvature p is chosen from the previous solution by set-
ting x&=x„prior to the implementation of the ridge

where m is the magnetic moment of a particle, Hk is the
local anisotropy field of a particle, and r, is the particle
separation.

The azimuthal dependence of the energy was ignored
in the calculations. This simplification is possible in sys-
tems of uniaxial symmetry' * ' since the path of
minimum energy through the low-lying transition states
in the energy surface involves the collective rotation of
polar angles only and the deviation of any moment in the
azimuthal direction results in an expense in dipole in-
teraction energy. Transition states such that the magnet-
ic moments are not confined on the same plane are ig-
nored here since they involve relatively high-energy bar-
riers.

The configuration of perfect magnetic alignment
( 8 i 82 83 )= (000 ) is a local energy minimum, provided
that the reverse field H, is smaller than the nucleation
field H„(H, (H„). The nucleation field H„(Ref. 27) is
the zero-temperature switching field [H„=H, (T=O)
(Ref. l)] that causes a spontaneous transition by making
the energy barrier vanish (Eb =0). Here it is dis-
tinguished from the switching field H, (T) that can "nu-
cleate" a magnetic reversal at some point in the system
by thermal activation (Eb )0), as will be demonstrated
later. We stress that the concept of a switching field as
introduced by Schabes and Bertram' is here generalized
to allow it to be temperature dependent.

The nucleation field H„and the normal modes of exci-
tation of the system are obtained by diagonalization of
the Hessian H at the energy minimum (8„8z,83)=(000),
given by

method. The evolution of the saddle point in coordinate
space as the field H, is varied can then be traced. At crit-
ical values of the field, when the Morse index of the sad-
dle point changes, convergence to a nongenuine saddle
point is likely. Since the method is deterministic, no fur-
ther progress can be achieved, so it is then necessary to
modify the initial direction of negative curvature by a
small random perturbation and initiate a new search.

In the second method, the initial direction of negative
curvature p is generated using Eq. (2). This allows saddle
points that can not be traced by the former method to be
located.

It is possible that a direction is generated such that a
maximum on the ridge is not found before one of the
variables 0; reaches its boundary value +m. The imposi-
tion of linear inequality constraints would increase sub-
stantially the complexity of the algorithm and it is prefer-
able to treat the problem as one of unconstrained optimi-
zation. The periodic boundary condition 0,. =0;+2m~
(where m is an integer) is imposed, if necessary, when the
solution x, is found. This procedure is of advantage, for
example, when the trajectory of a saddle point in coordi-
nate space is traced close to the boundary surface.

The initial value of the side step size ~p ~
was chosen so

that at the points xo,xi the maximum declination of any
moment from the orientation at the ridge did not exceed
10', i.e., p; '"=10 . The downhill step constant o. was ini-

tialized using a;„~g(x )~/~p(=r, „=0.5 and in subse-

quent reductions of the step sizes the minimum ratio
was set to r;„=0.25. For each update of the applied
field, convergence to a saddle point was achieved in typi-
cally less than eight iterations using the first method and
less than 30 iterations using the second method. When
searching for multiple transition states, six independent
searches were conducted using the second method for
each field update.

B. Results for a system of three coupled particles

There are two main considerations in a study of
thermally activated processes. First, it is necessary to
evaluate the transition state of minimum barrier height.
The path of minimum energy is associated with the mode
of activation that is most likely to occur. Secondly, it is
also useful to consider whether transitions to some
different states are possible. Evaluation of the barrier
heights would then provide an estimate of their relative
probability.

The energy barrier of lowest height, for some constant
value for ~, was evaluated as follows. The external field

H, was set to a value close to the nucleation Geld H„.
The saddle point x, associated with the soft mode was
first located and the associated energy barrier was evalu-
ated. Then an attempt to sample other transition states
was carried out by stochastic generation of the direction
of negative curvature using Eq. (2). The associated ener-

gy barriers were compared with the energy barrier for the
soft mode. The minimum energy barrier was found at
the saddle point associated with the soft mode. The ap-
plied field H, was subsequently reduced in magnitude in

small discrete steps. The same procedure was repeated
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the original state (000), so the saddle point (WO) is not
associated with any particular transition. A more de-
tailed discussion of the field ho is given later. A similar
behavior has been observed for a system of two parti-
cles, ' where activation to a state with the two moments
being antiparallel is possible when the dipole interaction
is sufficiently weak.

Next, we test the validity of the assumption made re-
garding the importance of the low-frequency normal
modes in the activation process. We consider the case
when x, is associated with the minimum activation ener-

gy and express x, —xo as a sum over the eigenvectors uk
of the Hessian matrix at the metastable state xo=(000)
as in Eq. (5), i.e., x, —xo=gk, yi, uk. The coefficients

y ] y 2 y 3 that provide a measure of the contribution of
the normal modes to the thermal activation are shown in
Fig. 4 as a function of the applied field in the case when
the constant of magnetostatic coupling ~=0.3. When
the applied field is sufficiently close to the value at nu-
cleation H, —+H„=1.43Hk, the thermal activation pro-
cess can be described, in principle, by a single mode of
the lowest frequency, i.e., the soft mode
(y, AO, yz, y3=0). This observation is consistent with the
discussion given in Sec. II. The amplitudes yz, y3 vanish
probably as a result of the uniaxial symmetry of the sys-
tem. At the critical field h„, the reduction in the symme-
try of the fanning mode of magnetic reversal (8,%83), is
found to be associated with the onset of a finite amplitude
for the contribution of the high-frequency modes of exci-
tation y2, y3 to the position of the transition state. The
change in yz, y3 at this critical point is small but discon-
tinuous. A further reduction in the magnitude of the ap-
plied field is associated with an increase in activation en-
ergy Eb. The contribution of the high-frequency modes
of excitation to the activation process as shown in Fig. 4
then becomes more significant, as has already been dis-
cussed in Sec. II.

Next we consider the situation when, for a given choice
of the control parameters (a., h), more than a single tran-
sition is possible. The current implementation of the
ridge method provides the framework for a systematic
analysis by evaluating the contributions to the separatrix
of the system from the different local energy minima to
which the system may relax, following the activation pro-
cess. These energy minima may be metastable and transi-
tions into new states (including the original energy
minimum) are possible. The separatrix (see Sec. II) here
consists of curves that divide the two-dimensional phase
space of the control parameters k, h into a finite number
of regions that represent structurally stable energy sur-
faces of different topology.

The separatrix was evaluated as follows. The ridge
method was implemented a number of times using Eq.
(2). The stable states associated with the saddle points
were noted and the procedure repeated for different
values of the parameters ~, h. It was therefore possible to
verify that transitions to stable states x

&
with any number

of moments reversed are possible in general, e.g. , (F00),
(~rrO), (OrrO), etc. The energy gradient at these states is
zero. The set of values of the control parameters ~, A
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FIG. 4. The amplitudes of the normal modes of excitation
about the metastable state (000), at the saddle point of the tran-
sition (y„y2,y3 ), are shown as a function of the reduced applied
field h =0, /Hk. The constant of magnetostatic coupling is
z=0.3.

when the Hessian matrix H(x i ) becomes positive definite
was evaluated. These are the critical points in parameter
space when the states x& become local energy minima.
The contribution to the separatrix from the states (F00),
(mmO), (Om6), (mOm) in the two-dimensional parameter
space i~, h are the curves c,d, e,f shown in Fig. 5. The
area within each curve represents the locus of all points
in parameter space for which that state is stable and a
transition possible. The curves for (F60) and (mvrO) ex-
hibit reAection symmetry with respect to the ~ axis, and
it can be easily verified that they represent the same phys-
ical process as the applied field changes sign H, ~—H, .
The same argument also applies for the contributions
from (OM) and (~Our). In the same figure, the critical
points associated with the nucleation field H„are
represented by curves a. The increase of H„with cou-
pling strength indicates that the rnagnetostatic coupling
tends to resist the magnetic reversal (a phenomenon that
is also associated with superferromagnetism '). Curve b
represents the critical field h„associated with the reduc-
tion in the symmetry of the fanning mode. For any point
within the area enclosed by curve b, the trajectories of
the two particles at the end of the chain will be different
in the thermoactivated process (8,%83).

Figure 5 provides, in general, information on the mode
of magnetic reversal that is most likely (curve b) and the
stable states where a transition is possible (curves
c,d, e,f). The existence of a stable state, however, does
not guarantee that a direct transition to that state is pos-
sible, i.e., that the two domains of attraction share a com-
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mon boundary. A search for direct transitions was car-
ried out as follows. The applied field was reduced in
small discrete steps from the value at nucleation H„. At
each step the ridge method was implemented with sto-
chastic initial directions of negative curvature using Eq.
(2) (method 2 in Sec. III A). The first instance of a transi-
tion to a new stable state was recorded. The trajectory of
the associated saddle point in coordinate space was then
traced as the magnitude of the applied field was varied
(method 1 in Sec. III A). Thus the range of values of the
applied field for which a direct transition to that state is
possible was determined.

The activation energy E& for all direct transitions from
the state (000) is shown in Figs. 6(a) —6(c) as a function of
field for different values of coupling strength
(a=0. 1,0.3,0.4). The dependence of the energy barrier
of minimum height on the applied field can easily be de-
duced, as shown in Fig. 7. It is important to note that
the additional transition states that are located using Eq.
(2) cannot be found by an approach based on the soft
mode alone. Thus the approach adopted allows a sys-

FICi. 5. Contributions to the separatrix in the space of the
two control parameters ~, h. Curves a represent the intrinsic
nucleation field H„, curve b the reduction in the symmetry of
the fanning mode of reversal, curves c,d, e,f the critical points
when the states (+00), (~M), (OM), and (M~) become metasta-
ble. The dashed curves do not belong to the separatrix and are
associated with a change of the stable state following the activa-
tion process. The points A, B, . . .6 associated with qualitative
changes in the activation process are shown for clarity separate-
ly in the inset.

tematic study. of the magnetization reversal mechanisms
that are possible at a finite temperature.

A direct transition to a particular state, as is evident
from Figs. 5 and 6, appears to be possible only in a region
of control parameter space that is a subset of the region
where the state is stable. In Fig. 6 these regions are
represented by "bands" that are, in general, disconnect-
ed. A transition to a new stable state is also possible for
values of the applied field that do not belong to these
bands, however, the transition in this case must be in-
direct through the domain of attraction of an intermedi-
ate state.

The set of metastable states where a direct transition is
possible changes as the control parameters are varied. In
the first type of change, a state that is directly accessible
is replaced by another, the former being thereafter acces-
sible only indirectly. For example, when the field is grad-
ually reduced from the value at nucleation (point A in
Fig. 6), the state (mm. ~) ceases to be accessible by direct
transition at some point 8, when h =ho. The saddle
point then becomes associated with a transition to the
(@60) state. The noncritical point B is not part of the
separatrix of the system and there is no change in the to-
pology of the energy surface. Other examples include a
change of the transition from the state (~arm) to (OM)
[point E in Fig. 6(a)] and from the state (~~m) to (mW)
[point E in Fig. 6(c)]. The locus of such noncritical
points in control parameter space is represented by the
dashed curves in Fig. 5.

A second type of change of the set of states where a
transition is possible is illustrated by point C in Fig. 6(a).
The state (F00) ceases to be a local minimum and the
most likely transition is to the (mm6) state. A similar
change from the state (m7rO) to the state (err') occurs at
the point H. A small change in the control parameters at
such critical points results to activation through some
different path of minimum energy to a new state. The en-
ergy barrier of lowest height therefore exhibits a discon-
tinuous variation as is illustrated in Fig. 7.

A more complete account of the variations in the path
of minimum energy occurring when the field is gradually
reduced from the maximum value H„can now be given.
We consider the case ~=0.3, represented by an arrow in
the inset of Fig. 5. The nucleation of magnetic reversal
occurs initially by near-symmetric fanning to the state
(new). The symmetry of the fanning mode is reduced at
the critical point A. The state (F00) then becomes meta-
stable (point B) and replaces the state (vrrrm ) as the state
where a direction transition is possible (point C). At this
stage transitions to the state (erma) are possible only in-
directly, through the domain of attraction of the state
(@60). Similarly the state (mvrO) becomes metastable (D)
but is not yet accessible directly [Fig. 6(b)]. The state
(F00) ceases to be a minimum (E) and the only direct
transition is to the state (nM). The latter is similarly re-
placed by (n.m.m)(F). .

The behavior for other values of the coupling contrast
a & 0.45 is similar. The only difference is that for
0.36&a &0.45, it is the state (mere) that replaces (MO)
when the latter ceases to be a local minimum.

It is interesting that transitions to states such as (OmO)
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and (atom ) whose contribution to the separatrix are
curves enveloped by those of other transitions have rela-
tively larger activation energies. The implication is that
in extended systems with a large number of metastable
states, the thermal activation may adequately be de-
scribed by considering a relatively small number of tran-
sitions.

The temperature and time dependence of the switching

field H, ( T) that causes the first irreversible response on
average over a time interval t can be evaluated from Fig.
7, by setting Eb =kT ln(vt) [Eq. (1)] and assuming that
the temperature remains low so that transitions other
than the most probable can be ignored. The result is
shown in Fig. 8 for different values of the coupling con-
stant k. The curves can be fitted to a good approxima-
tion by an analytic expression of the form

Eb/mH„

AB, DE, KL ~ (m~~)
BC ~ (moo)
FF ~ (orro)

GH ~ (mmo)
IJ ~ (vrom)

AB, FC ~(~~~)
BC m (7roo)
DE ~ (mrro)

F

I I I I I I I I I I I I 1 I I I I~ I I I I I I I I I ) I I I I I I I I I J I I I I I I I I I 1 I I I I I I I I~ I I I I I I I I I ) I I I I I I I I I

—1.0 —0.5 0.0 0.5 1.0 —1.0 —0.5 0.0 0.5 1.0

AB, DE, GH ~(mmvr)
BC ~ (m oo)
EF ~(mero)

A
I I I I I I I I I ( I I I I I I I I~ I I I I I I I I I 1 I I I I I I I I I

—0.5 0.0 0.5 1.0

H, /H„

FIG. 6. The reduced energy barrier Eb /mH„of all transitions from the state of perfect magnetic alignment (000), as a function of
reduced applied field H, /H„. (a) —(c) were obtained with a coupling constant ~=0.1, 0.3, 0.4, respectively. The states to which tran-
sitions occur are shown in each figure separately.
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when H, =H, (0)=H„ is not satisfied here because of
the uniaxial symmetry of the system.

C. The eftect of particle anisotropy
on magnetic reversal

0.9

I
I I
I
I I

IK=0 1

I I I I I I I I I I I I I I I I I Ital I I I I I I I I I I I I I I I I I I I

—1.0 —0.5 0.0

H /H„

0.5 1.0

FIG. 7. The reduced energy barrier of lowest height
EI, /mH„ for transitions from the state (000) as a function of the
reduced applied field H, /H„. Results are shown for a range of
values of the coupling constants v=0. 1, 0.2, 0.3, 0.4, 0.5, 0.7,
0.9.

The system studied in the present treatment (Fig. 2) is
similar to the "chain-of-spheres" model of Jacobs and
Bean. In a chain of spheres, however, the particles are
assumed to have no anisotropy (Hk=0), so the nu-
cleation field of the chain is determined from the magne-
tostatic interaction. The behavior of a chain of spheres is
obtained in our model in the limit of strong coupling
1~=II(Hkr )~~. A comparison between the two
models should therefore provide information on the effect
of particle anisotropy.

Jacobs and Bean only considered the spontaneous
magnetic reversal when the energy barrier vanishes
Eh=0. For chains of n spheres, where n ~3, the mo-
ments were found to reverse by asymmetric fanning. In
the case n =3, however, symmetric fanning (8, = —82

03 ) turned out to be a good approximation. Assuming
reversal by symmetric fanning, analytic expressions can
be obtained for the nucleation field and energy barrier
that include the effect of particle anisotropy:

H„=H), + [(6'„4L„], — (9)

kT ln(vt) =C(k)EH

where C is independent of the field and 4K=H, (0)
—H,„(T). A model by Victora predicts a AH
dependence. The basic assumption of that model, howev-
er, that the third derivative of the energy with respect to
the normal modes does not vanish at the critical point where

nmH„ 1—
2 H„

(10)

1.0

0,9—

(~ —I)/2& j &(n+1)/2

j=1 n (2j —1)3
~

0.8—

0.7—

For a chain of three particles (n =3), Eq. (9) reduces to

CO
0.6—

H„ =1+
Hk 12

(12)
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FIG. 8. The temperature and time dependence of the switch-
ing field H,„resulting in the first irreversible magnetic change.
Results are presented for different values of the coupling con-
stant k.

The result of a precise calculation, shown by curve a in
Fig. 5, indicates that the symmetric fanning approxima-
tion [Eq. (12)] is satisfactory for all values of ~. The par-
ticle anisotropy does not modify the magnetic reversal
mode (by near-symmetric fanning) in this case (Eb =0).

We consider next the case when magnetic reversal is by
thermal activation (Ez )0). For a chain of spheres
(v~00), the superposition of the curves in Fig. 7 is in
good agreement with Eq. (9) and indicates that the mode
of activation is well approximated by symmetric fanning.
Comparison with data obtained for low values of ~, in
Figs. 3(b), 3(c), 5, and 7 indicates that the particle anisot-
ropy can modify the mode of activation by reducing its
symmetry and by allowing activation to new stable
configurations.



MICROMAGNETICS AT A FINITE TEMPERATURE USING THE. . . 4311

IV. DISCUSSIQN
The thermally assisted magnetic reversal in a mi-

cromagnetic system of three interacting ferromagnetic
particles in the low-temperature limit was studied by ap-
plication of the ridge optimization method. The magnet-
ic reversal occurs in general by asymmetric fanning of the
moments. The remaining symmetry of the fanning mech-
anism was shown to be broken at critical values of the
field and coupling strength (the control parameters) by
the presence of the particle anisotropy which also allows
transitions to new stable configurations. A direct or in-
direct transition is only possible in the space of control
parameters defined by the separatrix of the system. The
final state following the activation process may change at
a noncritical point that constitutes the boundary of a
direct and indirect transition. %'hen the applied field is
sufficiently close to the value at nucleation, the activation
process involves primarily the soft normal mode of exci-
tation of the system and has the lowest activation energy.
If the applied field is reduced in magnitude, a discontinu-
ous change in the value of the minimum activation ener-

gy and the associated mode of activation was observed at
some critical point, when the final state, following the
thermal activation, ceases to be metastable.

The current implementation of the ridge method uses
the normal modes of excitation about the metastable
point to restrict effectively the search for transition states
to a relatively small section of the phase space of all pos-
sible directions. This technique may be of advantage in
the study of more complex micromagnetic systems when
the external applied field is sufficiently close to the
switching field. For instance, it is useful to apply the
method to evaluate exact values of the barrier heights in
the magnetic reversal of fine particles of irregular mor-
phology. The detailed geometry of the particles deter-
mines to a large extent their viscous properties' that are
of importance in applications such as magnetic recording.

The derivation of the energy barrier dependence on ap-
plied field using the ridge method is useful for the
analysis of experimental data, for example, the depen-
dence derived by measurement of the waiting time for a
magnetization jump to occur and of the statistical dis-
tribution of the field that must be applied before a jump is
observed. Exact values for the activation volume V„,
of the particles can also be evaluated numerically using
the expression derived by Gaunt [V„,=(I/M, )dEb/
dH, ]. These can be compared with the experimental
values derived from measurement of the magnetic
viscosity S and the irreversible susceptibility y;„using
the relation V„,=kTy;„/(M, )S, that relates the static
and dynamic properties of the system. The observation
in our model system of a discontinuous variation of bar-
rier height with applied field implies the divergence of the
activation volume. Gaunt's theory, however, considers
only the transitions from a single stable state in a bistable
system, whereas the observed discontinuity in our model
system occurs only when the final state becomes rnetasta-
ble. It is evident that the probability of a transition back
to the initial state and to other stable states must also be
considered, so that a modification in the theory is re-
quired to determine unambiguously the physical irnplica-

tions in this case.
A common difficulty in micromagnetic studies of hys-

teresis' is the determination of the precise value of the
field that causes an irreversible transition. The main
reason is the symmetry of the systems studied that
prevents magnetic reversal in the absence of any pertur-
bation from equilibrium. The equilibrium state has there-
fore been tested by application of some intuitive choice of
a perturbation, for instance adding a helicity to the mag-
netization configuration or applying a small transverse
field. The results of such computations may be depen-
dent on the form chosen for those perturbations, so it is
not surprising when small difFerences are observed. The
precise value of the switching field, however, is dependent
on the thermal Auctuations of the system' that provide a
natural mechanism of perturbing the equilibrium state.
For this reason, the introduction of thermal agitation
may help to harmonize the results of rnicromagnetic
studies and allow comparisons to be made.

Our model system is probably rather simple to
represent a real system, although the fanning mode of re-
versal remains of interest' ' ' ' in theoretical studies
of the switching field of elongated fine particles. Some of
the observations in our study, however, are probably also
valid for more complex systems. For instance, the modes
of thermal activation, despite being collective, may result
in the magnetic reversal of only a small part of the sys-
tem. The implication is that the switching field H,
when the first irreversible magnetic change occurs may be
different than the coercive field H, (the field that makes
the magnetization vanish). The magnetization reversal in
this case does not occur in a single jump. Measurement
of the hysteresis loop of a single barium ferrite crystal
has shown that the reversal occurs in a two-stage process.
An analogous phenomenon is the transition from an an-
ticurling to a curling state in ferromagnetic cubes. ' '

The calculation of the separatrix of the energy surface
may be useful to determine the conditions when such
complications arise.

The possibility of existence of many stable structures
implies that in a general treatment of the hysteresis
behavior, it is necessary to consider the finite probability
of transition to many different states from a given meta-
stable state. These complications do not arise at zero
temperature where there is always a single transition that
is possible that can be evaluated by standard micrornag-
netic methods. ' For our model system that transition is
to the state of negative saturation. It is evident that, in
principle, the mode of magnetic reversal and the final
state may be different at finite temperatures. The impli-
cation is that the mode of magnetic reversal that is deter-
mined by application of the nucleation theory is not
necessarily the only mode possible and different modes
may be activated at finite temperatures. In the simplest
case, when the separation in the barrier height of
different reversal modes is sufFiciently large, only the
mode of maximum likelihood is at any stage active so
that magnetic reversal proceeds by a well defined se-
quence of jumps, i.e., the size of the jumps does not ex-
hibit a statistical distribution (as in Fig. I of Ref. 33). It
would be of interest to examine the possibility that the
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existence of distinct activation processes with different
barrier heights may provide an interpretation to the re-
cent observation ' that the reversal probability of a single
permalloy particle cannot be described by a unique relax-
ation time.
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