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Magnetic susceptibilities of V3* in corundum: Magnetic anisotropy at high fields

William H. Brumage*
1802 Saddleback Boulevard, Norman, Oklahoma 73072

C. Richard Quade
Department of Physics, Texas Tech University, Lubbock, Texas 79409

C. Franklin Dorman
Division of Science, University of Science and Arts of Oklahoma, Chickasha, Oklahoma 73018
(Received 27 February 1995)

We theoretically investigate the behavior of the V3% ion as an impurity in A1,0; under high magnetic
fields, up to 20 T. In particular, we investigate the introduction of magnetic anisotropy that is lower
than the trigonal symmetry of the host crystal. Two approaches are used for the calculations. First,
fourth-order perturbation theory is used to develop quartic terms plus one sextic term in the susceptibili-
ty tensor that are good for fields up to 4 T. Then, the three-level energy matrix is reduced exactly to ob-
tain the anisotropy at higher fields. It is found that the dominant contributions to the magnetic-induced
anisotropy arise from the X,... term, while the X,..; =Xzxxz> Xzzzz» a0d the X xxxxx terms give a much
lower contribution. Temperature-dependent effects are reported. There is a very small dependence of

the magnetization upon the zero-field splitting.

INTRODUCTION

Many years ago we theoretically and experimentally
investigated the magnetic susceptibilities of impurity ions
in host crystals for systems of differing symmetry.! In all
of these cases the systems were studied under weak mag-
netic fields. That is, the susceptibility tensor was taken to
second rank and it was diagonal in a coordinate system
that corresponded to the symmetry of the crystal.

Villeret et al.? have investigated the magnetic proper-
ties of certain cubic systems under strong magnetic fields.
In the case of strong magnetic fields, additional anisotro-
py is introduced by the field. The magnetic susceptibility
tensor must be considered to terms higher than second
rank and the tensor no longer is diagonal in a coordinate
system that corresponds to the symmetry of the crystal
without the applied field. Essentially, Villeret et al. stud-
ied how the bulk magnetization relative to the magnetic
field varied with specific directions chosen in the samples.
For these magnetic anisotropy effects to be observable,
the magnetic energy must be comparable to the crystal-
field splittings and/or the spin-orbit splittings. The sys-
tems reported have unusually weak cubic crystalline
fields and the spin-orbit coupling is consistent with that
of other 3d electron systems. Recently Fries et al.® have
reported measurements and calculations of magnetic an-
isotropy in cubic Z;_,Fe, Se. An interesting feature of
this system is that for the crystal directions chosen, al-
though the magnetization varies with applied field, the
magnetization remains parallel to the field.

In this work we revisit one of the systems that we stud-
ied previously under weak magnetic fields— V3" as an
impurity ion in the host Al,0;. For this ion both the cu-
bic and the trigonal crystal-field energies are large com-
pared to the magnetic energies of even 15 to 20 T. The
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ground state >4, level of the trigonal field is split in
second order by the spin-orbit interaction into a spin
singlet 8.25 cm ™! below a spin doublet. This spin-orbit
splitting is unperturbed by magnetic fields of 20 T. The
splitting is small enough so that magnetic anisotropy
lower than trigonal is introduced into the susceptibility
tensor in higher rank than second for strong magnetic
fields. In the present work we investigate the magnetic
anisotropy for this three-level system.

Our approach to the susceptibility tensor is different
from that introduced by Villeret et al.? Since, even in
the case of strong magnetic fields, the trigonal energy
cannot be quenched for the V3*:Al1,0; system, we chose
a coordinate system for the susceptibility tensor that cor-
responds to the trigonal axes. That is, the z axis is taken
along the trigonal axis and the x axis is one of the two
perpendicular axes. In this coordinate system, the
second-rank susceptibility remains diagonal, while the
higher rank terms have both diagonal and off-diagonal
components. Our approach expands the susceptibility
tensor as

M= > x;H;+ > XipHjH + EXijleijHI+ T,
(1)

where M, is the thermal average of the ith component of
the magnetic moment. Even in strong magnetic fields,
sufficient symmetry remains so that the only nonvanish-
ing coefficients for V3*:Al,0; are

Xij =X »

XZZE ?

()

X XXXX 2

and
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XXXZZ = XZXXZ

to fourth rank. We have also found it necessary to in-
clude the X, cxx term.

In magnetic-susceptibility measurements, often the in-
dividual components of the susceptibilities or magnetiza-
tions are measured separately. At other times a sample is
oriented so that the magnetic field is in the x-z plane
which causes a torque on the sample. Then

N=MXH (3)
or
N,=M,H,—M_.H, )

in terms of the susceptibility coefficients, N,(=N) be-
comes

N= [(Xzz T Xxx )+(szxz T Xoxxxx )H)%
+(Xzzzz T Xxxzz )sz_(Xxxxxxx )H;]Htz . (5)

In this work we use two methods of calculation. The
first is a perturbation approach that goes through fourth
order in the magnetic field for the magnetic energies.
Formulas for the temperature-dependent magnetic sus-
ceptibility coefficients Xxxs Xzzs Xxxxx> Xzzzz> Xxxzz = Xzxxzo
and X,..xx are developed. The perturbation approach is
good for fields up to 4 T. The second approach uses an
analytical diagonalization of the energy matrix with an
accompanying development of the magnetic moment. In
this approach it has not been possible to develop closed
formulas for the susceptibility coefficients; however, the
results are instructively presented through graphs of the
numerical results. In this approach fields up to 20 T are
considered which remain low enough so as not to perturb
the 8.25 cm ™! zero-field splitting.

In our calculation we neglect the second-order Van
Vleck susceptibility that arises from the interaction of the
34,(3T,) ground-state levels with the 3E(3T;) and the
3T, levels.!® Although these terms are not zero, they
are small and would contribute less than 1% to the calcu-
lated results at the temperatures and fields under con-
sideration.

The energy-level system for the (3d)? electron
configuration of V31:A1,0; in the cubic and trigonal
crystalline fields is given in Fig. 1. Some of the critical
energy differences are 8=8.25 cm™!, A;=1100 cm™!,
and A,=17400 cm~!. Again, § arises from a second-
order spin-orbit coupling interaction predominantly of
34,(T,) with 3E(T;). The spin-orbit coupling coefficient
A was found to be of the order 95 cm ™! for the V37 ion in
the A1,0; host crystal. '@ For magnetic fields less than
20 T, & is not influenced by the magnetic fields.

PERTURBATION APPROACH

The magnetic interaction for the V37:Al,0, system is
easily reduced to a three-level system that has the form
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where p, is the Bohr magnetron, g, g,, and 8 have been
determined from electron-spin resonance® and infrared
spectroscopy,® respectively, and depend upon the
crystal-field parameters and spin-orbit coupling constant.
To fourth order H, and sixth order in H,

E,=— AH}+BH!—CH!H}—GH ,
E.,=DH,+1AH}—FHH,— \BH}+ 1CH}H}

+1GHS+5 , @)
E_,=—DH,+ ' AH2+FH2H,— \BH}+ CH2H?
+1GH?+8,
where

A=glu/8, B=gius/8,
C=glgius/8’, D=guo, 8)

F=glg ud/28, G=2g%us/85° .
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The magnetic moment is given by’
my(n)=—0E, /3H, . ©

Further, the temperature-dependent magnetic moment M
is given by

Xux =142 741) 712 g(1—¢ ~8/KT) |
Xzz=(1+2'e *S/kT)*lzDZe *S/kT/kT ,

XXXXX
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. m_(n)e—En/kT
M= 2 21 —En/kT (10)
e
The temperature-dependent susceptibility coefficients,
Eq. (2), have been calculated using Egs. (7), (9), and (10)
and are as follows:

=(1+2e ¥ )" —4B(1—e 3/ )+ A2[(2+e ¥/*T)—2(1—e ~¥/KT)(1+2¢ ~8/kT)"11/kT} ,

Xzzzz=(1+2e—5/kT)—l{[%_2e“8/kT(1+2e*5/kT)—1]D4e—8/kT/(kT)3} ,

X2ZZ zxxz k]

X XXXXXX

=(142e ¥ )" 1{6G(1—e ¥ T)+3 AB[2(1+2e ¥/*T)"1(1 —e ~8/kKT)2— (24 ¢ ~8/kT)] /T

+%A3[(4_e~8/kT)_6(1+2e~8/kT)*l(l_e*S/kT)(z_I_e—&/kT)

+8(1+2e “3/KT)"2(1 —e ~O/KT)3 | /()2

In Egs. (11) series expansions have been made for the case
of the magnetic energy less than k7. All terms that con-
tribute to the x’s in Egs. (11) have been kept. Equations
(11) are good down to temperatures of 4.2 K and for mag-
netic fields up to 4 T. The limitations of Egs. (11) are il-
lustrated under comparison of the results from a more
rigorous calculation in a later section of this work. A
comparison of the fourth-order energies with the “exact”
results developed in the next section are calculated for
magnetic fields up to 8 T and are shown in Fig. 2.

There is a second- and fourth-order matrix element,
(—1|H’|+1), with quadratic and quartic contributions in
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FIG. 2. A comparison of the perturbation and exact energy
eigenvalues, Egs. (7) and (12), up to 8 T.

H, that has not been included in this part of the calcula-
tion. Neglect of the mixing from this term introduces a
2% error in the application of Eq. (11) to M, at 77 K and
0.6% error at 5 K for H, =4 T. Inclusion of this term
does not lend itself to the expansion of m;(n) in a power
series in H, and H,.

EXACT REDUCTION OF THE ENERGY MATRIX

Algebraic expressions for the eigenvalues of Eq. (6)
may be expressed as

A=28—2R"3cos(6/3) ,

A, =28+R'3cos(8/3)+V3R"%in(6/3) , (12)

A;=28+R'3cos(6/3)— V3R %in(6/3) ,

where

cos6=V¥/R ,

W=(1/27)[8°—98g tu3H2+(9/2)8g2u3H?] ,

R=(1/271Y"?,

Y =8°+27guGH; +27g SuiH + 98 fugH?
+278% | ugH,; +278%¢ tugH ! +98%¢ L ugH?:
+81glg {nGHIH; +81g g julH{H?
+548°% ig{uoHIH .

(13)

Equations (12) and (13) are then used to calculate the ma-
trix elements of the magnetic moment with the result
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m;(1)=(1/2187)R ~*/*cos(0/3)(3Y /3H;)+ 2R '3sin(6/3)

Mz/ Hz (cm’/ T?) My Hy (eI T

N/ H?sin2¢ (cm/T?

o121 o

X(1—W¥%/R?)"'2[(1/R)0Y /dH,;— (V¥ /1458R3)3Y /3H,] ,
m;(2/3)=—(1/4374)R ~%/*[ cos(8/3)+V 3sin(0/3)](dY /3H;)— +R [sin(6/3) F V'3 cos(6/3)]
X(1—W2/R2)"12[(1/R)3Y /3H;— (¥ /1458R*)3Y /3H,] .
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FIG. 3. Dependence of M, /H,, M,/H,, and N/H?%sin2¢ upon magnetic-field strength H. Comparison of the exact calculation
with the perturbation/kT expansion for fields up to 4 T.
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To calculate the temperature-dependent magnetic mo-
ments, Eqgs. (12) and (14) are used with Eq. (10). The re-
sults of the calculations are presented in the next section.

CALCULATED RESULTS

Using the formalism of the previous two sections we
have calculated the magnetizations M, and M, and the
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torque N for the V3':A1,0; system. To illustrate the
magnetic-induced anisotropy, calculations are made at
different ¢, the orientation of the magnetic field with
respect to the trigonal z axis, for magnetic fields up to 20
T, for different zero-field splittings 8, and for tempera-
tures 1 to 20 K.

Calculations are first made of M, /H, and M, /H,. In
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FIG. 4. Dependence of M, /H,, M, /H,, and N /H?sin2¢ upon the orientation of the magnetic field with the crystal trigonal z axis,

¢, first at 5 K and then at 15 K.
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the absence of saturation and magnetic-induced anisotro-
py, both quantities should be independent of the field
strength H. Likewise N /H%sin2¢ should be independent
of H.

Figure 3 illustrates a comparison of the results from
the perturbation/kT expansion formalism with those
from the ‘‘exact” calculations at 45°, that is with
H,=H,. The agreement between the two is very good
up to 3 T and fair up to 4 T. When appropriate, the per-
turbation calculations are used since the algebraic expres-
sions are easily evaluated and because of the physical in-
sight offered. These figures clearly illustrate that the per-
turbation technique and series expansion in k7T is a much
better approximation for the z terms than for the x terms.
In the torque calculation the x terms dominate the diver-
gence of the approximate fourth-order calculation from
the “exact” results.

Figure 4 illustrates how M, /H,, etc. vary with orien-
tation of the magnetic field. The magnetic-induced an-
isotropy and saturation is substantial for fields above 1 T
at 5 K. The results for 15 K show that these effects are
decreasing with higher temperature.

Figure 5 illustrates the temperature dependence of
M,/H,, M,/H,, and N/H?%in2¢ upon the zero-field
splitting 8. At low fields both M, /H, and M, /H, show
a small dependence on § that disappears at high magnetic
fields. However, the dependence of the torque N upon &
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FIG. 5. Dependence of M,/H,, M,/H,, and N/H?%in2¢
upon the zero-field splitting 8.

4261

is relatively constant over all fields.

Figure 6 illustrates the temperature dependence of
M, /H,, etc. This dependence for several fields is includ-
ed at 45°. At low temperatures there is a strong field
effect whereas at high temperature, greater than 20 K,
the field dependence disappears. This is a well-known
phenomenon—the saturation and anisotropy terms in
m;(n) cancel with those from the E, when the magnetic
energy is much less than kT in the calculated M;.
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TABLE 1. Magnetic-susceptibility tensor elements for V3*:Al,0; from Eq. (11) for T =5, 15, and 77

K with 8=8.25cm™ .

5K

15 K 77 K

X xx 1.20X 1071 Cl'l‘l“l/’r2
—1.23%x10* cm~'/T*

450X 1072 cm™ /T2
—1.94X10"* cm™1/T*

8.27X 1073 cm™/T?
—3.67%X107° cm~1/T*

Xxxxx

X xxzz 3.47X107° cm~1/T* —3.41X107° cm™!/T* —3.59%10" " cm™!/T*
A 2.28X107° cm™!/T*® 5.34X107% cm™!/T® 1.08X107% cm™!/T®
Yu 3.61X1072 cm™! /T2 3.65%X1072 cm ™! /T? 9.43X 1073 cm™!/T?
X 2222 2.11X10"* em™ ! /T* —1.91%X107% cm™1/T* —3.93X10" 7 cm™!/T*
Xoxxz 3.47X1075 cm™! /T* —3.41X107° cm™!/T* —3.59%X1077 cm™!/T*

CONCLUSIONS

In the previous sections we have calculated the effects
of high-field magnetic-induced anisotropy and saturation
on the temperature-dependent magnetizations M, and
M, and on the magnetic torque N for the V3*:Al,0; sys-
tem. To illustrate the behavior and the magnitude of the
anisotropy, the approximate susceptibility terms from
Eq. (11) have been evaluated at T =5 and 77 K and are
reported in Table I. These coefficients give a good quali-
tative and semiquantitive indication of the effects that are
reported more rigorously in the graphs of the previous
section.

First, the quartic terms in the susceptibility tensor are
at least two orders of magnitude smaller than the leading
quadratic terms. Second, the diagonal quartic terms
Xxxxx and X, are again 50 times larger than the off-
diagonal elements Y,,,, and X,,,, at low temperatures.
Third, some of the quartic terms change sign between 5
and 15 K. In general, at 1 T or less, the quadratic suscep-
tibility terms give the desired magnetization to better
than 1%. However, at 4 T and 5 K, X,,,, contributes to
Mx 16% of Xxxs Xxxxxxx 4% of Xsxxs Xzzzz 10% of Xzz to
M,, Xix; 1% of X,,, and X,.., 2% of X,,. The relative
contributions are smaller at 4T and 77 K for M, .

Therefore, the most significant effects illustrated in

Figs. 3-6 are for the most part due to saturation. The
saturation effects are strongly field dependent and this is
illustrated clearly in Fig. 6 where A_lx /H,, etc., are
graphed as a function of temperature. At the same time,
the dependence of A—lx /H,, etc., upon orientation of the
crystal with respect to the magnetic field are substantial
as indicated in Fig. 4. At low temperatures, 5 K, this
effect becomes prominent at 3 T and increases to a max-
imum at 11 T. This effect vanishes altogether for fields
less than 1 T and also with increasing temperature.

Finally, we have been especially concerned with the
sensitivity of the high-field anisotropy and saturation to
the zero-field splitting 8. In our work of some years
ago, our weak-field, low-temperature susceptibility
measurements'® gave §=8.4 cm~!. We arbitrarily put
error bars on as £0.2 cm™!. A few years later Joyce and
Richards® used infrared spectroscopic techniques and ob-
tained §=8.25 cm™! from spectral line splittings. Fur-
ther, they measured the spectral effects as a function of
magnetic field for the field along the perpendicular to the
trigonal axis. Our calculations from Fig. 5 show that the
dependence of M, and M, upon & is most pronounced at
the low magnetic fields. At the same time the torque N
shows the same dependence at low and high fields.
Therefore, it is our opinion that magnetic measurements
at high fields would give no further information on 8.
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